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Abstract. We introduce to spectral noncommutative geometry the notion of tangled
spectral triple, which encompasses the anisotropies arising in parabolic geometry as
well as the parabolic commutator bounds arising in so-called “bad Kasparov products”.
Tangled spectral triples incorporate anisotropy by replacing the unbounded operator
in a spectral triple that mimics a Dirac operator with several unbounded operators
mimicking directional Dirac operators. We allow for varying and dependent orders
in different directions, controlled by using the tools of tropical combinatorics. We
study the conformal equivariance of tangled spectral triples as well as how they fit into
K-homology by means of producing higher order spectral triples. Our main examples
are hypoelliptic spectral triples constructed from Rockland complexes on parabolic
geometries; we also build spectral triples on nilpotent group C∗-algebras from the dual
Dirac element and crossed product spectral triples for parabolic dynamical systems.
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1. Introduction

In Connes’ program for spectral noncommutative geometry [13, 14] one encodes geometry
by means of spectral triples, or K-cycles. The technology surrounding spectral triples
[9, 11, 60, 85] allows us to view spectral noncommutative geometry as a vast extension
of classical Riemannian geometry to more exotic geometric situations [10, 18, 15, 17, 33,
34, 35, 52, 56, 61, 65, 74, 75] that give meaning to the term noncommutative geometry.
The problem we address in this work is how to do noncommutative geometry in situations
where there are different directions with drastically different types of behaviour. We
restrict ourselves to parabolic situations, by which we mean that the different directions,
in an appropriate way, come with mutual polynomial bounds. The study of this problem
is geometrically motivated by a number of examples where the difference between the
directions manifests in various ways, some of extrinsic geometric interest and some of
intrinsic interest to noncommutative geometry.

We begin by describing two of our motivating examples. The first motivating example
originates in parabolic geometry [21] where the tangent bundle is filtered and the different
tangent directions capture different geometric features. One encodes the geometry through
the structure of a graded nilpotent Lie group on each tangent space. Analytically one can
study a parabolic geometry through a BGG-complex [22, 24] that replaces the de Rham
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complex. While the de Rham complex and associated Dirac operators are well understood,
and even form prototypical examples in noncommutative geometry, BGG-complexes are
still not well understood analytically. The study of BGG-complexes is motivated by recent
work [31] implying the known natural candidates for general classes of Heisenberg elliptic
differential operators with interesting spectral noncommutative geometry have trivial index
theory.

The analytic foundations for BGG-complexes were developed by Dave–Haller [24, 23]
building on ideas of Rumin [76] on contact manifolds. At the level of noncommutative
topology, i.e. index theory, BGG-complexes were studied by the second listed author [30].
Understanding the spectral noncommutative geometry of parabolic geometries is of interest
in order to organise efficiently the differential geometric machinery into a global theory
well adapted for studying global invariants. A problem motivating such a machinery is
that of finding non-trivial global invariants of parabolic geometries. In fact, already for
CR-manifolds this problem is non-trivial; see the prominent work of Fefferman [25]. A
global invariant was studied by Hirachi [43] and Ponge [67] that was later proven by Boutet
de Monvel [7] to vanish. For more general parabolic geometries, Haller [38] has studied
analytic torsion building on the work of Rumin–Seshadri [79] for contact manifolds.

The second motivating example is a fundamental object for spectral noncommutative
geometry: the unbounded Kasparov product. The product implements the Kasparov
product on KK-groups, that provide the foundation for the utility of Kasparov’s KK-
groups, at the level of unbounded cycles. The unbounded Kasparov product was studied by
Kucerovsky [57] and later phrased constructively by Mesland [63]. In somewhat technical
terms, the unbounded Kasparov product of an unbounded A-B-cycle (E1, S) with a
B-C-cycle (E2, T ) along a connection ∇ is the pair (E1 ⊗B E2, S⊗ 1+1⊗∇ T ) that under
favorable circumstances form an unbounded A-C-cycle. There are functional analytic
issues with S ⊗ 1 + 1⊗∇ T forming a self-adjoint operator, which additionally needs to be
regular in the Hilbert C∗-module sense. Such questions were addressed in [63] under some
technical restrictions which have since matured in the important work of Kaad–Lesch
[52, 51] and Lesch–Mesland [59].

An issue that is more delicate and has evaded a proper axiomatization in unbounded
KK-theory concerns the condition of bounded commutators in the unbounded Kasparov
product. There are natural examples arising from dynamics [33, 34] where 1⊗∇ T does
not have bounded commutators with a dense subspace of A. Rather 1 ⊗∇ T ends up
being of “higher order” in contrast to S ⊗ 1 in the sense that commutators with 1⊗∇ T
are relatively bounded by (1 + S2)−1/2+1/2m for an m ≥ 1 playing the role of an order.
This phenomenon occurs for Kasparov products arising from parabolic dynamics. The
ad hoc solution is to inflate the spectrum of S ⊗ 1 or dampen the spectrum of 1 ⊗∇ T
to compensate. The aim of this paper is to widen our view on spectral noncommutative
geometry to allow for varying orders of operators and potential anisotropies to persevere
as a feature rather than a bug.

A related issue—which, although it motivated our work, we have not addressed
here—stems from the early years of noncommutative geometry, when there was optimism
that quantum groups would be particularly well suited for noncommutative geometry
[16, 56, 65]. While much progress has been made in low dimension, little is known in
higher dimension despite algebraic versions of BGG-complexes [42] that have been studied
in a noncommutative geometry context by Wagner–Díaz-García–O’Buachalla [87] and
Voigt–Yuncken [86]. A fundamental problem lies precisely in the complications found in
the algebraic relations between the various “directions” in a quantum group, a statement
made precise by the work of Krähmer–Rennie–Senior [56]. In fact, the problems arising in
Krähmer–Rennie–Senior’s work relate to the Kasparov product, as discussed above. This
direction of applications for our methods is speculative since the above alluded to parabolic
behaviour does not capture the wild, hyperbolic features seen for quantum groups. We
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mention the connection nevertheless since our main definition drew inspiration from the
noncommutative geometry of quantum groups in work of Kaad–Kyed [50], and as a source
for future investigations.

The building blocks of spectral noncommutative geometry are spectral triples. The
notion of a spectral triple (A,H , D) is reviewed in the general context of a higher order
spectral triple (HOST) in Definition 2.1. In the prototypical examples arising from
commutative situations, A consists of an algebra of smooth functions on a manifold and
D is a self-adjoint operator on a Hilbert space H , satisfying axioms making it similar
to a differential operator acting on H , the L2-space of a vector bundle, with some mild
ellipticity-like conditions.

We extend this notion to that of a strictly tangled spectral triple (ST2) in Definition
3.10 where D is now allowed to be a finite collection D = (Dj)j∈I of self-adjoint operators
which satisfies an analogue of a mild ellipticity condition and an anticommutation relation.
The adjective strictly is to indicate that we assume the elements in the collection to
anticommute on the nose. We expect our results to hold under more general assumptions,
e.g. when the anticommutators are relatively small (see Remarks 3.12 and 4.3), but
to reduce the technical burden in the paper we focus on the simpler case that on its
own already holds enough interesting examples. As mentioned above, a similar idea has
appeared in the work of Kaad–Kyed [49, 50] and of Kaad–Nest–Wolfsson [53]. The first
and second of these works respectively describe the metric geometry of crossed products by
Z and of SUq(2) by means of keeping (twisted) derivations separated according to different
directions, and the third of these works studies cohomological invariants on double loop
groups in terms of directional quantum derivatives. Our main results are the following.
We use the notation xt := sign(x)|x|t for t > 0 and x ∈ R, the reader should beware
that in our convention xt at t = 2k differs from x2k. We choose this convention to
ensure non-trivial K-homological content; see Corollary 4.5.

Theorem 1. Let (A,H ,D) be an ST2 with D = (Dj)j∈I the finite collection of self-adjoint
operators and bounding matrix ϵ ∈ MI([0,∞)). Consider the non-empty set

Ω(ϵ) := {t = (tj) ∈ (0,∞)n : ϵijti < tj ∀i, j}.
For t ∈ Ω(ϵ), we define the operator

Dt :=

n∑
j=1

D
tj
j .

If t ∈ Ω(ϵ) ∩ (0, 1]n, the triple (A,H , Dt) defines a higher order spectral triple. If
additionally the ST2 is regular, then the same holds for any t ∈ Ω(ϵ).

The reader can find Theorem 1 and its proof within Theorem 4.1 below. We provide a
number of examples of ST2s throughout the paper and study the role of the transform
(A,H ,D) 7→ (A,H , Dt). In Subsection 3.4, we give a flavour of our main examples, the
Rumin complex on the Heisenberg group, and two “bad Kasparov products” involving the
group C∗-algebra of the Heisenberg group and a dynamical system on the torus. These
examples are revisited in further detail and generality in Sections 6, 7, and 8. Finer
analytical properties of ST2s are studied in Section 4, for instance finite summability
and equivariance properties. The interesting examples carry conformal actions, in the
sense of recent work [62] by the third listed author and Adam Rennie, and we discuss a
“guess-and-check” method for conformal equivariance of ST2 in Subsection 4.3 that we
later see in play in Sections 5, 6, and 7. It is a philosophy similar to that of computing
Kasparov products via Kucerovsky’s theorem [57].

Strictly tangled spectral triples also arise from Hilbert complexes [8]. We study ST2s
arising from Hilbert complexes in some detail in Section 5, where the main example is that
of Rockland complexes on filtered manifolds. Describing the noncommutative geometry
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of filtered manifolds is a non-trivial problem [40]. Of particular interest is to associate
higher order spectral triples possessing further properties with Rockland complexes. By
choosing t in Theorem 1 appropriately we can produce higher order spectral triples from
Rockland complexes either that are H-elliptic elements in the Heisenberg calculus or that
are differential operators. We summarize the results of Section 5 in a Theorem.

Theorem 2. Consider a compact filtered manifold X equipped with a volume density and
hermitian vector bundles Ej → X, j = 0, ..., n. Assume that (C∞(X;E•), d•) is a Rockland
complex with all differentials being differential operators. Then there is an associated ST2

(C∞(X), L2(X;⊕jEj),D = (dj + d∗j )j) as in Theorem 5.11. Moreover, for any τ > 0, D
assembles into an H-elliptic pseudodifferential operator Dτ on

⊕
j Ej of order τ , as in

Corollary 5.14, defining a higher order spectral triple (C∞(X), L2(X;⊕jEj), Dτ ).

In fact, the reader can find a version of Theorem 2 stated with conformally equivariant
actions as Proposition 5.19 below. To be somewhat more precise, assume that G is a
locally compact group acting as filtered automorphisms on X and that (C∞(X;E•), d•) is
Rockland and G-equivariant with the action of G on each Ej being conformal (with respect
to the volume density on X and the hermitian structure on Ej). In Proposition 5.19
below we show that if the conformal factors in the different degrees are multiplicatively
dependent (with respect to powers from Ω(ϵ)) then we can assemble the associated ST2

(C∞(X), L2(X;⊕jEj),D) into a conformally equivariant higher order spectral triple.
A sobering observation is that, in practice, there are Rockland complexes equivariant

for semisimple Lie groups of rank > 1 but for which the action will not have a scalar
conformal factor for each degree in the complex. Our framework cannot be applicable to
semisimple Lie groups G of rank > 1. Indeed, by Theorem 2.7, Proposition 5.19 would
give a G-equivariant finitely summable bounded Fredholm module, which is impossible for
a Lie group of rank > 1 as shown by Puschnigg [70]. The obstructions in higher rank are
discussed in further detail in Remarks 2.8 and 5.21.

Let us also mention another natural example of an ST2 built from the dual Dirac
element of a nilpotent group. If G is a simply connected nilpotent Lie group, the image
of the dual Dirac element under the descent map KKG

∗ (C, C0(G)) → KK∗(C
∗(G),C)

produces a K-homology class on the group C∗-algebra. We discuss in Section 7 how
computing this element explicitly at the unbounded level produces an ST2. We summarize
the result as follows.

Theorem 3. Let G be a simply connected nilpotent Lie group of depth s and H be a
cocompact, closed subgroup (possibly G itself). Choose a Malcev basis ((ej,k)

dim gj/gj+1

k=1 )sj=1

of g through the lower central series g1 = g, g2 = [g, g], . . . , gs. Let E be an irreducible
Clifford module for Cldim g, whose generators we label ((γj,k)

dim gj

k=1 )sj=1. Then the collection
(ℓj)

s
j=1 : G → EndC(E) of matrix-valued weights given by

ℓj : expg

(
s∑

i=1

dim gi/gi+1∑
k=1

xi,kei,k

)
7→

dim gj/gj+1∑
k=1

xj,kγj,k

gives rise to a strictly tangled spectral triple(
C∗(H), L2(H,E), (Mℓn)

s
n=1

)
with nontrivial class in KKdim g(C

∗(H),C) and bounding matrix ϵij = max{i − j, 0}.
Moreover, the dual Dirac element of a cocompact closed subgroup of a nilpotent Lie group
can be realized the Baaj–Skandalis dual of a strictly tangled spectral triple of the form
above.

If the group G is Carnot, it is possible to obtain a higher order spectral triple for C∗(G)
which is conformally equivariant under the dilation action.
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In Section 8, we show that parabolic dynamical systems [39, Chapter 8] give rise to
crossed product ST2s, generalising the constructions of [19, 5, 41, 66] for elliptic dynamical
systems. The following result appears as Corollary 8.8.

Theorem 4. Let (C∞
c (X), L2(X,S), D) be the Atiyah–Singer or Hodge–de Rham Dirac

spectral triple on a complete Riemannian manifold (X,g). Let φ be an action of a locally
compact group G by diffeomorphisms on X. Let ℓ : G → EndE be a self-adjoint, proper,
translation-bounded weight where E is some finite-dimensional vector space. Suppose that
φ is parabolic in the sense that for some s ≥ 0, the matrix inequality

∥dφg∥∞ ≤ C(1 + |ℓ(g)|s)
holds for some constant C > 0. Then

(C∞
c (X)⋊G,L2(G,E) ⊗̃ L2(X,S), (Mℓ ⊗̃ 1, 1 ⊗̃D)

is a strictly tangled spectral triple representing the Kasparov product of

(C∞
c (X)⋊G,L2(G,E)⊗ C0(X)C0(X),Mℓ ⊗ 1)

and (C∞
c (X), L2(X,S), D).

Acknowledgements. AM thanks Lund University, and MG and MF, for their hospitality
during a research stay in the Spring of 2024. AM also acknowledges the support of an
Australian Government RTP scholarship.

2. Preliminaries

We recall some notions from the literature in this section. Throughout the paper, we
shall need somewhat flexible notions in spectral noncommutative geometry, namely higher
order spectral triples and the notion of conformal equivariance of ditto.

2.1. Higher order spectral triples. In spectral noncommutative geometry one studies
spectral triples as an analogue of a smooth Riemannian manifold, encoded via a first-order
elliptic differential operator such as a Dirac operator. In the literature, as well as for the
examples motivating this paper, the operators rarely behave like first-order operators and
so we turn to higher order spectral triples. These latter have been studied, more or less
independently, by several authors [37, Lemma 51], [88, Appendix 5.1], [33, Appendix A].
We recall the definition here to fix notation.

Definition 2.1. A higher order spectral triple (HOST) consists of the data

(A,H , D),

where H is a Hilbert space, A ⊆ B(H ) is a ∗-subalgebra, and D is a self-adjoint operator
on H such that for an ϵ ∈ [0, 1) we have that

(1) A preserves the domain of D;
(2) D has locally compact resolvent, i.e. a(i±D)−1 ∈ K(H ) for a ∈ A;
(3) for any a ∈ A, the densely defined operator

[D, a] (1 + |D|ϵ)−1
,

is bounded in the norm on H .
We refer to the number m = (1 − ϵ)−1 as the order of (A,H , D). If A is unital and
(i±D)−1 ∈ Lp(H ), a Schatten ideal, we say that (A,H , D) is p-summable.

Here we use the Schatten ideals with exponent p > 0

Lp(H ) := {T ∈ K(H ) : Tr(|T |p) < ∞}.
For any p > 0‚ Lp(H ) is a symmetrically quasinormed ideal in the bounded operators
and, for p ≥ 1, it is a symmetrically normed ideal. We will also use the notation
Lp(H1,H2) := {T ∈ K(H1,H2) : |T | ∈ Lp(H2)}.
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The prototypical example of a higher order spectral triple of order m arises from an
elliptic pseudodifferential operator D of order m on sections E → M of a hermitian vector
bundle on a Riemannian manifold M . In this instance, A = C∞

c (M) and H = L2(M ;E).
If M is not compact, some care is needed to equip D with a domain making it self-adjoint.
Much less than classical ellipticity of D is needed, as discussed in numerous examples in
[27]. We note that a higher order spectral triple of order m = 1 is nothing but a spectral
triple.

A related notion is that of a bounded K-cycle, known also as a Fredholm module. A
bounded K-cycle (H , F ) over A consists of a Hilbert space H on which A is represented
and an operator F ∈ B(H ) such that [F, a], a(F ∗ − F ), a(F 2 − 1) ∈ K(H ) for any a ∈ A.
If A is unital, we say that (H , F ) is p-summable if

F ∗ − F, F 2 − 1 ∈ Lp/2(H ) and [F, a] ∈ Lp(H ), (2.1)

for a in a ∗-invariant dense subset of A. We interpret a bounded K-cycle, i.e. Fredholm
module, without a prescribed summability degree as having summability p = ∞.

Theorem 2.2. cf. [33, Theorem A.6] Let (A,H , D) be a higher order spectral triple and
write A for the C∗-algebra closure of A. Write

FD := D(1 +D2)−1/2.

It holds that (H , FD) is a Fredholm module for A of the same parity as (A,H , D). If A is
unital and (A,H , D) has order m and is p-summable, then the Fredholm module (H , FD)
is mp-summable over A.

Proof. We confine ourselves to proving the statement about summability, as the bounded
transform for HOSTs has appeared several times in the literature. Note that F 2

D − 1 =
−(1+D2)−1 and F ∗

D−FD = 0 ensuring that, if (A,H , D) has order m and is p-summable,
F ∗
D − FD, F 2

D − 1 ∈ Lp/2(H ).
To finish the proof we will show that [FD, a] ∈ Lmp(H ) for a ∈ A. Our argument is

inspired by the method of Schrohe–Walze–Warzecha [81]. We can assume that a∗ = −a
ensuring that [FD, a] is self-adjoint. Then by showing that an operator inequality of the
form

−C(1 +D2)−
1

2m ≤ [FD, a] ≤ C(1 +D2)−
1

2m (2.2)

holds for some C > 0 we shall obtain from a quadratic form argument that [FD, a] ∈
Lpm(H ) for a ∈ A.

Using resolvent integral formulas,

[FD, a] =
1

π

∫ ∞

1

(λ− 1)−
1
2

(
λ(λ+D2)−1[D, a](λ+D2)−1

−D(λ+D2)−1[D, a](λ+D2)−1D

)
dλ (2.3)

holds pointwise on DomD. Let A(λ) = (λ + D2)−
1
4+

1
4m [D, a](λ + D2)−

1
4+

1
4m which

is uniformly bounded in λ ≥ 1 and self-adjoint. In particular, we have the estimates
−∥A(λ)∥ ≤ ±A(λ) ≤ ∥A(λ)∥. Since both terms in the integrand of (2.3) consist of ±A(λ)
conjugated by self-adjoint elements we can conclude that

− supλ≥1 ∥A(λ)∥f(D) ≤ [FD, a] ≤ supλ≥1 ∥A(λ)∥f(D)

where

f(x) =
1

π

∫ ∞

1

(λ− 1)−
1
2 (λ+ x2)−

1
2−

1
2m dλ =

1√
π

Γ( 1
2m )

Γ( 12 + 1
2m )

(1 + x2)−
1

2m . (2.4)

In particular, the estimate (2.2) holds. □
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Remark 2.3. The proof of Theorem 2.2, in particular the estimate (2.2), shows that the
singular values of [FD, a] satisfy that

µk([FD, a]) ≤ Cµk(D)−1/m (2.5)

for the constant C arising from the m-th order bound on [D, a] as above. We can
conclude that the summability bound (2.5) is sharp from considering Weyl law for an
elliptic pseudodifferential operator D on a closed manifold M and taking a ∈ C∞(M)
appropriately.

2.2. Conformal equivariance of higher order spectral triples. Let us discuss group
actions on spectral triples, beginning with the definition of conformal equivariance of a
higher order spectral triple. We restrict the definition to the unital case.

Definition 2.4. [62, Definition 3.19] Let G be a locally compact group. A unital
conformally G-equivariant higher order spectral triple of order m is a higher order spectral
triple (A,H , D) of order m = (1− ϵ)−1 together with a unitary action U of G on H and
a ∗-strongly continuous family of invertible bounded operators (µg)g∈G such that

(1) the action of G implements an action on the unital ∗-algebra A in the sense that
αg(a) := UgaU

∗
g preserves A;

(2) for all g ∈ G, µg and µ∗
g preserve DomD, with

g 7→ [D,µg](1 + |D|ϵ)−1 and g 7→ [D,µ∗
g](1 + |D|ϵ)−1

defining ∗-strongly continuous maps from G into the space of bounded operators
on H ; and

(3) for all g ∈ G, Ug preserves DomD, with the maps

g 7→ (UgDU∗
g − µgDµ∗

g)(1 + |D|ϵ)−1 and

g 7→ Ug(1 + |D|ϵ)−1U∗
g (UgDU∗

g − µgDµ∗
g)

∗-strongly continuous from G into the space of bounded operators on H .
If µ = 1, we say that (A,H , D) is uniformly G-equivariant or just G-equivariant.

For the definition of conformal G-equivariance in the further generality of unbounded
Kasparov modules that are not necessarily unital, we refer to [62, Definition 3.19].

Remark 2.5. We may encode the unitary implemeter U of G and the conformal factor µ
as a pair (U, µ). In good circumstances, µ is a cocycle for the action U , i.e.

µgg′ = µgUgµg′U∗
g .

Such rigidity is not required by Definition 2.4, although µ is a cocycle for the action U
“up to lower order” by conditions (2) and (3). If, however, the cocycle property holds, we
may consider

(µ,U) : G → GL(H )⋊ U(H )

to be a continuous group homomorphism. Here we use the full conformal group of a
Hilbert space H defined to be the crossed product

C(H ) = GL(H )⋊ U(H ),

where U(H ) acts by conjugation on GL(H ). An element of C(H ) is a pair (µ,U) and
products are given by

(µ,U)(µ′, U ′) = (µUµ′U∗, UU ′).

The reader can note that a homomorphism (µ,U) : G → C(H ) is the same as a choice of
lift of a continuous homomorphism G → GL(H ) along the surjection C(H ) → GL(H ),
(µ,U) 7→ µU . Of course, there are plenty of possible lifts of a continuous homomorphism
V : G → GL(H ) along the surjection C(H ) → GL(H ) and there always exist lifts
(e.g. the trivial lift, U = 1 and µ = V ). Moreover, fixing U then the cohomology class
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[µ] ∈ H1(G,GL(H )) is the obstruction for the representation G ∋ g 7→ µgUg ∈ GL(H ) to
be equivalent to the unitary representation G ∋ g 7→ Ug ∈ U(H ).

Example 2.6. A prototypical example of a conformally G-equivariant spectral triple arises
from conformal actions on Riemannian manifolds. This example is discussed in more detail
in [62, Examples 2.12 & 3.24], so we restrict ourselves to recalling its main features. Assume
that the group G acts conformally and smoothly on an oriented, d-dimensional, Riemannian
manifold M and that G preserves the orientation. To reduce analytic complications, we
assume that M is compact but similar statements hold also when M is just complete.
If D denotes the signature operator d + d∗ acting on differential forms realized as its
closure on L2(M ;∧∗

CT
∗M), (C∞(M), L2(M ;∧∗

CT
∗M), D) is a spectral triple. The action

of G lifts to an action via pullback on k-forms L2(M ;∧k
CT

∗M), we denote this action by
Vk : G → GL(L2(M ;∧k

CT
∗M)). We write λ ∈ C∞(M ×G,R>0) for the conformal factor;

i.e. for g ∈ G, g∗g = λ(g)2g where g denotes the Riemannian metric. A direct computation
shows

Vk(g)
∗Vk(g) = λ(g)d−k,

and the action Vk unitarizes to Uk = Vkλ
−(d−k)/2 : G → U(L2(M ;∧k

CT
∗M)). We set

U :=
⊕d

k=0 Uk. For any a = (a0, . . . , ad) ∈ Rd+1 we can define an ansatz conformal factor
by

µa :=

d⊕
k=0

λak .

The collection (C∞(M), L2(M ;∧∗
CT

∗M), D) is a spectral triple, so its order is m = 1. For
the argument that follows, we can in fact view the order to be any number m ≥ 1, so take
ϵ ∈ [0, 1). By computing the principal symbol, we see that, if λ(g) is not the constant
function 1 for some g,

(UgDU∗
g − µa,gDµ∗

a,g)(1 + |D|ϵ)−1

is bounded for all g if and only if a = (a0, . . . , ad) ∈ Rd+1 satisfies

ak−1 + ak = 1, for k = 1, . . . , d.

On the other hand, principal symbol computations show that [D,µg](1+|D|ϵ)−1 is bounded
if and only if all objects in condition (2) of Definition 2.4 are bounded, and this holds if
and only if

a0 = a1 = · · · = ad.

In particular, (C∞(M), L2(M ;∧∗
CT

∗M), D) is a conformally G-equivariant (higher order)
spectral triple for the conformal factor µa if and only if aj = 1/2 for all j. Below we return
to similar examples arising in parabolic geometry rather than in Riemannian geometry.
The need for conformal factors to ‘conform’, as it were, will be crucial in such examples.

For a locally compact group G and a unitary action U on H that implements an action
αg(a) := UgaU

∗
g on A, then a bounded K-cycle (H , F ) together with the unitary action of

G is said to be G-equivariant if g 7→ a(UgFU∗
g − F ) is a norm-continuous map into K(H )

for all a ∈ A and g ∈ G. If additionally A is unital, we say that (H , F ) is a p-summable
G-equivariant bounded K-cycle if (H , F ) is p-summable and UgFU∗

g − F ∈ Lp(H ) for all
g ∈ G cf. [70, Definition 2.7].

Theorem 2.7. Let (A,H , D) be a conformally G-equivariant higher order spectral triple.
Writing A for the G-C∗-algebra closure of A, the Fredholm module (H , FD) for A is
G-equivariant. If (A,H , D) has order m and is p-summable, the G-equivariant Fredholm
module (H , FD) is q-summable over A for any q > mp.

The reader can find a proof of this statement in [62, Theorem 3.21], with the summability
following from the fact that (UgFDU∗

g − FD)(1 +D2)β/2 is bounded for β < 1− ϵ = m−1.
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Remark 2.8. We note in particular that there are obstructions to finite summability
which persist also in the setting above. Connes’ obstruction [10] (see also [35]) shows
that there are no finitely summable G-equivariant higher order spectral triples over A if
A⋊G is purely infinite. Puschnigg’s generalization [70] of the rigidity results of Bader–
Furman–Gelander–Monod [4] goes even further when G is a higher rank lattice and implies
in combination with Theorem 2.7 that there are no conformally G-equivariant, finitely
summable, higher order spectral triples over a unital A.

3. Strictly tangled spectral triples (ST2), definition and examples

We now come to the main object of study in this paper, the strictly tangled spectral
triples which we abbreviate ST2.

3.1. Anticommuting collections of operators. The operator D in a higher order
spectral triple will in an ST2 be replaced by a collection of operators D. We first introduce
some terminology, make some preliminary observations and provide some examples that
motivate our definition of ST2s.

Definition 3.1. Given a finite collection of self-adjoint operators D = (Dj)j∈I on a
Hilbert space H , and t = (tj)j∈I ∈ (0,∞)I , we define the positive self-adjoint operator
∆D

t from the positive, closed, quadratic form

qt(u) :=
∑
j∈I

∥|Dj |tju∥2H , u ∈ ∩j∈I Dom(|Dj |tj ).

We use the notation ∆D
t =

∑
j∈I |Dj |2tj .

Definition 3.2. A collection of self-adjoint operators D = (Dj)j∈I on H is said to be
strictly anti-commuting if, for all j ̸= k,

DjDk +DkDj = 0

on a common core invariant under (Dj)j∈I .

Example 3.3. Assume that M1 and M2 are two oriented, compact, Riemannian manifolds,
with Clifford bundles E1 → M1 and E2 → M2 with Dirac operators /D1 and /D2 thereon.
For simplicity, we assume that the manifolds are even dimensional so all Clifford bundles
and Dirac operators are graded. We write E1 ⊠̃ E2 → M1 ×M2 for their graded exterior
tensor product. By construction, the pair of operators

D1 := /D1 ⊗̃ 1E2
and D2 := 1E1

⊗̃ /D2

form a strictly anticommuting collection on the Hilbert space L2(M1 × M2, E1 ⊠̃ E2).
Here the domain of D1 is the (graded) Hilbert space tensor product H1(M1, E1) ⊗̃
L2(M2, E2) and the domain of D2 is the (graded) Hilbert space tensor product L2(M1, E1)⊗̃
H1(M2, E2). Here D := D1 +D2 is a Dirac operator on the Clifford bundle E1 ⊠̃ E2 →
M1 ×M2. A similar construction can also be made for a foliated manifold [12, 55], with
D1 being a tangential Dirac operator and D2 a transversal Dirac operator but in this case
D1D2 +D2D1 is generally not zero, and only lower order if the foliation is Riemannian.

Example 3.4. We can more generally consider the (constructive) external Kasparov product.
If (A1,H1, D1) and (A2,H2, D2) are two even higher order spectral triples, their external
Kasparov product is constructed as (A1⊗A2,H1⊗̃H2, D1⊗̃1+1⊗̃D2). Here (D1⊗̃1, 1⊗̃D2)
form a strictly anticommuting collection on the Hilbert space H1 ⊗̃ H2 and their sum is
the operator in the external Kasparov product. This example goes back to Baaj–Julg’s
seminal paper [3] where the unbounded picture was first introduced. The two pairs of
strictly anticommuting operators discussed in this example will fit into the framework of
ST2s discussed in the next section (see Definition 3.10).
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Example 3.5. A more simple-minded example is the direct sum of two higher order spectral
triples. If (A1,H1, D1) and (A2,H2, D2) are two higher order spectral triples, their direct
sum is (A1 ⊕A2,H1 ⊕ H2, D1 ⊕D2). Albeit in a somewhat trivial way, (D1 ⊕ 0, 0⊕D2)
form a strictly anticommuting collection on the Hilbert space H1 ⊕ H2.

Example 3.6. Let M be a compact Kähler manifold. Write d for the complex dimension
of M . We can consider the Dolbeault complex

0 → C∞(M)
∂̄1−→ C∞(M,Λ1)

∂̄2−→ C∞(M,Λ2)
∂̄3−→ · · ·

· · · ∂̄d−1−−−→ C∞(M,Λd−1)
∂̄d−→ C∞(M,Λd) → 0.

Here Λk := ∧k
CT

0,1M denotes the exterior algebra of the (0, 1)-forms. We also write
Λ :=

⊕
Λk. The operators /∂j obtained as the closure of ∂̄j + ∂̄∗

j on L2(M ; Λ) satisfy for
j ̸= k

/∂j /∂k = 0 = −/∂k /∂j .

In particular, the collection (/∂j)
d
j=1 is a strictly anticommuting collection of operators on

L2(M ; Λ). The collection of strictly anticommuting operators discussed in this example
will fit into the framework of ST2s discussed in the next section (see Definition 3.10).

We can in fact for any partition {1, 2, . . . , d− 1, d} = S1 ⊔ · · · ⊔Sn form Dl :=
∑

j∈Sl
/∂j

and the collection D = (Dl)
n
l=1 also forms a strictly anticommuting collection. In both of

these constructions

∆D
(1,1,...,1) =

d∑
j=1

/∂
2
j =

d∑
j=1

∂̄∗
j ∂̄j + ∂̄j ∂̄

∗
j =

n∑
l=1

D2
l

is the Kodaira Laplacian. In later examples arising from complexes, we see that the orders
of the differentials affect which partitions we can choose when building an ST2; see in
particular Remark 5.12.

For a complex number t with Re(t) > 0, we use the notation xt for the function

xt =

{
0, x = 0,

sign(x)|x|t, x ̸= 0.
. (3.1)

In other words, 0t = 0 and for x ≠ 0, xt = x|x|t−1. Note in particular that for an integer
k it holds that xkt = (xt)k only if k is an odd integer.

Lemma 3.7. If D = (Dj)j∈I is a strictly anti-commuting collection of self-adjoint
operators on H and t ∈ (0,∞)I , then the operator

Dt :=
∑
j∈I

D
tj
j

is self-adjoint with Dom(Dt) coinciding with the form domain of ∆D
t . Moreover, as densely

defined operators, D
2

t = ∆D
t .

Proof. Follows from [51] and an induction argument. □

Lemma 3.8. Let D = (Dj)j∈I be a strictly anticommuting collection of self-adjoint
operators on H . Then the following are equivalent for a bounded operator a on H :

• a(1 + ∆D
t )−1 ∈ K(H ) for any t ∈ (0,∞)I ;

• a(1 + ∆D
t )−1 ∈ K(H ) for some t ∈ (0,∞)I ; and

• a as a map a : ∩j∈I Dom(Dj) → H is compact.
In fact, for s, t ∈ (0,∞)I and σ, τ ∈ (0,∞) such that σsi ≤ τti there exists a constant
C > 0 for which

(1 + ∆D
s )σ ≤ C(1 + ∆D

t )τ

in the form sense.
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Proof. Noting that (D2
j )j∈I is a strictly commuting collection of self-adjoint operators,

the lemma follows from functional calculus of several commuting operators. □

3.2. Bounds and tropical combinatorics. We will encode the orders (relating to
commutator properties as in a higher order spectral triple) of the components in a finite
collection D = (Dj)j∈I of self-adjoint operators in a matrix ϵ = (ϵij)i,j∈I ∈ MI([0,∞)).
Here we write MI for the matrices indexed by a finite set I. We think of ϵ pictorially as a
weighted directed graph. The weighted directed graph has vertices labelled by I and there
is an edge from i to j labelled by ϵij whenever ϵij > 0. We will intepret ϵ as a matrix
valued in the tropical semiring. The tropical semiring, in the multiplicative convention,
is [0,∞) with addition ⊕ given by x⊕ y = max{x, y} and multiplication × defined just
as usual. Remark that 0 is the additive identity, 1 is the multiplicative identity, and
multiplication distributes over addition. The reader can find more details on matrices in
the tropical semiring and their relationship to weighted directed graphs in [45] (where
an additive convention is used for the tropical semiring, related to our multiplicative
convention by the logarithm). For instance, the diagram

ϵ11 ϵ21 ϵ22

ϵ12

pictorially describes a 2× 2 matrix ϵ = (ϵij)
2
i,j=1 ∈ M2([0,∞)), and the reader may begin

to understand our use of the word ‘tangled’ for the main concept of this paper.

Definition 3.9. We say that a matrix ϵ = (ϵij)i,j∈I ∈ MI([0,∞)) satisfies the decreasing
cycle condition if for any k and γ = (γ1, γ2, . . . , γk) ∈ Ik with γ1 = γk we have that

k∏
j=1

ϵγjγj+1 < 1.

The decreasing cycle condition means that the total weight along any cycle in the
weighted directed graph should be < 1. The condition that

∏k
j=1 ϵγjγj+1

< 1 is indeed
only a condition appearing along the cycles in the weighted digraph associated with ϵ since
γ = (γ1, γ2, . . . , γk) ∈ Ik represents a cycle if and only if

∏k
j=1 ϵγjγj+1

> 0. In particular,
if the weighted digraph associated with ϵ has no cycles then ϵ automatically satisfies the
decreasing cycle condition.

It follows from [45, Lemma 3.23] that ϵ ∈ MI([0,∞)) satisfies the decreasing cycle
condition if and only if the polyhedral cone

Ω(ϵ) := {t = (tj) ∈ (0,∞)I : ϵijti < tj ∀i, j},

called the weighted digraph polyhedron, is non-empty. This is related to the existence of
nonzero tropical eigenvalues for ϵ. If n = 1 then ϵ ∈ [0,∞) satisfies the decreasing cycle
condition if and only if ϵ < 1.

3.3. Strictly tangled spectral triples. We now come to the main definition of this
section.

Definition 3.10. A strictly tangled spectral triple (ST2) consists of the data

(A,H ,D),

where H is a Hilbert space and A ⊆ B(H ) is a ∗-subalgebra, and D = (Dj)j∈I is a finite
collection of strictly anti-commuting self-adjoint operators on H such that for a matrix
ϵ ∈ MI([0,∞)) satisfying the decreasing cycle condition (see Definition 3.9) we have that

(1) A preserves the domains of each Dj ;
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(2) the collection D has locally compact resolvent in the sense that, for every a ∈ A,
a(1 + ∆D

t )−1 ∈ K(H ) for some t ∈ (0,∞)I (or any of the other equivalent
conditions of Lemma 3.8); and

(3) for any a ∈ A and i ∈ I, the densely defined operator

[Di, a]

(
1 +

∑
j∈I

|Dj |ϵij
)−1

is bounded in the norm on H .
We refer to ϵ as a bounding matrix. If additionally A and [Dj ,A] for each j preserve a
common (Dj)j∈I -invariant core for (Dj)j∈I we say that (A,H ,D) is a regular ST2.

If H is graded, A consists of even operators and all operators in D are odd, we say that
(A,H ,D) is an even ST2. If H carries no grading we say that (A,H ,D) is an odd ST2.

Remark 3.11. A strictly tangled spectral triple (A,H ,D) with n = 1 is the same as a
higher order spectral triple as defined in Definition 2.1 above. Recall from above that for
n = 1 the decreasing cycle condition on ϵ ∈ [0,∞) is equivalent to ϵ < 1. In this case, if
ϵ ∈ (0, 1) is the bounding matrix then (A,H ,D) is a higher order spectral triple of order
m = (1− ϵ)−1. Furthermore, we point out that there is an implicit lower bound m ≥ 1 on
the order of our higher order spectral triples originating in the requirement on ϵ to have
coefficients in [0,∞) that in turn is set in order to apply the toolbox of tropical geometry
[45].

Remark 3.12. There is a straightforward extension of Definition 3.10 to strictly tangled
unbounded Kasparov modules but, in the interests of exposition, we do not pursue it here.

We note that our definition of a strictly tangled spectral triple is somewhat restrictive
in requiring the elements of the collection D = (Dj)j∈I to be strictly anti-commuting. We
expect that this definition can be relaxed to include collections D = (Dj)j∈I on which
there is a size constraint on the anti-commutator DjDk + DkDj along the lines of for
instance [59]. For our applications to complexes, in particular Rockland complexes, we will
make do with strictly anti-commuting collections but in order for more general applications
to Rockland sequences [24, 32, 30] and more general Kasparov product constructions
[33, 52, 63] to fit into the framework one needs to extend the notion above to a weaker
anticommutation condition. See Remark 4.3 for futher comments on where in the proofs
this is used.

Remark 3.13. If the operators D = (Dj)j∈I have a prescribed order m = (mj)j∈I ∈ [1,∞)I

in an appropriate sense, e.g. in some pseudodifferential calculus, there is an intuitive guess of
bounding matrix ϵ. Similar to the intuition of a higher order spectral triple, a commutator
[Di, a] should behave like one order lower than Di and therefore be controlled by operators
of order mi − 1. Therefore, a natural choice that turns out to be correct in examples is
the bounding matrix ϵij =

mi−1
mj

, for i, j ∈ I, represented by the weighted digraph

· · ·
mi−1
mj

mj−1
mi

mi−1
mi

mj−1
mj

· · ·

which also matches the order of a higher order spectral triple in that mi = (1 − ϵii)
−1.

Such an ϵ fulfils the decreasing cycle condition since
k∏

j=1

ϵγj ,γj+1
=

∏k
j=1(mγj

− 1)∏k
j=1 mγj+1

=

∏k
j=1(mγj

− 1)∏k
j=1 mγj

=

k∏
j=1

(
1− 1

mγj

)
< 1 (3.2)
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for any cycle γ = (γ1, . . . , γk), where we use the cycle property γ1 = γk in the second
equality. In particular, Ω(ϵ) contains a ray of the form

tm(τ) :=

(
τ

mj

)
j∈I

∈ Ω(ϵ), τ > 0.

Indeed, tm(τ) ∈ Ω(ϵ) since ϵijti = ϵiitj < tj . The operator

Dτ := Dtm(τ) =
∑
j∈I

D
τ

mj

j

constructed from this ray should then morally be a sum of operators of order τ , which
is discussed further in Remark 4.4 and placed in a solid mathematical foundation in
Proposition 5.6.

Operators with prescribed orders m with this type of bounding matrix ϵ will be
considered further in Section 5 in the context of complexes. For an ST2 arising from a
complex, we will depart from the preceding discussion by setting ϵij = 0 if the operators
Di and Dj are “far apart” in the complex.

When we consider the C∗-algebras of nilpotent groups in Section 7, we will see that one
does not always have a natural prescription of orders. However, in the case of a Carnot
group, there will be a natural way of assigning orders, related to conformal equivariance
under the dilation action.

3.4. Examples. Before we go further into the general theory or the main examples of the
paper, we provide some simpler examples to clarify and justify the structure underlying
ST2s. Further examples, generalising these, will be presented in Sections 5, 6, 7, and 8.

3.4.1. The Rumin complex in three dimensions on a nilmanifold. The Rumin complex is
an example of a Rockland complex. We will consider Rockland complexes in Section 5
and return to explain and study Rumin complexes in more generality in Section 6. Let us
start with the simplest situation to explain the ideas motivating the notion of ST2s. We
consider the 3-dimensional Heisenberg group H3. As a manifold, H3 coincides with R3 but
is equipped with the product (x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′). We write
Γ for the cocompact subgroup defined from the integer points Z3. On the nilmanifold
M = H3/Γ, the Rumin complex takes the form

C∞(M)dx C∞(M)dx ∧ θ

0 C∞(M) C∞(M)dx ∧ dy ∧ θ 0

C∞(M)dy C∞(M)dy ∧ θ

Z+XY

Y 2

YX

Y

Z−Y X

−X2

−X

where X = ∂x−y∂z, Y = ∂y, and Z = ∂z are the standard basis elements of the Heisenberg
Lie algebra with the commutator identity [X,Y ] = Z, here acting as vector fields on
M . Here θ = ydx+ dz denotes the contact form. We equip M with the volume density
induced from the Haar measure on H3/Γ and declare dx, dy and θ to be an orthonormal
frame. With these choices, the Rumin complex above is completed into a Hilbert complex,
see [8] or Section 5 below.

We shall shorten the notation for the operators in the Rumin complex to dR
• =

(dR0 , d
R
1 , d

R
2 ). It is a mixed order differential complex. Let

D1 := dR0 + (dR0 )
∗ + dR2 + (dR2 )

∗ and D2 := dR1 + (dR1 )
∗.

We view D1 and D2 as densely defined, self-adjoint operators on L2(M ;H) where H → M is
the sum of all line bundles appearing in the Rumin complex; so H ∼= M × C6. The
differential operators D1 and D2 are of order m1 = 1 and m2 = 2 respectively. We note
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that D1D2 = D2D1 = 0, so D1 and D2 are strictly anticommuting. The Rumin Laplacian
takes the form

∆R = D4
1 +D2

2.

The data (C∞(M), L2(M ;H), (D1, D2)) constitute an ST2 with bounding matrix

ϵ =

(
0 0
1 1

2

)
1

1
2 .

One can read this off the structure of the Rumin complex. The diagonal arrows, corre-
sponding to the operators −X2 and Y 2, require the weight-1/2 loop and the horizontal
arrows, corresponding to the operators Z +XY and Z − Y X, require the weight-1 edge
from D2 to D1. The other arrows, forming part of D1 are all first order, making no
contribution to the bounding matrix. Below in Subsection 6.1, we will show that the
naïvely formed candidate D1 +D2 for a noncommutative geometry on M fails to be a
higher order spectral triple, motivating the need for ST2s.

In particular, for any t = (t1, t2) ∈ (0,∞)2 with

t1 > t2,

we arrive at a higher order spectral triple with Dirac operator

Dt = D1|D1|t1−1 +D2|D2|t2−1 = D1(∆
R)

t1−1
4 +D2(∆

R)
t2−1

2 .

If t lies along the ray spanned by (1, 1/2) then Dt is an H-elliptic operator in the Heisenberg
calculus and if t = (2k1 + 1, 2k2 + 1) where k1 > k2 are natural numbers then Dt is a
differential operator. The reader can find more details in Section 6 below.

3.4.2. A strictly tangled spectral triple on the Heisenberg group. A natural K-homology
class on the C∗-algebra of a connected Lie group with no compact subgroups arises from
Baaj–Skandalis duality KKG(C, C0(G)) ∼= KKĜ(C∗(G),C) and the dual Dirac element
in KKG(C, C0(G)). Below in Section 7 we discuss this construction for closed subgroups
of nilpotent Lie groups but here we present a miniature version of this example on the
3-dimensional real Heisenberg group H3. In the 3× 3-matrix presentation, we can write

H3 =

g ∈ M3(R) : g =

1 a c
0 1 b
0 0 1

 .

The group H3 is a central extension of R2 by R, fitting into an exact sequence

0 R H3 R2 0,ι q

r

where r is the (topological) retraction r : H3 → R given by r(g) = c.
We call a weight on a locally compact group G a continuous function ℓ from G to

matrices on a finite-dimensional complex vector space E. We will say that a weight ℓ is
self-adjoint if ℓ∗ = ℓ; proper if, in addition, (1 + ℓ2)−1 ∈ C0(G,EndE); and translation
bounded if, furthermore, for g, h ∈ G, ℓ(gh)− ℓ(h) is bounded in h. A self-adjoint, proper,
translation-bounded weight will be called an matrix-valued length function. An operator
valued length function gives rise to a spectral triple

(Cc(G), L2(G,E),Mℓ)

for the group C∗-algebra of G. Similar examples have been studied several times in the
literature, e.g. in [10, 35], although often with ℓ valued in [0,∞) and so giving rise to
trivial K-homology.
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For notational clarity, write Z := R for the central subgroup and use q to identify
H3/Z = R2. We define the matrix-valued length functions

ℓZ : Z → C ℓH3/Z : H3/Z → Cl2

c 7→ c (a, b) 7→ aγ1 + bγ2.

We can form the unbounded Kasparov C∗(H3)-C∗(Z)-module

(Cc(H3), (Cc(H3)⊗ C2)C∗(Z),Mq∗(ℓH3/Z))

representing a generator of KK0(C
∗(H3), C

∗(Z)). Here (Cc(H3)⊗ C2)C∗(Z) denotes
Hilbert C∗(Z)-module obtained as the completion of Cc(H3) ⊗ C2 in the Cc(Z)-valued
inner product ⟨f1, f2⟩ := (f∗

1 ∗ f2)|Z where the convolution is over H3. We also form the
unbounded Kasparov C∗(Z)-C-module

(Cc(Z), L2(Z),MℓZ )

representing a generator of KK1(C
∗(Z),C). In fact, up to a Fourier transform, this is the

standard Dirac operator on Z = R. Were we naïvely to form the constructive unbounded
Kasparov product of (Cc(H3), (Cc(H3)⊗ C2)C∗(Z),Mq∗(ℓH3/Z)) and (Cc(Z), L2(Z),MℓZ , it
would produce the triple

(Cc(H3), L
2(H3,C2),Mℓ)

where the operator valued length function ℓ would be given by

ℓ(g) = q∗(ℓH3/Z)(g) + r∗(ℓz)(g)γ3 = aγ1 + bγ2 + cγ3.

The choice of retraction r is related to the choice of a connection in the constructive
Kasparov product. Alas,

ℓ(gh)− ℓ(h) = aγ1 + bγ2 + (c+ ab′)γ3

is not bounded in h. Instead, if we let ℓ1 = q∗(ℓH3/Z) and ℓ2 = r∗(ℓZ)γ3, we see that

suph |ℓ1(gh)− ℓ1(h)| = |ℓ1(g)| < ∞

but ℓ2 exhibits the parabolic feature that

|ℓ2(gh)− ℓ2(h)||1 + ℓ1(h)|−1 = |c+ ab′|(1 + (a′
2
+ b′

2
)1/2)−1 ≤ |ℓ2(g)|+ |ℓ1(g)|

so that

suph |ℓ2(gh)− ℓ2(h)||1 + ℓ1(h)|−1 < ∞.

We therefore have a strictly tangled spectral triple(
C∗(H3), L

2(H3,C2), (Mℓ1 ,Mℓ2)
)

with bounding matrix

ϵ =

(
0 0
1 0

)
1 .

The set Ω(ϵ) consists of t1, t2 ∈ (0,∞) such that t1 > t2.
We return to this example below, in two instances. In Example 4.6, we interpret the

higher order spectral triple associated with (C∗(H3), L
2(H3,C2), (Mℓ1 ,Mℓ2)) as a Kasparov

product using Kucerovsky’s theorem. In Section 7, this example will be generalized to all
simply connected nilpotent Lie groups (and their closed subgroups) where there are as
many Kasparov products as there is step length in the group.
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3.4.3. Parabolic large diffeomorphisms on the torus. In Section 8, we will see that ST2s
allow us to generalise the construction of spectral triples for elliptic dynamical systems by
Bellissard, Marcolli, and Reihani [5] to parabolic dynamical systems, including nilflows,
horocycle flows, and large diffeomorphisms of tori, classical and noncommutative. We here
give a simple instance of this latter family of examples.

Consider the group of large diffeomorphisms (ϕn)n∈Z of T2 given by

ϕn =

(
1 n
0 1

)
∈ SL(2,Z).

This induces an action α on C(T2) given by αn(a) := ϕ∗
−n(a) for a ∈ C(T2), preserving

C∞(T2). Let (C∞(T2), L2(T2,C2), D) be the Dirac spectral triple on the torus. With N
the number operator on ℓ2(Z), we write (C∞(T2)⋊ Z, ℓ2(Z)⊗ C(T2)C(T2), N ⊗ 1) for the
unbounded Kasparov module associated with the crossed product.

In attempting to form the Kasparov product, we encounter the pointwise-boundedness
condition (below in Definition 8.1) for a ∈ C∞(T2)⋊ Z requiring uniform boundedness of
∥[D,αn(a)]∥ in n. Let us see how ∥[D,αn(a)]∥ behaves as |n| → ∞. For a ∈ C∞(T2)

αn(a)(x, y) = a(x− ny, y),

and
D = γ1∂x + γ2∂y,

so
[D,αn(a)] = γ1ϕ

∗
−n(∂xa) + γ2

(
ϕ∗
−n(∂ya)− nϕ∗

−n(∂xa)
)
.

We conclude that there is a constant C > 0 such that, for any a ∈ C∞(T2) and n ∈ Z,

|n|∥∂xa∥L∞ − C∥∇a∥L∞ ≤ ∥[D,αn(a)]∥ ≤ |n|∥∂xa∥L∞ + C∥∇a∥L∞ .

We see that the pointwise-boundedness condition is not satisfied, rather we have the
growth ∥[D,αn(a)]∥ ∼ |n|∥∂xa∥L∞ as |n| → ∞. Hence

[1⊗D,π(a)](1 + |N |)−1 ⊗ 1

is bounded. In particular, the collection

(C0(T2)⋊ Z, ℓ2(Z)⊗ L2(T2, S), (N ⊗ γ, 1⊗D))

is a strictly tangled spectral triple with bounding matrix

ϵ =

(
0 0
1 0

)
1

and, arguing as above, Ω(ϵ) = {(t1, t2) ∈ (0,∞)2 : t1 > t2}.

4. Analysis of strictly tangled noncommutative geometries

We here analyse strictly tangled spectral triples in terms of higher order spectral triples
and introduce further structure thereon, with the aim of studying ST2s in their own right.

4.1. Assembling an ST2 into a higher order spectral triple. Let us study how
to construct a higher order spectral triple (HOST) from an ST2. In conjunction with
Theorem 2.2, we will see that there is a well-defined K-homology class associated with an
ST2.

Theorem 4.1. Let (A,H ,D) be an ST2 with the bounding matrix ϵ and D = (Dj)j∈I .
For t ∈ Ω(ϵ), we define the operator

Dt :=
∑
j∈I

D
tj
j .

If t ∈ Ω(ϵ) ∩ (0, 1]I , then the triple (A,H , Dt) defines a higher order spectral triple.
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If (A,H ,D) is a regular ST2 then (A,H , Dt) defines a higher order spectral triple for
any t ∈ Ω(ϵ). We have that (A,H , Dt) is of order mt for any mt that satisfies

mt > ki

(
1− ϵijti

tj

)−1

(4.1)

for every i, j ∈ I, where ki ∈ 2N+ 1 is any odd integer such that ki ≥ ti. If ti = ki, the
requirement in (4.1) can be taken as an equality for that i.

To prove Theorem 4.1, we need the following lemma.

Lemma 4.2. Let A and T be densely defined self-adjoint operators on a Hilbert space H
such that

• A and T commute on a common core, and
• T is positive and invertible.

Assume that a ∈ B(H ) preserves Dom(A) and satisfies that the densely defined operator

[A, a]T−1, with domain Dom(A),

is bounded in the norm on H . Then for any t ∈ (0, 1] and ε > 0 the densely defined
operator

[At, a]T−t−ε, with domain Dom(A),

is bounded in the norm on H . Note that here we define At using (3.1).

Proof. We first note that, since A and T commute on a common core,

[A, a]T−1 = [A, aT−1]

is a bounded operator. We can now apply an analogous argument to the proof of [36,
Lemma 10.17 and 10.18] to deduce that the operator

[Aβ , aT−1] = [Aβ , a]T−1

is bounded for any β ∈ C with real part in (0, 1).
We will now conclude the proof using complex interpolation, see for instance [6]. Take

δ ∈ (0, 1). Write
Sδ := {t ∈ C : Re(t) ∈ [0, 1− δ]}

for the vertical strip of width 1− δ. Given x ∈ Dom(A) we can define the function

f : Sδ → H , f(t) = [At, a]T−t/(1−δ)x.

Clearly ∥f(t)∥ is bounded by 2∥a∥∥x∥ along Re(t) = 0 and by the argument above
there is a constant C > 0 independent of x such that ∥f(t)∥ is bounded by C∥x∥ along
Re(t) = 1− δ. We conclude from Hadamard’s three lines lemma that for an appropriate
C ′ > 0 (independent of x) we have

∥f(t)∥ ≤ C ′∥x∥.
In particular, [At, a]T−t/(1−δ) is bounded for t ∈ (0, 1− δ). So given t ∈ (0, 1] and ε > 0
as in the statement of the lemma, we can simply take δ = 1− t(t+ ε)−1. □

Proof of Theorem 4.1. We start with considering t ∈ Ω(ϵ) ∩ (0, 1]I . By Lemma 3.8 it
suffices to show that, for any i and a ∈ A,

[Dti
i , a]

(
1 +

∑
j∈I

|Dj |tj
)−1+ 1

mt

(4.2)

is bounded. If ti = 1, again using Lemma 3.8 we see that (4.2) is bounded if (1−1/mt)tj ≥
ϵijti for all j, which is equivalent to mt ≥ (1 − ϵijti/tj)

−1. Similary, if ti < 1, by using
Lemma 4.2 we see that (4.2) is bounded if mt > (1− ϵijti/tj)

−1.
Now assume additionally that (A,H ,D) is a regular ST2 and consider any t ∈ Ω(ϵ).

Let ki be an odd integer such that ki ≥ ti, then with our convention for exponents in (3.1)
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Dti
i is indeed a product of Dti/ki

i ki:times. Again by Lemma 3.8 it suffices to show that,
for any i and a ∈ A,

[Dti
i , a]

(
1 +

∑
j∈I

|Dj |tj
)−1+ 1

mt

=

ki−1∑
l=0

(D
ti
ki
i )l[D

ti
ki
i , a](D

ti
ki
i )ki−l−1

(
1 +

∑
j∈I

|Dj |tj
)−1+ 1

mt

is bounded. The l:th summand on the right-hand side is bounded as soon as(
1 +

∑
j∈I

|Dj |tj
) l

ki

[D
ti
ki
i , a]

(
1 +

∑
j∈I

|Dj |tj
)− l+1

ki
+ 1

mt

is bounded. Using interpolation (and that a∗ ∈ A) this expression is bounded independently
of l if

[D
ti
ki
i , a]

(
1 +

∑
j∈I

|Dj |tj
)− 1

ki
+ 1

mt

is bounded. Since ti
ki

≤ 1, we can ensure that this expression is bounded in the same way
as the case where ti ≤ 1 in the beginning of this proof. The inequality we end up with is(

1
ki

− 1
mt

)
tj > ϵij

ti
ki

which is equivalent to mt > ki

(
1− ϵijti

tj

)−1

. And similarly as for
the case where ti = 1, if ti = ki we can take this strict inequality as non-strict. □

Remark 4.3. Theorem 4.1 is proven under strong assumptions on the anticommutators
DjDk +DkDj , namely that they vanish for j ≠ k. We expect that Theorem 4.1 holds
under much milder assumptions on the anticommutators DjDk +DkDj . In the proof of
Theorem 4.1, we rely heavily on Lemma 4.2 for A = Dj and T = ∆D

t/2. Assumptions such
as those in [52, 51, 59], modified according to an ϵ-power of D, may allow one to extend
Theorem 4.1.

Let us discuss a prototypical example to which Theorem 4.1 extends, despite a lack of
vanishing anticommutators. In [11, §1.1–2], an order-2 spectral triple(

C∞
c (M)⋊ Γ, L2(M,Λ∗V ∗ ⊗ Λ∗N∗), (dLd

∗
L − d∗LdL)(−1)∂N + dH + d∗H

)
(4.3)

is built from the data of a manifold M with triangular structure preserved by a group of
diffeomorphisms Γ. To arrive at this higher order spectral triple, the longitudinal signature
operator dL + d∗L is first found to be homotopic to ∆

−1/2
L (dLd

∗
L − d∗LdL). At this point,

we can consider the collection(
C∞

c (M)⋊ Γ, L2(M,Λ∗V ∗ ⊗ Λ∗N∗),
(
∆

−1/2
L (dLd

∗
L − d∗LdL)(−1)∂N , dH + d∗H

))
. (4.4)

The operators in the collection (4.4) are not strictly anticommmuting but the anticommu-
tators are of lower order in the pseudodifferential calculus of [11]. The pseudodifferential
calculus allow us to think of (4.4) as a “tangled spectral triple” with bounding matrix

ϵ =

(
0 0
1 1

2

)
1

1
2

so that taking t = (2, 1) produces the HOST (4.3).

Remark 4.4. For an ST2 (A,H ,D) such that the operators D has prescribed orders
m ∈ [1,∞)I with bounding matrix on the form ϵij =

mi−1
mj

as in Remark 3.13, then for
any τ > 0 we would like the higher order spectral triple (A,H , Dτ ) to be of order τ .
Abstractly, Theorem 4.1 only ensures this if and only if τ

mi
∈ 2N+ 1 for all i, for example

if m ∈ (2N+1)I and τ =
∏

i mi. In the examples below coming from Rockland complexes
(see Corollary 5.14), the pseudodifferential calculus ensures that the order can be taken to
be τ on the nose.
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In light of Theorem 2.2 and standard arguments with functional calculus as in Subsection
3.1, Theorem 4.1 implies the following.

Corollary 4.5. Let (A,H ,D) be an ST2 with the bounding matrix ϵ. We write A for
the C∗-algebra closure of A. There is a well defined K-homology class

[(A,H ,D)] := [(A,H , FDt
)] ∈ K∗(A)

for any t ∈ Ω(ϵ) ∩ (0, 1]I (or t ∈ Ω(ϵ) if the ST2 is regular) with the same parity as
(A,H ,D). The class [(A,H ,D)] depends only on (A,H ,D) and not on t.

We note that in Corollary 4.5, the convention xt := sign(x)|x|t, for t > 0 and x ∈ R,
ensures that the K-homology classes can be non-trivial also when a component of t is an
even integer.

Example 4.6. Let us return to the ST2 for the Heisenberg group in Subsubsection 3.4.2.
Using Kucerovsky’s theorem [57] (and in particular its extension to HOSTs in [33, Theorem
A.7]), we see that, for any t ∈ Ω(ϵ) = {(t1, t2) ∈ (0,∞)2 : t1 > t2} and for D = (Mℓ1 ,Mℓ2),
the HOST (Cc(H3), L

2(H3,C2), Dt) represents the class in K1(C∗(H3)) = KK1(C
∗(H3),C)

of the Kasparov product of

[(Cc(H3), (Cc(H3)⊗ C2)C∗(Z),Mq∗(ℓH3/Z))] ∈ KK0(C
∗(H3), C

∗(Z)),

with
[(Cc(Z), L2(Z),MℓZ )] ∈ KK1(C

∗(Z),C).
The take home message from this example is that ST2s can be used to represent bad
Kasparov products by encoding the directional properties separately.

Theorem 4.7. Let (A1,H1,D1) and (A2,H2,D2) be two even ST2s with bounding
matrices ϵ1 and ϵ2 respectively. Here we write D1 = (Dj)j∈I1 and D2 = (Dk)k∈I2 . We
denote by A1 and A2 the C∗-algebra closures of A1 and A2 respectively. Then the collection

(A1 ⊗A2,H1 ⊗̃ H2,D1 ⊗̃D2)

forms an ST2 with bounding matrix the direct sum ϵ1 ⊕ ϵ2, where H1 ⊗̃ H2 denotes the
graded tensor product and D1 ⊗̃D2 = (D̂l)l∈I1⊔I2 for

D̂l :=

{
Dj ⊗̃ 1, j ∈ I1,

1 ⊗̃Dk, k ∈ I2.
.

Moreover, the exterior Kasparov product of the associated K-homology classes can be
written as

[(A1,H1,D1)]⊗ [(A2,H2,D2)] := [(A1 ⊗A2,H1 ⊗̃ H2,D1 ⊗̃D2)] ∈ K∗(A1 ⊗A2).

For the sake of brevity, we have stated Theorem 4.7 only for even ST2s but an analogous
result holds for all parities.

Proof. It is straightforward to verify that (A1 ⊗A2,H1 ⊗̃ H2,D1 ⊗̃D2) is an ST2 with
bounding matrix ϵ1 ⊕ ϵ2. It is also clear that Ω(ϵ1 ⊕ ϵ2) = Ω(ϵ1)× Ω(ϵ2). For t = (t1, t2)
we have that

D̂t = Dt1 ⊗̃ 1 + 1 ⊗̃Dt2

and it follows from Kucerovsky’s theorem [57] (and in particular its extension to higher
order spectral triples in [33, Theorem A.7]) that the higher order spectral triple assembled
from (A1 ⊗ A2,H1 ⊗̃ H2,D1 ⊗̃ D2) represents the exterior Kasparov product of the
higher order spectral triples assembled from (A1,H1,D1) and (A2,H2,D2). The theorem
follows. □

In an even simpler way, we obtain
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Theorem 4.8. Let (A1,H1,D1) and (A2,H2,D2) be two ST2s (of the same parity)
with bounding matrices ϵ1 and ϵ2 respectively. Here we write D1 = (Dj)j∈I1 and D2 =
(Dk)k∈I2 . We denote by A1 and A2 the C∗-algebra closures of A1 and A2 respectively.
Then the collection

(A1 ⊕A2,H1 ⊕ H2,D1 ⊕D2)

forms an ST2 with bounding matrix the direct sum ϵ1 ⊕ ϵ2, where D1 ⊕D2 = (D̂l)l∈I1⊔I2

for

D̂l :=

{
Dj ⊕ 0, j ∈ I1,

0⊕Dk, k ∈ I2.
.

Moreover, the direct sum of the associated K-homology classes can be written as

[(A1,H1,D1)]⊕ [(A2,H2,D2)] := [(A1 ⊕A2,H1 ⊕ H2,D1 ⊕D2)] ∈ K∗(A1 ⊕A2).

Remark 4.9. It unclear whether it is an advantage or a disadvantage of the framework of
ST2s that products and sums are treated in the same way, in the sense that they have the
same effect on the bounding matrix. When we come to consider complexes, we will see
they behave more like sums; on the other hand, examples coming from the constructive
unbounded Kasparov product will behave more like products.

4.2. Finite summability of strictly tangled spectral triples. The natural notion of
dimension in noncommutative geometry is determined from spectral properties in analogy
with the Weyl law. We introduce a notion of summability of an ST2 that takes into
account the different directions by means of a function. To simplify the description, we
restrict our discussion of summability to the Schatten ideals with exponent p > 0.

Definition 4.10. Assume that f : (0,∞)n → (0,∞) is a function decreasing in each
argument. An ST2 (A,H ,D), with A unital, is said to be f-summable if, for t =
(t1, . . . , tn) ∈ (0,∞)n, the domain inclusion

∩j Dom(|Dj |tj ) ↪→ H

belongs to the Schatten class Lf(t)(∩j Dom(|Dj |tj ),H ), where the left hand side is given
the Hilbert space topology from the intersection of graph topologies.

Example 4.11. The notion of f -summability is for n = 1 compatible with the notion of
summability for spectral triples or, more generally, higher order spectral triples as in
Definition 2.1. Indeed, if (A,H , D) is a p-summable higher order spectral triple then
it is an f -summable ST2 with n = 1 for f(t) = p/t. Below in Section 5, we consider
ST2s arising from Hilbert complexes defined from mixed order operators in which case
the function f plays a role of controlling different orders of summability in the different
directions.

Example 4.12. Let us return to the exterior Kasparov product of Theorem 4.7. Assume that
(A1,H1, D1) and (A2,H2, D2) are two even higher order spectral triples that are summable
of order p1 and p2 respectively. Their external Kasparov product is represented by the
ST2 (A1 ⊗A2,H1 ⊗̃H2, (D1 ⊗̃ 1, 1 ⊗̃D2)). The ST2 (A1 ⊗A2,H1 ⊗̃H2, (D1 ⊗̃ 1, 1 ⊗̃D2))
will then be f -summable for any f : (0,∞)2 → (0,∞) such that

(1 + |D1|t1 ⊗̃ 1 + 1 ⊗̃ |D2|t2)−1 ∈ Lf(t1,t2)(H1 ⊗̃ H2).

For instance, we could take
f(t1, t2) :=

p1
t1

+
p2
t2

.

Example 4.13. We return to the direct sum of Theorem 4.8. Let us assume that (A1,H1, D1)
and (A2,H2, D2) are two higher order spectral triples that are summable of order p1 and p2
respectively. Their direct sum is represented by the ST2 (A1⊕A2,H1⊕H2, (D1⊕0, 0⊕D2)).
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The ST2 (A1 ⊕A2,H1 ⊕ H2, (D1 ⊕ 0, 0⊕D2)) will be f -summable for any f : (0,∞)2 →
(0,∞) such that

(1 + |D1|t1)−1 ⊕ (1 + |D2|t2)−1 ∈ Lf(t1,t2)(H1)⊕ Lf(t1,t2)(H2).

For instance, we could take

f(t1, t2) := max

{
p1
t1

,
p2
t2

}
.

If (A,H ,D) is f1-summable and f2 ≥ f1, then (A,H ,D) is also f2-summable. The
reader should note that if (A,H ,D) is f -summable then by complex interpolation it is
also f̃ -summable for any f̃ > f0 where f0 is the homogeneous function of degree −1 given
by

f0(t) :=
infs>0 sf(st|t|−1)

|t|
.

Here | · | is an arbitrary norm on Rn. If the infimum is attained, (A,H ,D) is f0-summable.
The following is immediate from the fact that Dom(Dt) = ∩j∈I Dom(|Dj |tj ) for a

strictly anticommuting n-tuple (Dj)j∈I .

Proposition 4.14. Let (A,H ,D) be an f-summable ST2. For t ∈ Ω(ϵ), (A,H , Dt) is
an f(t)-summable higher order spectral triple.

4.3. Equivariance of strictly tangled spectral triples. We now come to defining
equivariance in strictly tangled spectral triples and, with the applications to parabolic
geometry and dynamics in mind, we allow for conformal actions. The latter notion is
less studied in noncommutative geometry, with some work in the last decade [69, 68] and
recent work [62] by the third listed author with Adam Rennie.

In the non-conformal case, there are no additional technical issues arising in the
equivariant setting. This follows from the same method of proof as that leading up to
Theorem 4.1. We state this fact in a definition and proposition.

Definition 4.15. Let G be a locally compact group acting on the unital algebra A by
∗-automorphisms. An ST2 (A,H ,D) is G-equivariant if there is a unitary action of G on
H , implementing the action on A, such that, for each i ∈ I, Ug preserves DomDi for all
g ∈ G, and the map

g 7→ (UgDiU
∗
g −Di)

(
1 +

∑
j∈I

|Dj |ϵij
)−1

is ∗-strongly continuous from G into the space of bounded operators on H .

Proposition 4.16. If (A,H ,D) is a G-equivariant ST2, the higher order spectral triple
(A,H , Dt) is G-equivariant for all t ∈ Ω(ϵ) ∩ (0, 1]I . If, additionally, G preserves a
common core for (Dj)j∈I invariant under (Dj)j∈I , the same is true for all t ∈ Ω(ϵ).

Naïvely, the right way of applying the idea of conformal equivariance to ST2s would
seem to be to have a collection of conformal factors, one for each operator in the collection
D = (Dj)j∈I . Alas, it can be seen already from the simple example of the exterior product
of two real line Dirac spectral triples,(

C∞
c (R2), L2(R2)⊗ C2, (∂x1

⊗ γ1, ∂x2
⊗ γ2)

)
,

whose bounding matrix is ϵ = 0. In this simple example the action of R2 by dilation
in each direction, (r1, r2) : (x1, x2) 7→ (r1x1, r2x2), makes any resulting HOST fail to
be conformally R2-equivariant. The source of this problem is actually deeper, however,
because the bounded transform of any resulting HOST also cannot be R2-equivariant.

However, under some circumstances, it may be possible to align the conformal factors
so that the resulting higher order spectral triple is conformally equivariant. We will see
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such a phenomenon for Carnot groups in Proposition 7.9. In the example above with its
dilation action, this is possible by restricting to a subgroup where r1 = rα2 , for some fixed
α ̸= 0. If we choose t ∈ R+(1, α) ⊂ Ω(ϵ) = R2

+, the higher order spectral triple(
C∞

c (R2), L2(R2), ∂t1
x1

⊗ γ1 + ∂t2
x2

⊗ γ2
)

is conformally equivariant, with conformal factor r
−t1/2
1 = r

−t2/2
2 .

Another example to consider is the direct sum of two real line Dirac spectral triples,(
C∞

c (R ⊔ R), L2(R)⊕ L2(R), (∂x1 ⊕ 0, 0⊕ ∂x2)
)

ϵ = 0

with an action of R2 by dilation on each corresponding copy of R,

(r1, r2) : x1 7→ r1x1 x2 7→ r2x2 (x1 ∈ R ⊔ ∅, x2 ∈ ∅ ⊔ R).

Here there is no restriction on t ∈ Ω(ϵ) = R2
+, as we may take the conformal factor to be

r
−t1/2
1 ⊕ r

−t2/2
2 on the higher order spectral triple(

C∞
c (R ⊔ R), L2(R)⊕ L2(R), ∂t1

x1
⊕ ∂t2

x2

)
.

Unfortunately, the development of an abstract framework for conformal equivariance of
ST2s seems elusive. The main technical problem is to find conditions guaranteeing that, if
UDU∗−µDµ∗ is of “lower order”, UDtU∗−µtDt(µ∗)t is also of “lower order”. For natural
candidate conditions, we have been able neither to prove such a result in the abstract nor
to find a counterexample.

The approach we take in the examples below is to take the following Proposition as
giving an ad hoc notion of a conformally equivariant ST2. Here, we fix t and give sufficient
conditions for a single conformal factor (µg)g∈G to give rise to a conformally equivariant
HOST at t. One could view this approach as similar to the “guess-and-check” method of
computing Kasparov products via either the bounded picture or Kucerovsky’s theorem
[57].

Proposition 4.17. Let (A,H ,D) be an ST2 with a unitary action of G on H , imple-
menting the action on A. Suppose there exists a family (µg)g∈G of invertible bounded
operators such that, for all g ∈ G, µg, µ∗

g, and Ug preserve DomDi for all i, with

g 7→ [Di, µg]

(
1 +

∑
j∈I

|Dj |ϵij
)−1

and g 7→ [Di, µ
∗
g]

(
1 +

∑
j∈I

|Dj |ϵij
)−1

defining ∗-strongly continuous maps from G into the space of bounded operators on H .
Suppose furthermore that, for some t ∈ Ω(ϵ) ∩ (0, 1]I , the maps

g 7→ (UgD
ti
i U

∗
g − µgD

ti
i µ

∗
g)

(
1 +

∑
j∈I

|Dj |ϵij
)−ti

and

g 7→ Ug

(
1 +

∑
j∈I

|Dj |ϵij
)−ti

U∗
g (UgD

ti
i U

∗
g − µgD

ti
i µ

∗
g)

are ∗-strongly continuous from G into the space of bounded operators on H . Then
(A,H , Dt) is a conformally G-equivariant HOST with conformal factor µ.

The proof is a straightforward extension of the proof of Theorem 4.1. We give in
Proposition 5.7 a statement in the generality of Hilbert complexes. In this case, we will
naturally begin with a collection of conformal factors which will need to be cajoled into
cooperating with one another and so into giving a single conformal factor µ for the HOST.
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5. Strictly tangled spectral triples from complexes

The main application of strictly tangled spectral triples that we study in this paper
comes from Hilbert complexes and, more concretely, Rockland complexes on filtered
manifolds. We first present an abstract framework for Hilbert complexes and proceed to
describe it in detail for Rockland complexes.

5.1. Hilbert complexes. We first recall the notion of a Hilbert complex. We follow the
presentation of [8] and refer the reader there for further details.

Definition 5.1. A Hilbert complex

0 → H0
d0−→ H1

d1−→ · · ·Hn−1
dn−1−−−→ Hn → 0,

abbreviated as (H•,d•), consists of Hilbert spaces H0,H1, . . . ,Hn and closed densely
defined maps di : Hi 99K Hi+1 with the property that

Ran(di−1) ⊆ Ker(di).

We say that (H•, d•) is Fredholm if the cohomology groups

Hi(H•, d•) := Ker(di)/Ran(di−1)

are finite-dimensional. We say that (H•, d•) has discrete spectrum if for any i the densely
defined, self-adjoint Laplacians

d∗i di + di−1d
∗
i−1 : Hi 99K Hi

have discrete spectrum (i.e. the spectrum consists of isolated eigenvalues of finite multi-
plicity).

By [8, Theorem 2.4], (H•,d•) is Fredholm if and only if 0 is not in the essential
spectrum of all the Laplacians d∗i di + di−1d

∗
i−1. In particular, (H•,d•) is Fredholm if it

has discrete spectrum. We shall make use of a construction analogous to Rumin–Seshadri’s
construction of Laplacians in the Rumin complex [79] (see also [24]). Given parameters
m = (m0, . . . ,mn−1) ∈ [1,∞)n that we refer to as an order and a Hilbert complex (H•, d•)
we define the Rumin Laplacians

∆R
m,i := (d∗i di)

ai + (di−1d
∗
i−1)

ai−1 ,

where ai :=
∏

l ̸=i ml = m/mi for m :=
∏n

l=1 ml. Clearly, (H•,d•) has discrete spectrum
if and only if all the self-adjoint operators

∆R
m,i : Hi 99K Hi

have compact resolvent. We sometimes write ∆R
m :=

⊕
i ∆

R
m,i. We also introduce the

abstract Sobolev spaces for s ≥ 0

Hs
i,m := Dom((∆R

m,i)
s/2m) ⊆ Hi.

Definition 5.2. Let A be a ∗-algebra. A Hilbert complex over A of order m =
(m0, . . . ,mn−1) ∈ [1,∞)n is a Hilbert complex

0 → H0
d0−→ H1

d1−→ · · ·Hn−1
dn−1−−−→ Hn → 0,

where each Hi is a left A-module under ∗-representations

πi : A → B(Hi)

such that, for any a ∈ A,
(1) πi(a) preserves Dom(di) and
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(2) the densely defined operators

(diπi(a)− πi+1(a)di)(1 + ∆m,i)
1−mi
2m and

(1 + ∆m,i+1)
1−mi
2m (diπi(a)− πi+1(a)di)

are norm bounded.
If, for all s ≥ 0, πi(a) preserves the domain of di as an operator on the Sobolev spaces
Hs

i,m and the densely defined operator (diπi(a)− πi+1(a)di) (1+∆m,i)
1−mi
2m is continuous

in norm Hs
i,m → Hs

i+1,m then we say that (H•, d•) is a regular Hilbert complex over A of
order m.

To ease the notation, we drop the representations πi when they are clear from the
context, writing [di, a] instead of diπi(a)− πi+1(a)di for a ∈ A.

Lemma 5.3. Let (H•,d•) be a Hilbert complex which is Fredholm and of order m =
(m0,m1, . . . ,mn−1) ∈ [1,∞)n. Recall the notation ai :=

∏
l ̸=i ml = m/mi for m =∏n−1

l=0 ml. Then setting H =
⊕

i Hi and

Di = di + d∗i ,

the collection D = (Di)
n−1
i=0 is a strictly anticommuting collection of selfadjoint operators

on H . Morever, for any α we have that

Di|Di|α = Di((∆
R
m,i)

α/2ai−1 + (∆R
m,i−1)

α/2ai−1).

Proof. We remark that ai
1−mi

2m = 1−mi

2mi
= 1

2 (−1 + 1
mi

). Since the Hilbert complex is
Fredholm,

(∆R
m,i)

β = (d∗i di)
βai + (di−1d

∗
i−1)

βai−1 .

In particular,

Di(∆
R
m,i)

β = d∗i−1(di−1d
∗
i−1)

βai−1 and Di(∆
R
m,i−1)

β = di−1(d
∗
i−1di−1)

βai−1 .

On the other hand,
|Di|α = (d∗i−1di−1)

α/2 + (di−1d
∗
i−1)

α/2

so
Di|Di|α = di−1(d

∗
i−1di−1)

α/2 + d∗i−1(di−1d
∗
i−1)

α/2

and the lemma follows. □

Theorem 5.4. Let (H•, d•) be a Hilbert complex with discrete spectrum over A of order
m. We set

H =
⊕
i

Hi

and write D = (Di)
n−1
i=0 for the collection

Di = di + d∗i .

It then holds that the collection (A,H , D) is a ST2 with bounding matrix ϵ = (ϵij)
n−1
i,j=0

where

ϵij =

{
mi−1
mj

j = i− 1, i, i+ 1

0 otherwise.
(5.1)

Furthermore, if (H•, d•) is regular, (A,H ,D) is regular.

Proof. We have that the bounding matrix (5.1) satisfies the decreasing cocycle condition
by the same argument as in (3.2) (with the first equality of (3.2) replaced by an upper
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bound). Since (H•,d•) has discrete spectrum, what remains to prove is the commutator
condition. And (H•, d•) is a Hilbert complex over A of order m, so

[di, a](1 + ∆m,i)
1−mi
2m = [di, a](1 + ∆m,i)

1
2m− 1

2ai and

(1 + ∆m,i+1)
1−mi
2m [di, a] = (1 + ∆m,i+1)

1
2m− 1

2ai [di, a]

are bounded. Since ∆R
m,i = (d∗i di)

ai + (di−1d
∗
i−1)

ai−1 , we conclude from the boundedness
of the first operator that

[di, a]

(
1 + |Di|

1− 1
mi−1 + |Di+1|

1−mi−1
mi

)−1

is bounded and from the boundedness of the second operator that

[d∗i , a]

(
1 + |Di|

1− 1
mi−1 + |Di−1|

1−mi−1
mi−2

)−1

is bounded. □

For a complex with n = 5, the graph corresponding to the bounding matrix is

m0−1
m1

m1−1
m2

m2−1
m3

m3−1
m4

m4−1
m3

m3−1
m2

m2−1
m1

m1−1
m0

m0−1
m0

m1−1
m1

m2−1
m2

m3−1
m3

m4−1
m4

.

Remark 5.5. If (H•,d•) is a Hilbert complex with discrete spectrum over A, there are
multiple ways of grading the ST2 (A,H ,D). The first option is to use the grading coming
from the complex in which

H+ =
⊕
i

H2i, and H− =
⊕
i

H2i+1.

Another option arises if (H•, d•) satisfies a mild strengthening of Poincaré duality, see [8,
Lemma 2.16]. Assume that we have A-linear unitaries γi : Hi → Hn−i such that

d∗n−i−1γi = −γi+1di, and γn−iγi = 1Hi
.

We can then define a symmetry γ =
⊕

γj on H that anticommutes with Dj , for j =
1, . . . , n. In particular, γ grades H in such a way that the ST2 constructed in Theorem
5.4 forms an even ST2. This construction is analogous to the grading induced from the
Hodge star on differential forms defining the signature operator from the Hodge–de Rham
operator described in Example 2.6.

Proposition 5.6. Assume that (A,H ,D) is an ST2 defined from a Hilbert complex with
discrete spectrum (H•,d•) over A of order m and bounding matrix ϵ as in (5.1). Then,
for any τ > 0,

tm(τ) :=

(
τ

m0
,
τ

m1
, . . . ,

τ

mn−1

)
∈ Ω(ϵ)

and

Dtm(τ) =

n−1∑
i=0

di(∆
R
m,i)

τ−mi
2m + d∗i (∆

R
m,i+1)

τ−mi
2m .

Proof. We see that tm(τ) ∈ Ω(ϵ) since τ
mj

> mi−1
mj

τ
mi

and the expression for Dtm(τ)

follows from Lemma 5.3. □
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Recall the weak Hodge decomposition of [8, Lemma 2.1],

Hi = Hi ⊕ Randi−1 ⊕ Rand∗i

where Hi = Ker di ∩Ker d∗i−1 = Ker∆R
m,i. Note that if (H•, d•) is Fredholm, e.g. if it has

discrete spectrum, the ranges are automatically closed with

Randi−1 = (Ker d∗i−1)
⊥ and Rand∗i = (Ker di)

⊥.

We can build up a conformally equivariant higher order spectral triple by specifying
conformal factors on each part of the decomposition.

Proposition 5.7. Let A be a unital ∗-algebra with an action of a locally compact group
G. Let

0 → H0
d0−→ H1

d1−→ · · ·Hn−1
dn−1−−−→ Hn → 0

be a Hilbert complex over A of order m with a unitary action Ui of G on each Hi

intertwining the representation of A and preserving the domains of d•.
Let (νi)g∈G ⊂ B(Ran d∗i ) and (ν̃i)g∈G ⊂ B(Ran di−1) be families of invertible operators,

all of them and their adjoints preserving the domains of d•, such that the densely defined
operators

(ν̃i+1,gdi − diνi,g) (1 + ∆m,i)
1−mi
2m and (1 + ∆m,i+1)

1−mi
2m (ν̃i+1,gdi − diνi,g)

are in fact bounded and define ∗-strongly continuous functions G → B(Hi,Hi+1). Suppose
that, for some t ∈ Ω(ϵ), the densely defined operators(

Ui+1,gdi(∆
R
m,i)

−1+ti
2m miU∗

i,g − ν̃i+1,gdi(∆
R
m,i)

−1+ti
2m miνi,g

)
(1 + ∆m,i)

1−mi
2m ti and

(1 + ∆m,i)
1−mi
2m ti

(
Ui+1,gdi(∆

R
m,i)

−1+ti
2m miU∗

i,g − ν̃i+1,gdi(∆
R
m,i)

−1+ti
2m miνi,g

)
are in fact bounded and define ∗-strongly continuous functions G → B(Hi,Hi+1). Then
(A,H , Dt) is conformally equivariant with conformal factor

µ =
⊕
j

νj + ν̃j + PHj .

5.2. Rockland complexes. We now turn to Rockland sequences on filtered manifolds.
Rockland sequences were studied in detail in Dave–Haller’s work [24]. The associated
analysis relies heavily on van Erp–Yuncken’s Heisenberg calculus [84] on a filtered manifold.
Filtered manifolds are known also as Carnot manifolds, and relate to the equiregular
differential systems of sub-Riemannian geometry.

5.2.1. The Heisenberg calculus. Let us briskly recall the geometry of filtered manifolds
and their Heisenberg calculus. We refer the details to the literature [24, 32, 84]. A filtered
manifold is a manifold X equipped with a filtering

TX = T−rX ⊋ T−r+1X ⊋ . . . ⊋ T−2X ⊋ T−1X ⊋ 0

of sub-bundles such that [T−jX,T−kX] ⊆ T−j−kX for any j, k. We call r the depth of
X. We write

tHX =
⊕
j

T−jX/T−j+1X

for the associated graded bundle. Taking commutators of vector fields induces a fibrewise
Lie bracket on tHX making tHX → X into a Lie algebroid. The fibres are nilpotent of step
length at most r, so the Baker–Campbell–Hausdorff formula implies that tHX integrates
to a Lie groupoid THX ⇒ X (with the same range and source map). Concretely, as a
fibre bundle, THX = tHX. However, THX carries a fibrewise polynomial group operation
defined from the Baker–Campbell–Hausdorff formula and the commutator of vector fields
modulo lower order terms in the filtration. We call THX ⇒ X the osculating Lie groupoid.
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The osculating Lie groupoid carries an R+-action δ defined from integrating the R+-action
on tHX defined from its grading.

The Heisenberg calculus on a filtered manifold introduced by van Erp–Yuncken [84] is
built from operators whose Schwartz kernels in appropriate exponential coordinates are
defined from r-fibred distributions on THX that expands asymptotically into a sum of
almost homogeneous fibrewise convolution operators. A way to formalize this statement
uses van Erp–Yuncken’s parabolic tangent groupoid [83], a Lie groupoid THX ⇒ X×[0,∞).
As a set,

THX = THX × {0} ⊔X ×X × (0,∞),

with the groupoid structure of THX on the first component and the pair groupoid
structure on the second component. The Lie groupoid structure on THX ⇒ X × [0,∞)
is defined using a blowup in exponential coordinates defined from a graded connection.
The parabolic tangent groupoid carries an R+-action called the zoom action, which by an
abuse of notation we also denote by δ, acting by

δλ : (x, v, 0) 7→ (x, δλ(v), 0) (x, y, t) 7→ (x, y, λ−1t).

A Heisenberg pseudodifferential operator T of order m is defined to be an operator on
C∞(X) whose Schwartz kernel kT ∈ D′(X ×X) can be written as the evaluation at t = 1
of a properly supported, r-fibred distribution K ∈ D′

r(THX) which is homogeneous of
order m modulo properly supported elements under the zoom action. In exponential
coordinates, we can Taylor expand such a K at t = 0 and arrive at an asymptotic sum

K(x, v, t) ∼
∞∑
j=0

tjkj(x, v), (5.2)

where kj ∈ E ′
r(THX) is homogenenous modulo C∞

c (THX) of degree m − j. Here K
and the collection (kj)

∞
j=0 are uniquely determined by kT modulo respectively properly

and compactly supported smooth elements. Writing Ψm
H(X) for the space of Heisenberg

pseudodifferential operators of order m, we arrive at a short exact sequence

0 → Ψm−1
H (X) → Ψm

H(X)
σm
H−−→ Σm

H(X) → 0,

where Σm
H(X) ⊆ E ′

r(THX)/C∞
c (THX) consists of elements homogenenous of degree m.

The map σm
H is called the principal symbol and is defined by σm

H (T ) := [k0] for k0 the
leading term in (5.2). A composition of Heisenberg pseudodifferential operators of order
m and m′ respectively as operators on C∞(X) is again a Heisenberg pseudodifferential
operator but of order m+m′. The principal symbol respects products in the sense that

σm+m′

H (TT ′) = σm
H (T ) ∗ σm′

H (T ′), T ∈ Ψm
H(X), T ′ ∈ Ψm′

H (X)

where ∗ denotes groupoid convolution on THX.
We can realize the principal symbol algebra in a more concrete way. Write S(THX) ⊆

C∞(THX) for the space of fibrewise Schwarz functions: functions that together with their
derivatives decay faster than the reciprocal of any polynomial in the fibre. We define
S0(THX) to consist of those functions f ∈ S(THX) such that for any x ∈ X and any
polynomial p on TxX we have ∫

TxX

p(v)f(x, v)dv = 0.

The space S0(THX) is closed under convolution and is dense in the ideal of C∗(THX)
of elements vanishing in the fibrewise trivial representations. We embed Σm

H(X) in the
multipliers of S0(THX) as follows. Any element k ∈ Σm

H(X) can be represented near the
zero section X ⊆ THX by an r-fibred distribution k̂ ∈ D′

r(THX) of the form

k̂ = k̂0 + p log | · |,
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where k̂0 is homogeneous of degree m, p is fibrewise polynomial and where | · | is a fibrewise
gauge (smooth outside the zero section and homogeneous of degree 1). Upon fixing | · |,
the distribution k̂ is unique up to a fibrewise polynomial. In particular, the muliplier on
S0(THX) defined by convolution by k̂ depends only on k ∈ Σm

H(X).
To understand further the principal symbol, we study its action in localizations of

S0(THX) in its ∗-representations. Whenever (π,H) is a unitary representation of a
nilpotent group G, we write S0(π) := π(S0(G))H. If π does not weakly contain the trivial
representation, S0(π) = π(S(G))H and is dense in H. Moreover, any multiplier k of S0(G)
localizes to an operator π(k) on H with domain S0(π) defined by π(k)(π(a)ξ) := π(k ∗ a)ξ
for a ∈ S0(G) and ξ ∈ H. We can therefore for a Heisenberg pseudodifferential operator
T of order m, x ∈ X and a unitary representation π of (THX)x, define the represented
symbol

σm
H (T, π) = π(σm

H (T )) : S0(π) → S0(π).

The discussion above readily extends to operators on vector bundles. We denote the space
of Heisenberg pseudodifferential operators of order m from the vector bundle E1 to E2 by
Ψm

H(X;E1, E2). We recall the following important definition.

Definition 5.8. Let X be a filtered manifold and E1, E2 → X two vector bundles. Assume
that T : C∞(X,E1) → C∞(X,E2) is a Heisenberg pseudodifferential operator of order
m. We say that T satisfies the Rockland condition if, for any x ∈ X and any irreducible,
non-trivial, unitary representation π of (THX)x, the represented symbol

σm
H (T, π) := π(σm

H (T )) : S0(π)⊗ E1,x → S0(π)⊗ E2,x

is injective. If the represented symbol in all points and all irreducible, non-trivial, unitary
representations is bijective then we say that T is H-elliptic.

Operators in the Heisenberg calculus act continuously in a scale of Sobolev spaces
adapted to the filtering. We fix a volume density on X. Following [23, 24], we know
that there exists a family of invertible H-elliptic operators (At)t∈R (in fact the complex
powers of a single H-elliptic operator) that we can assume satisfies A0 = 1. We define
W s

H(X) := A−sL2(X) ⊆ D′(X) with inner product defined by declaring As : W s
H(X) →

L2(X) unitary. A similar definition can be made also for vector bundles. Any T ∈
Ψm

H(X;E1, E2) extends by density to a continuous operator

T : W s1
H (X;E1) → W s2

H (X;E2)

as soon as s1 +m ≥ s2 and a compact operator when s1 +m > s2.

Theorem 5.9. Let X be a closed filtered manifold equipped with a volume density, let
E1, E2 → X be two hermitian vector bundles, and let T : C∞(X,E1) → C∞(X,E2) be a
Heisenberg pseudodifferential operator of order m. Then the following are equivalent:

(1) T and T ∗ satisfy the Rockland condition;
(2) T is H-elliptic;
(3) T : W s

H(X;E1) → W s−m
H (X;E2) is Fredholm for some s; ande

(4) T : W s
H(X;E1) → W s−m

H (X;E2) is Fredholm for all s.
Moreover, H-elliptic operators are hypoelliptic and admit parametrices in the Heisenberg
calculus.

Here it is clear that 4) implies 3) and 2) implies 1). That 3) implies 2) is proven in [1]
and that 1) implies 4) is proven in [24].

For summability results of spectral triples and ST2s on filtered manifolds, we will use
Dave–Haller’s Weyl law in the Heisenberg calculus [23]. Its statement gives a leading term
in the eigenvalue of positive, even-order, H-elliptic, differential operators in the Heisenberg
calculus. For a filtered manifold X, we define its homogeneous dimension as

dimh(X) =
∑
j

j rk(T−jX/T−j+1X). (5.3)



PARABOLIC NONCOMMUTATIVE GEOMETRY 29

Dave–Haller’s Weyl law [23] implies that if T ∈ Ψm
H(X;E1, E2) for an m < 0 then

µk(T ) = O(kdimh(X)/m). (5.4)

In particular, for m < 0,

Ψm
H(X;E1, E2) ⊆ Lp(L2(X,E1), L

2(X,E2)) p > − dimh(X)/m.

5.2.2. Rockland complexes. We now turn to studying Rockland complexes. They play the
role of elliptic complexes on filtered manifolds. We start by recalling the definition and
proceed to place it in the context of the preceding subsection by building ST2s for filtered
manifolds.

Definition 5.10. Consider a collection E• = (E0, E1, . . . , En) of hermitian vector bundles
Ej → X and numbers m = (m0, . . . ,mn−1) ∈ (0,∞)n. We let

d• : 0 → C∞(X;E0)
d0−→ C∞(X;E1)

d1−→ · · ·

· · · dn−2−−−→ C∞(X;En−1)
dn−1−−−→ C∞(X;En) → 0 (5.5)

be a complex with maps dj ∈ Ψ
mj

H (X;Ej , Ej+1). We say that the complex d• in Equation
(5.5) is a Rockland complex if the symbol sequence σH(d•) defined by

σH(d•) : 0 → S0(THX;E0)
σ
m0
H (d0)−−−−−→ S0(THX;E1)

σ
m1
H (d1)−−−−−→ · · ·

· · ·
σ
mn−2
H (dn−2)−−−−−−−−−→ S0(THX;En−1)

σ
mn−1
H (dn−1)−−−−−−−−−→ S0(THX;En) → 0 (5.6)

is localized to an exact sequence by any non-trivial, irreducible, unitary representation of
the osculating Lie groupoid THX. We say that m is the order of d•.

There are a number of interesting examples of Rockland sequences. As shown in [24],
and further discussed in [30], there is a general procedure for producing (graded) Rockland
complexes via Čap–Slovák–Souček’s [22] (curved) BGG-complexes. The notion of a graded
Rockland complex is more general than that of a Rockland complex and arises from
internal gradings in the bundles Ej . For a curved BGG-complex to be Rockland, and
not just graded Rockland, all the bundles E0, E1, . . . , En need to be constantly graded,
corresponding to tHX having pure cohomology groups [38, Section 3.7]. This is known to
hold for trivially filtered manifolds (where Rockland means elliptic), for contact manifolds,
for generic rank-two distributions in dimension five, and for parabolic geometries of
the same type as the full complex flag manifold of SL3(C) (as implicitly used in [89]).
We discuss contact manifolds in more detail below in Section 6 and generic rank two
distributions in dimension five in Example 5.13.

For the purpose of completing a Rockland complex into a Hilbert complex, we will
henceforth fix a volume density on X and hermitian metrics on all the vector bundles
E0, E1, . . . , En → X, giving us Hilbert spaces L2(X;E0), . . . , L

2(X;En). By an abuse of
notation, we write also dj for the closure of dj as a densely defined operator

dj : L
2(X;Ej) 99K L2(X;Ej+1).

The Hilbert complex associated with a Rockland complex (C∞(X;E•), d•) is given by

0 → L2(X;E0)
d0−→ L2(X;E1)

d1−→ · · · dn−1−−−→ L2(X;En) → 0.

Theorem 5.11. Assume that (C∞(X;E•), d•) is a Rockland complex where all differentials
are differential operators and X is compact. The Hilbert complex associated with a Rockland
complex (C∞(X;E•),d•) of order m = (m1, . . . ,mn) is a regular Hilbert complex with
discrete spectrum of order m over C∞(X). In particular, with a Rockland complex we can
associate the f -summable ST2 (C∞(X), L2(X;⊕jEj),D) where D = (dj + d∗j )

n−1
j=0 and

f(t) > minj
mj dimh(X)

tj
.
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Proof. The result will, upon checking the definition, follow from Theorem 5.4. Chasing
through the definitions, we see that the Hilbert complex associated with a Rockland complex
is a regular Hilbert complex over C∞(X) as soon as the Rumin Laplacians are hypoelliptic
of order 2m. Indeed, if this is the case then, since the Rumin Laplacians additionally are
even order differential operators, [23, Theorem 2] implies that (∆R

m,i)
β

2m ∈ Ψβ
H(X,Ei).

The Theorem follows from order considerations in the Heisenberg calculus. The Rumin
Laplacians are hypoelliptic by [24, Lemma 2.14].

We note the finite summability statement follows from (5.4). Indeed, if we set δ(t) :=

minj
mj dimh(X)

tj
the interpolation as in Lemma 3.8 and (5.4) implies that µk((1+∆D

t )−1) =

O(k−δ(t)) as k → +∞. In particular, (1 + ∆D
t )−1 ∈ Lp for any p > δ(t). □

Remark 5.12. In the construction of Theorem 5.11 we group together the differentials in
the easiest way possible, following Theorem 5.4. We can in general group together the
differentials more efficiently, e.g. below in Section 6 when studying the Rumin complex
on a contact manifold we will group together the differentials into only two self-adjoint
operators. If (C∞(X;E•),d•) is a Rockland complex of order m = (m0, . . . ,mn−1), we
can consider a partition

{0, . . . , n− 1} =

n0⊔
l=1

Sl,

such that mi = mj whenever i and j belong to the same set Sl. Then the collection
D̃ := (

∑
j∈Sl

dj + d∗j )
n0

l=1 also fits into an ST2 (C∞(X), L2(X;⊕jEj), D̃). The bounding
matrix ϵ̃ = (ϵ̃lk)

n0

l,k=1 for D̃ is similar to (5.1) and is given by

ϵ̃lk :=

{
mi−1
mj

if there are i ∈ Sl and j ∈ Sk with |j − i| ≤ 1,

0 otherwise.

Example 5.13. Let us describe the Rockland complex constructed from the BGG-complex
on a generic rank two distribution in dimension five, i.e. a parabolic geometry of type
(G2, P ) where G2 is the split real form of the indicated exceptional Lie group and P
the maximal parabolic subgroup corresponding to the shorter simple root. We aim only
at describing the overall structure and refer the details to [24, Example 4.21] (see also
Example 4.24 in the arXiv version of [24] and further computational details in its appendix).
Let X be a five dimensional manifold filtered by a generic rank two distribution throughout
the example. We also fix a finite-dimensional representation V of G2. The BGG-complex
of X looks like

0 → C∞(X;E0)
d0−→ C∞(X;E1)

d1−→ C∞(X;E2)

d2−→ C∞(X;E3)
d3−→ C∞(X;E4)

d4−→ C∞(X;E5) → 0,

where Ej → X is a bundle induced from the parabolic structure and the cohomology
group Hj(p+, V ). It is by [24] a Rockland sequence of order

m = (1, 3, 2, 3, 1).

To understand the principal symbol structure of the BGG-complex of X, one uses the fact
that X locally admits filtered charts modelled on the nilpotent chart N ⊆ G2/P arising
from the open, dense Bruhat cell NMAN ⊆ G2. In these charts, [24, Example 4.21]
explicitly describes σmj

H (dj) in terms of elements of the universal enveloping Lie algebra of
N .
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In this example, we have the bounding matrix

ϵ =


0 0 0 0 0
2 2

3 1 0 0
0 1

3
1
2

1
3 0

0 0 1 2
3 2

0 0 0 0 0


and the associated weighted digraph takes the form

1 1
3

2

12
2

2
3

1
2

2
3

.

We now turn to discussing two special cases of Theorem 5.11. We produce two higher
order spectral triples from Rockland complexes, the first with an H-elliptic Heisenberg
pseudodifferential operator and the second with a differential operator.

Corollary 5.14. If (C∞(X;E•),d•) is a Rockland complex where all differentials are
differential operators, we can form the (dimh(X)

τ ,∞)-summable higher order spectral triple
(C∞(X), L2(X;⊕jEj), Dτ ) of any order τ > 0 from the H-elliptic Heisenberg operator

Dτ := Dtm(τ) ≡
n−1∑
i=0

di(∆
R
m,i)

τ−mi
2m + d∗i (∆

R
m,i+1)

τ−mi
2m ∈ Ψτ

H(X,⊕jEj).

Any H-elliptic Heisenberg operator of an order τ > 0 defines a (dimh(X)
τ ,∞)-summable

higher order spectral triple, so Corollary 5.14 follows from the construction implying that
Dτ is H-elliptic of order τ > 0. On the other hand, Theorem 4.1 together with Theorem
5.11 implies the next Corollary which allows us to construct from a Rockland complex a
higher order spectral triple with a differential operator as its Dirac operator.

Corollary 5.15. If (C∞(X;E•),d•) is a Rockland complex where all differentials are
differential operators, there are odd integers k = (2kj + 1)j ∈ Ω(ϵ) ∩ (2N+ 1)n in which
case the differential operator

Dk :=

n−1∑
i=0

D2ki+1
i : C∞(X;⊕jEj) → C∞(X;⊕jEj)

defines a higher order spectral triple (C∞(X), L2(X;⊕jEj), Dk).

We end this subsubsection by describing the K-homology class associated with a
Rockland complex via Corollary 4.5 and Theorem 5.11.

Theorem 5.16. Assume that (C∞(X;E•), d•) is a Rockland complex where all differentials
are differential operators and write (C∞(X), L2(X;⊕jEj),D) for its associated ST2 graded
by L2(X;⊕jEj) = L2(X;⊕jE2j) ⊕ L2(X;⊕jE2j+1). Take a t ∈ Ω(ϵ). The class of the
higher order spectral triple (C∞(X), L2(X;⊕jEj), Dt) in K0(X) coincides with the class
[d•] ∈ K0(X) as defined in [32].

Proof. The class [d•] ∈ K0(X) as defined in [32] was defined by order reduction. If we use
the Rumin–Seshadri Laplacians to define order reduction, a short algebraic manipulation
shows that |Dτ=1| lifts the Fredholm module defining the class [d•] ∈ K0(X) to a bounded
perturbation of Dτ=1. □
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5.2.3. Equivariance in Rockland complexes. We now turn to studying conformal equivari-
ance of Rockland complexes.

Definition 5.17. Assume that (C∞(X;E•),d•) is a Rockland complex and that G is a
locally compact group acting by filtered diffeomorphisms on X and that E0, . . . , En are
G-equivariant. We say that (C∞(X;E•),d•) is a G-equivariant Rockland complex if the
symbol complex σH(d•) (see (5.6)) is G-equivariant.

If (C∞(X;E•),d•) is a G-equivariant Rockland complex with each Ej an hermitian
vector bundle, we say that the G-action is a conformal G-action on (C∞(X;E•),d•) if
for any j the G-representation Vj : G → GL(L2(X;Ej)) defined from the G-action on
Ej → X there is a function λj,g ∈ C∞(X,R>0) such that

Vj,gV
∗
j,g = λ2

j,g.

The associated unitary representations are

Uj : G → U(L2(X;Ej)) Uj,g = λ−1
j,gVj,g

and we observe that Uj+1,gdjU
∗
j,g = λ−1

j+1,gdjλj,g.

Proposition 5.18. Assume that (C∞(X;E•),d•) is a Rockland complex of order m =
(m1, . . . ,mn), where all differentials are differential operators and X is compact, with a
conformal action of G. For t ∈ Ω(ϵ), the higher order spectral triple

(C∞(X), L2(X;⊕jEj), Dt)

is conformally G-equivariant with conformal factor

µg =

n⊕
j=0

PHi + PRan dj−1(λ
−1
j,gλj−1,g)

tj−1/2PRan dj−1 + PRan d∗
j
(λ−1

j+1,gλj,g)
tj/2PRan d∗

j
.

Proof. Because λj,g is nonvanishing, bounded, and positive, µg is invertible and positive.
Indeed,

µg ≥
n⊕

j=0

PHi
+ ∥λj,gλ

−1
j−1,g∥

−tj−1/2
∞ PRan dj−1

+ ∥λj+1,gλ
−1
j,g∥

−tj/2PRan d∗
j
.

Using the notation (dj)
tj = dj(d

∗
jdj)

−1+tj , one can check that the difference

Ug(dj)
tjU∗

g − µg(dj)
tjµ∗

g

= Ug(dj)
tjU∗

g − PRan dj
(λ−1

j+1,gλj,g)
tj/2(dj)

tj (λ−1
j+1,gλj,g)

tj/2PRan d∗
j

= PRan dj

(
Ug(dj)

tjU∗
g − (λ−1

j+1,gλj,g)
tj/2(dj)

tj (λ−1
j+1,gλj,g)

tj/2
)
PRan d∗

j

and the commutator

[(dj)
tj , µg] = PRan dj

[(dj)
tj , (λ−1

j+1,gλj,g)
tj/2]PRan d∗

j

are of lower order, since (dj)
tj = dj(d

∗
jdj)

−1+t belongs to the Heisenberg calculus by
Lemma 5.3, as required by Definition 2.4. □

An undesirable feature of the above construction is that the conformal factors are not
functions on X. Under some circumstances, this can be remedied but then only for certain
t ∈ Ω(ϵ).

Proposition 5.19. Assume that (C∞(X;E•),d•) is a Rockland complex of order m =
(m0,m1, . . . ,mn−1), where all differentials are differential operators and X is compact,
with a conformal action of G. Suppose that, for some s ∈ Ω(ϵ),

λ
sj−1

j−1,gλ
sj
j+1,g = λ

sj+sj−1

j,g

for all j = 1, . . . , n. Then, for all τ > 0, the higher order spectral triple

(C∞(X), L2(X;⊕jEj), Dτs)
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is conformally G-equivariant with conformal factor

µg = (λ−1
1,gλ0,g)

τs0 = · · · = (λ−1
n,gλn−1,g)

τsn−1 .

Remark 5.20. If we can take s = m, in the situation of Proposition 5.19, i.e. if

λ
mj

j−1,gλ
mj−1

j+1,g = λ
mj−1+mj

j,g ,

the higher order spectral triple (C∞(X), L2(X;⊕jEj), Dτ ) of order τ > 0 defined from the
H-elliptic Heisenberg operator Dτ (as in Corollary 5.14), is a conformally G-equivariant
higher order spectral triple with conformal factor

µg = (λ−1
1,gλ0,g)

τ/m0 = · · · = (λ−1
n,gλn−1,g)

τ/mn−1 .

We will see that this in fact does occur for the Rumin complex on a CR-manifold, in
Theorem 6.7.

Remark 5.21. In the next section we provide further context for conformally equivariant
Rockland complexes by studying the Rumin complex on a contact manifold. It would be
interesting to include further examples of Rockland complexes, especially in higher rank
parabolic geometries. As work by Yuncken [89] and Voigt–Yuncken [86] showcases, the
interesting aspect lies in the equivariance properties. However, the approach above cannot
produce conformally equivariant noncommutative geometries with nontrivial index theory,
or even equivariant Fredholm modules, for a semisimple Lie group G of real rank > 1.
Indeed, if G is a higher rank semisimple Lie group and and T is an H-elliptic operator
on G/P (for some parabolic subgroup P ⊆ G) of order m ≥ 0 commuting with G up to
lower order terms then Puschnigg rigidity [70] implies that σm

H (T ) is positive and that
T defines the trivial equivariant K-homology class; cf. Remark 2.8. For SL(3,C), as
studied in [86, 89], the BGG-complex is an equivariant Rockland complex (in the sense of
Definition 5.17) but it is not conformally equivariant. The same statement holds for the
BGG-complex of G2/P , see Example 5.13 above.

A separate but equally serious issue at play, as discussed in [24, 38], is that a BGG-
complex is frequently not a Rockland complex but only a graded Rockland complex.
The BGG-complex of a parabolic geometry is Rockland in the usual sense only when
the cohomology of the osculating nilpotent group in each fibre has pure cohomology.
For index theory purposes [30], the graded Rockland situation works well but it is less
clear how to do spectral noncommutative geometry with graded Rockland complexes.
The BGG-complex arising from the quaternionic contact structure on S4n−1 [46, §3] [78,
(66–67)] is an example which fails to be ungraded Rockland but for which the action
of Sp(n, 1) is conformal, in a sense made clear in [47]. In particular, the two issues of
conformally equivariant geometries and representing geometries by ungraded Rockland
complexes are quite distinct.

6. The Rumin complex on contact manifolds

In this section we will look at an explicit example of a Rockland complex, namely the
Rumin complex on a contact manifold. We will show that the naïve way of constructing a
spectral triple from the Rumin complex does not work. However, using our construction
with tangled spectral triples we obtain higher order spectral triples as in Theorem 4.1.
Lastly, we will look at conformal equivariance under CR-automorphisms when the manifold
has an almost CR-structure.

Let X be a (2n+1)-dimensional contact manifold with contact structure H ⊆ TX, that
is, a filtered manifold of depth 2 such that H := T−1X = Ker θ for a 1-form θ satisfying
that dθ|H is non-degenerate. Note that for simplicity we are assuming that the contact
structure is cooriented, i.e. that there exists a global 1-form θ such that H = Ker θ and not
just a locally defined 1-form. The nondegeneracy of dθ|H is equivalent to the top-degree
form θ ∧ (dθ)n+1 being a volume form.
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The Rumin complex [76] is a special case of BGG-complexes [22, 24, 30] that we
explain in some more detail. The Rumin complex can be explicitly constructed by splicing
together the quotient complex Ω∗/I∗ and the subcomplex J ∗ of the de Rham complex
Ω∗ = C∞(X;

∧∗
T ∗X) of X, where I∗ is the differential ideal of forms of the form

θ ∧ α+ dθ ∧ β and J ∗ is the differential ideal of forms α such that θ ∧ α = dθ ∧ α = 0.
These complexes are spliced together using the map DR : Ωn/In → J n+1 defined as
α 7→ dα̃ where α̃ is any lift of α such that dα̃ ∈ θ ∧ Ω∗. In particular, the cohomology of
the Rumin complex

0 → Ω0/I0 d−→ · · · d−→ Ωn/In DR−−→ J n+1 d−→ · · · d−→ J 2n+1 → 0

coincides with the de Rham cohomology [76]. We call DR the Rumin differential, which
in fact is a second order differential operator as will be evident later in (6.1).

Following [77] we can obtain a clearer description of the Rumin complex as follows. Let
us fix a contact form θ and choose a Riemannian metric g on X such that H is orthogonal
to the Reeb field, the unique vector field Z annihilating dθ with θ(Z) = 1. With our
choice of metric, we have an orthogonal splitting

T ∗X = H∗ ⊕H⊥

defined from the contact coorientation θ spanning H⊥. The exterior derivative takes the
form

d =

(
dH L
LZ −dH

)
in the splitting ∧∗ T ∗X = ∧∗H∗

⊕
H⊥ ⊗ ∧∗H∗.

Here LZ denotes the Lie derivative along the Reeb field Z and L denotes exterior multiplica-
tion with dθ. We note that J k+1 = C∞(X;H⊥⊗Fk) where Fk = KerL∩

∧k
H∗ and each

element in Ωk/Ik has a unique representative in C∞(X;Ek) where Ek = (RanL)⊥∩
∧k

H∗.
With this, the Rumin complex takes the form

0 −→ C∞(X;E0)
PE1

dH−−−−→ C∞(X;E1)
PE2

dH−−−−→ · · ·

· · · PEndH−−−−−→ C∞(X;En)
DR−−→ C∞(X;H⊥ ⊗ Fn)

−dH−−−→ · · ·

· · · −dH−−→ C∞(X;H⊥ ⊗ F2n−1)
−dH−−→ C∞(X;H⊥ ⊗ F2n) −→ 0

where the Rumin differential DR can be expressed as the second order differential operator

DR = θ ∧ (LZ + dHL−1dH). (6.1)

Note that L : C∞(X;
∧k

H∗) → C∞(X;
∧k+1

H∗) is injective for k ≤ n− 1 and surjective
for k ≥ n− 1 [76], which is utilized to show that DR is well defined.

We shall write the Rumin complex as dR• . This is a mixed order differential complex.

Lemma 6.1. The Rumin complex (C∞(X;E•), d
R
• ) on a cooriented contact manifold X

is a Rockland complex.

It is well known that dR• is a Rockland complex [48, 76] and a detailed discussion thereof
can be found in Example 4.21 of the arXiv version of [24]. Let us nevertheless hint at how
the argument goes.

Sketch of proof. When localizing the Rumin complex to its symbol complex, it will be
the same as the Rumin complex on H2n+1 but with sections in S0 instead. It therefore
suffices to show that this complex is exact. To do this one can by hand prove the following
Poincaré lemma: if dα = 0 for α ∈ S0(H2n+1;

∧k R) there is an β ∈ S0(H2n+1;
∧k−1 R)

such that dβ = α. Let Ω∗
S = S0(H2n+1;

∧∗ R) and define J ∗
S and I∗

S analogously as when
we constructed the Rumin complex.

To show exactness at Ωk
S/Ik

S for k < n, take any α ∈ Ωk
S/Ik

S such that dα = 0. What
we mean with this is that for any representative α̃ of α we have that dα̃ ∈ Ik+1

S . Fix
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a representative α̃ ∈ Ωk
S of α and let γ ∈ S(H2n+1;

∧k−1
H∗) and δ ∈ S(H2n+1;

∧k
H∗)

be such that dα̃ = dθ ∧ γ + θ ∧ δ. Now, α̃′ := α − θ ∧ γ is also a representative of
α and dα̃′ = θ ∧ (δ + dγ) ∈ θ ∧ Ω∗

S , so dθ ∧ dα̃′ = d (θ ∧ dα̃′) = 0. Noting that
δ + dγ = δ + dHγ ∈ S(H2n+1;

∧k
H∗) we obtain by injectivity of L that dα̃′ = 0. Hence,

there is an β ∈ Ωk−1 such that dβ = α̃′ and the image of β in Ωk−1
S /Ik−1

S is mapped to α
by d.

To show exactness at Ωn
S/In

S , take any α ∈ Ωn
S/In

S such that DRα = 0. Then there is
a representative α̃ ∈ Ωn

S of α such that dα̃ = 0 and hence there is a β ∈ Ωn−1
S such that

dβ = α̃. Now, the image of β in Ωn−1
S /In−1

S is mapped to α by d.
To show exactness at J n+1

S , take any α ∈ J n+1
S such that dα = 0. Then there is a

β ∈ Ωn
S such that dβ = α. Since α ∈ θ ∧ Ω∗

S , the image of β in Ωn
S/In

S is mapped to
α by DR, and we obtain exactness at J n+1

S . To show exactness at J k
S for k > n + 1,

take any α ∈ J k
S such that dα = 0, then there is a β ∈ Ωk−1

S such that dβ = α. By
surjectivity of L, we can find γ ∈ S(H2n+1;

∧k−3
H∗) and δ ∈ S(H2n+1;

∧k−2
H∗) such

that β = dθ∧γ+ θ∧ δ. Now, β′ := θ∧ (δ+dγ) satisfies that dβ′ = α and since α ∈ θ∧Ω∗
S

we have that dθ ∧ β′ = d (θ ∧ β′)− θ ∧ dβ′ = 0, so β′ ∈ J k−1
S and we obtain exactness at

J k
S . □

Let us describe the symbol complex of the Rumin complex in some more detail. We do
the same procedure as for the Rockland sequences in (5.6) and identify THXx

∼= H2n+1

with the Heisenberg group via Darboux coordinates for each point x ∈ X. Write
X1, . . . , Xn, Y1, . . . , Yn, Z for the standard generators of h2n+1 with [Xi, Yj ] = δijZ cor-
responding to the Darboux coordinates near x. We will identify the fibres Ek,x and
H⊥

x ⊗ Fk,x with subspaces of
∧k

H∗
x =

∧k R2n and H⊥
x ⊗

∧k
H∗

x =
∧k R2n respectively.

Consider the h2n+1-valued vector

ω1 =
(
X1 . . . Xn Y1 . . . Yn

)T ∈ h2n+1 ⊗H∗
x .

We can express the principal symbols of the differentials in the Rumin complex as

σ1
H(dRj )x = ω1∧ : S0(H2n+1, Ej,x) → S0(H2n+1, Ej+1,x) (j < n),

σ2
H(dRj )x = σ2

H(DR)x

= Z + (ω1∧)L−1(ω1∧) : S0(H2n+1, En,x) → S0(H2n+1, Fn,x) (j = n),

σ1
H(dRj )x = −ω1∧ : S0(H2n+1, Fj−1,x) → S0(H2n+1, Fj,x) (j > n).

In the case of n = 1, we can identify

E0,x = C, E1,x = F1,x = C2, and F2,x = C.
Under these identifications, we have that σ2

H(DR) = Z + ω1ω
∗
2 where

J =

(
0 −1
1 0

)
and ω2 = Jω1 =

(
−Y
X

)
.

The symbol complex over x takes the form

0 −→ S0(H3)

(
X
Y

)
−−−→ S0(H3)⊗ C2

(
Z +XY −X2

Y 2 Z − Y X

)
−−−−−−−−−−−−−−→ S0(H3)⊗ C2

(
Y −X

)
−−−−−−→ S0(H3) −→ 0.

The reader can compare this to the BGG-complex studied by Yuncken [89] and the example
in Subsection 3.4.1.

6.1. A naïve approach to higher order spectral triples. A first approach to study
the noncommutative geometry of the Rumin complex is to naïvely roll up the complex as

/D
R
:= dR• + (dR• )

∗.

Rolling up a complex in this way is how one produces the Hodge–de Rham Dirac operator
from the de Rham complex. We shall see that this approach fails to produce a higher order
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spectral triple, thereby justifying the approach of Section 5 and the preceding exercises in
tropical combinatorics.

By discreteness of the spectrum, /D
R has compact resolvent. However, taking com-

mutators with C∞(X) does not improve the order. We will show this in the case of
three-dimensional contact manifolds. In Darboux coordinates, the Rumin complex is up
to lower order terms given by

dR• =


0 0 0 0
ω1 0 0 0
0 Z + ω1ω

∗
2 0 0

0 0 ω∗
2 0

 .

Therefore /D
R takes the form

/D
R
=


0 ω∗

1 0 0
ω1 0 −Z + ω2ω

∗
1 0

0 Z + ω1ω
∗
2 0 ω2

0 0 ω∗
2 0

 .

Proposition 6.2. Let X be a compact contact manifold of dimension 3 and a ∈ C∞(X).
Then [ /D

R
, a] is up to a vector bundle endomorphism of the form

0 0 0 0
0 0 ω2ω

∗
1(a) + ω2(a)ω

∗
1 0

0 ω1ω
∗
2(a) + ω1(a)ω

∗
2 0 0

0 0 0 0

 .

in local Darboux coordinates.

Proof. Follows from direct computation with the Leibniz rule. □

Proposition 6.3. Let X be a compact contact manifold of dimension 3. If α ∈ R satisfies
that [ /D

R
, a](1 + ( /D

R
)2)−1/2+α is a bounded operator on L2(X;H) for any a ∈ C∞(X)

then α ≤ 0.

Proof. We need to show that, for all α > 0, [ /DR
, a](1 + ( /D

R
)2)−1/2+α fails to be bounded

on L2(X;H) for some a ∈ C∞(X). By Proposition 6.2 and the computations above,
[ /D

R
, a](1 + ( /D

R
)2)−1/2+α is bounded if and only if (ω1ω

∗
2(a) + ω1(a)ω

∗
2)(1 + T )−1/2+α is

bounded where T = ω1ω
∗
1 + (−Z + ω2ω

∗
1)(Z + ω1ω

∗
2).

Were (ω1ω
∗
2(a) + ω1(a)ω

∗
2)(1 + T )−1/2+α to be bounded, we could freeze coefficients

in a point x and represent this operator in a non-trivial character ξ ∈ R2 ⊆ Ĥ2n+1 and
obtain a uniformly bounded function in ξ. For notational simplicity, write

v := ω1(a)x.

In this notation, ω2(a)x = Jv. In a character ξ, ω1 is represented as ξ, ω2 is represented
as Jξ and Z is represented as 0. Hence, T is represented in the character ξ ≠ 0 as the
matrix valued function

F (ξ) = ξξ∗ + |ξ|2(Jξ)(Jξ)∗ = |ξ|2e1(ξ) + |ξ|4e2(ξ),

where e1(ξ) = |ξ|−2ξξ∗ and e2(ξ) = Je1(ξ)J are the orthogonal projections onto the span
of ξ and Jξ respectively. Since J is anti-symmetric, e1(ξ) and e2(ξ) have orthogonal ranges
and F (ξ) = |ξ|2e1(ξ)+ |ξ|4e2(ξ) is the eigenvalue decomposition of F (ξ). By the discussion
above, we need to show that for α > 0, boundedness fails for the matrix valued function

Aα(ξ) := (ξ(Jv)∗ + v(Jξ)∗)(1 + F (ξ))−1/2+α.
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By orthogonality of e1(ξ) and e2(ξ), we compute that

Aα(ξ) = (1 + |ξ|2)− 1
2+α(ξ(Jv)∗ + v(Jξ)∗)e1(ξ) + (1 + |ξ|4)− 1

2+α(ξ(Jv)∗ + v(Jξ)∗)e2(ξ)

= (1 + |ξ|2)− 1
2+α((Jv)∗ξ)e1(ξ) +O(|ξ|−1+4α)

and see that for t > 0

Aα(tJv) = t(1 + t2)−
1
2+αe1(Jv) +O(t−1+4α).

In particular, Aα is bounded if and only if α ≤ 0 so in particular boundedness fails for
α > 0. □

6.2. Spectral triples from the Rumin complex. Let us place the Rumin complex dR•
of a contact manifold in a spectral triple. We have a somewhat simpler structure than
seen in Subsection 5.1, since all but one of the differentials are order one, see Remark 5.12.
We consider the two self-adjoint operators

D1 :=
∑
j ̸=n

dRj + (dRj )
∗ and D2 := DR + (DR)

∗.

These are differential operators of order m1 = 1 and m2 = 2 respectively. We note
that D1D2 = D2D1 = 0 on the common core C∞(X;⊕jEj), so D1 and D2 are strictly
anticommuting. We compute that

D2
1 =

∑
j ̸=n

dRj (d
R
j )

∗ + (dRj )
∗dRj and D2

2 := DR(DR)
∗ + (DR)

∗DR.

The Rumin Laplacian takes the form

∆R = D4
1 +D2

2.

We can proceed as in Subsection 5.2 to prove the following.

Proposition 6.4. Consider the Rumin complex dR
• on a 2n + 1-dimensional compact

contact manifold X. Then with D1 and D2 as in the preceding paragraph, the data
(C∞(X), L2(X;H), (D1, D2)) constitute an ST2 with bounding matrix

ϵ =

(
0 0
1 1

2

)
1

1
2 ,

which is f -summable for any function f with

f(t1, t2) > 2min

(
n+ 1

t1
,
2(n+ 1)

t2

)
.

In particular, for any t = (t1, t2) ∈ (0,∞)2 with t1 > t2, we arrive at a higher order
spectral triple defined from the operator

Dt = D1|D1|t1−1 +D2|D2|t2−1 = D1(∆
R)

t1−1
4 +D2(∆

R)
t2−1

2 .

If t lies along the ray spanned by (1, 1/2) then Dt is an H-elliptic operator in the Heisenberg
calculus and if t = (2k1 + 1, 2k2 + 1) where k1 > k2 are natural numbers then Dt is a
differential operator.

Remark 6.5. We note that

d(x, y) := sup{|a(x)− a(y)| : ∥[D1, a]∥ ≤ 1} = sup{|a(x)− a(y)| : 1
2
∥[[D2, a], a]∥ ≤ 1}

and coincides with the Carnot–Carathéodory distance of X. In [40, §3.3], compact quantum
metric spaces are built from Carnot manifolds using a ‘horizontal Dirac operator’ similar
to D1. Related results are found in [29]. There is a potential for interesting metric aspects
of ST2s to be considered. In this connection, we mention also the work [49, 50] of Kaad
and Kyed which uses a collection of operators for constructing quantum metric spaces.
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6.3. Equivariance. Recall the setup above: X is a cooriented contact manifold with a
fixed contact form θ and a Riemannian metric g in which the orthogonal complement
of H = Ker θ is the Reeb field. The two-form dθ defines a symplectic form on H. An
almost CR-structure is the additional datum of a complex structure J on H such that
g(v, w) = dθ(v, Jw). Note that the complex structure J and the metric g uniquely
determine one another.

We let AutCR(X) denote the group of CR-automorphisms of X. That is, the group of
diffeomorphisms g : X → X such that Dg preserves H (i.e. (Dg)xHx ⊆ Hg(x) for all x)
and acts complex linearly on H (i.e. (Dg)x : (Hx, Jx) → (Hg(x), Jg(x)) is complex linear
for all x). The group of CR-automorphisms is generically a compact subgroup as the
following result of Schoen [80] proves.

Theorem 6.6 (Schoen’s Ferrand–Obata theorem). Let X be a compact cooriented con-
tact manifold with a choice of Riemannian metric as above. The group AutCR(X) can
equivalently be topologized by its compact-open topology, C0- or C∞-topology. The group
AutCR(X) is compact unless X is an odd-dimensional sphere with its round contact struc-
ture and metric and in this case X = SU(n, 1)/P for the standard parabolic subgroup
P ⊆ SU(n, 1) and AutCR(X) ∼= SU(n, 1).

The action of a CR-automorphism has features similar to being conformal. In [48] [62,
§3.3.3], this similarity to conformality has been utilized for AutCR(X) ∼= SU(n, 1) when
X is the round odd-dimensional sphere. A contact form for a given contact structure is
unique up to multiplication by a nonvanishing smooth function on X. Because the contact
structure is preserved by a CR-automorphism g, the pullback g∗(θ) of the contact form
must be equal to fθ for some nonvanishing smooth function f . Hence

g∗(g)(X,Y ) = g∗(dθ)(X,JY ) = (fdθ + df ∧ θ)(X,JY ) = fdθ(X,JY ) = fg(X,Y )

for all X,Y ∈ H. Moreover, the induced metric on TX/H is multiplied by f2.
We conclude that, if g ∈ AutCR(X), the differential of g lifts to a graded vector-bundle

action
vg : E• → E•,

with

v∗gvg =

n⊕
k=0

λ2k
g ⊕

2n⊕
k=n

λ2(k+2)
g ,

in accordance with the grading of E•. We define an action

V : AutCR(X) → GL(L2(X;E•)), V (g)f(x) := vgf(g
−1x).

Since the volume form belongs to ∧nH∗⊗H⊥ it rescales with λ2n+2
g under g ∈ AutCR(X).

Therefore

V (g)∗V (g) = λ2n+2
g v∗gvg =

n⊕
k=0

λ2(k+n+1)
g ⊕

2n⊕
k=n

λ2(k+n+3)
g .

The Rumin complex of X is defined from a quotient complex and a subcomplex of the
de Rham complex spliced with the Rumin differential. As such, the Rumin complex is
invariant under AutCR(X). In other words,

V (g)dR• V (g)−1 = dR• .

Set Λg = V (g)∗V (g), so V (g)∗ = ΛgV (g−1). We conclude that

V (g)∗dR• V (g) = Λgd
R
• .

If we go to the unitarized action

U : AutCR(X) → U(L2(X;E•)), U(g) := V (g)Λ−1/2
g ,

we see that
U(g)∗dR• U(g) = Λ1/2

g dR• Λ
−1/2
g .
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From Proposition 5.19 we conclude the following.

Theorem 6.7. Let (C∞(X;E•), d
R
• ) denote a Rumin complex on a (2n+ 1)-dimensional

almost CR-manifold X with its conformal action of G = AutCR(X). For τ > 0, the
H-elliptic Heisenberg operator

Dτ = D1|D1|τ−1 +D2|D2|
τ
2−1 = D1(∆

R)
τ−1
4 +D2(∆

R)
τ−2
4

defines a conformally G-equivariant, ( τ
2n+2 ,∞)-summable higher order spectral triple

(C∞(X), L2(X;⊕jEj), Dτ ) of order τ > 0 with the conformal factor µ = λ−τ .

7. Group C∗-algebras of nilpotent groups

Let G be a simply connected, nilpotent Lie group G. As a manifold G is diffeomorphic
to Rn for some n and its maximal compact subgroup is trivial. Hence the dual-Dirac
element, as defined by Kasparov [54, Section 5], is an element of KKG

∗ (C, C0(G)). By
Baaj–Skandalis duality, there is an isomorphism of the KK-groups KKG

∗ (C, C0(G)) and
KKĜ

∗ (C∗(G),C), where Ĝ is the dual quantum group. For a more detailed discussion we
refer to upcoming work of the third listed author with Anne Thomas on spectral triples
built for C∗-algebras of groups acting properly on CAT(0) spaces. Nilpotent groups are
generally not among these, and we turn to the framework of ST2s.

Definition 7.1. A weight on a locally compact group G is a continuous function from
G to matrices on a finite-dimensional complex vector space E. If E is Z/2Z-graded, we
require that ℓ is odd. Fixing E, we will say that a finite collection of weights ℓ = (ℓj)j∈I is

(1) self-adjoint if ℓ∗j = ℓj for all j;
(2) proper if, in addition, (ℓj)j∈I mutually anticommute and

∏
j(1 + |ℓj |)−1 ∈

C0(G,EndE); and
(3) translation bounded with bounding matrix ϵ ∈ Mn([0,∞)) if, furthermore, for

g, h ∈ G,

(ℓi(gh)− ℓi(h))

(
1 +

∑
j∈I

|ℓj(h)|ϵij
)−1

is bounded in h.

Theorem 7.2. Let G be a locally compact group and E be a finite-dimensional vector
space. Let (ℓj)j∈ : G → EndE be a finite collection of weights which is self-adjoint, proper,
and translation bounded with ϵ ∈ MI([0,∞)). Let (Mℓj )j∈I be the operators densely defined
on L2(G,E) given by multiplication by (ℓj)j∈I respectively. Then, provided ϵ satisfies the
decreasing cycle condition, (

Cc(G), L2(G,E), (Mℓj )j∈I

)
is a strictly tangled spectral triple with bounding matrix ϵ. If E is Z/2Z-graded, the ST2

is even, otherwise it is odd.

The proof is a fairly straightforward extension of [10, Lemma 5].

Proof. The local compactness of the resolvent is a consequence of the properness of (ℓj)j∈I

and the isomorphism C0(G)⋊G ∼= K(L2(G)). For the commutator bounds, fix an element
f ∈ Cc(G) and let

T = [Mℓi , f ]

(
1 +

∑
j∈I

|Mℓj |ϵij
)−1

On a vector ξ ∈ Cc(G,E),

(Tξ)(h) =

∫
G

(
ℓi(h)− ℓi(s

−1h)
)
f(s)

(
1 +

∑
j∈I

|ℓj(s−1h)|ϵij
)−1

ξ(s−1h)dµ(s).
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With translation-boundedness, this means that T is acting as an element of the integrated
representation of Cc(G,Cb(G,E)) ⊆ Cb(G,E)⋊G on L2(G,E), to wit

T (g)(h) =
(
ℓi(h)− ℓi(g

−1h)
)(

1 +
∑
j∈I

|ℓj(g−1h)|ϵij
)−1

f(g),

and is therefore bounded; cf. [71, Lemma 7(1)]. □

Let G be a simply connected nilpotent Lie group. Recall the lower central series

g1 = g gn = [g1, gn−1].

The successive quotients gn/gn+1 are abelian Lie algebras. The largest n for which
gn is nonzero is the step size s of g. In the Baker–Campbell–Hausdorff formula for
log(expX expY ), we will call the nth-order term zn(X,Y ), so that, e.g.

z1(X,Y ) = X + Y z2(X,Y ) =
1

2
[X,Y ] z3(X,Y ) =

1

12
([[X,Y ], Y ] + [[Y,X], X]).

Because zs+1(X,Y ) = 0, the exponential map from g to G is a diffeomorphism.
A Malcev basis of g through the lower central series is a basis ((ej,k)

dim gj/gj+1

k=1 )sj=1 of
g such that ((ej,k)

dim gj/gj+1

k=1 )sj=n is a basis of gn [20, Theorem 1.1.13]. Remark that the
span of

{ej,k, . . . , ej,dim gj/gj+1
, ej+1,1, . . . , es,dim gs

}
(in other words, the basis with some number of elements dropped from the beginning) is
automatically an ideal of g. Using the Malcev basis, we may write an arbitrary element of
X ∈ g as a tuple (x1, · · · , xs) ∈

⊕s
n=1 Rdim gn/gn+1 .

Proposition 7.3. Let G be a simply connected s-step nilpotent Lie group and choose a
Malcev basis ((ej,k)

dim gj/gj+1

k=1 )sj=1 of g through the lower central series. Let E be Clifford
module for Cldim g, whose generators we label ((γj,k)

dim gj/gj+1

k=1 )sj=1. Then the collection
(ℓj)

s
j=1 : G → EndE of weights given by

ℓj(expg(x1, . . . , xs)) =

dim gj/gj+1∑
k=1

xj,kγj,k

is self-adjoint, proper, and translation bounded with the strictly lower triangular bounding
matrix ϵij = max{i− j, 0}.

Proof. Self-adjointness is by construction. For properness, observe that

ℓj(expg(x1, . . . , xs))
2 =

dim gj/gj+1∑
k=1

x2
j,k.

For translation-boundedness, observe that ℓj is well defined on the quotient G/Gj+1 and
ϵij = 0 for j ≥ i. Without loss of generality, then, we consider only the translation-
boundedness of ℓs. For any 1 ≤ m ≤ s, the map

∥ · ∥m+1 : X 7→

√√√√ m∑
j=1

ℓj(expg X)2

defines a norm on the finite-dimensional vector space g/gm+1. By the necessary continuity
of the Lie bracket in this norm, there exists a constant Cm+1 such that

∥[X,Y ]∥m+1 ≤ Cm+1∥X∥m+1∥Y ∥m+1

for all X,Y ∈ g/gm+1. Actually, since [X + gm, Y + gm] = [X,Y ],

∥[X,Y ]∥m+1 ≤ Cm+1∥X∥m∥Y ∥m.
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In the term zn(X,Y ) of the Baker–Campbell–Hausdorff formula, there are no more than
n − 1 instances of X or of Y . (Actually, for even n ≥ 4, the vanishing of the Bernoulli
number Bn−1 means that there are no more than n− 2 instances of X or Y .) Because g
is s-step nilpotent,

zn(X + gs−n+2, Y + gs−n+2) = zn(X,Y )

for X,Y ∈ g, and so

∥zn(X,Y )∥s+1 ≤ Cn−1
s−n+2∥X∥n−1

s−n+2∥Y ∥n−1
s−n+2

By the linearity of ℓs ◦ expg,

ℓs(expg X expg Y )− ℓs(expg Y ) = ℓs(expg X) +

s∑
n=2

ℓs(expg zn(X,Y )).

We obtain a bound

∥ℓs(expg X expg Y )− ℓs(expg Y )∥

≤ ∥ℓs(expg X)∥+
s∑

n=2

∥ℓs(expg zn(X,Y ))∥

≤ ∥ℓs(expg X)∥+
s∑

n=2

∥zn(X,Y )∥s+1

≤ ∥ℓs(expg X)∥+
s∑

n=2

Cn−1
s−n+2∥X∥n−1

s−n+2∥Y ∥n−1
s−n+2

= ∥ℓs(expg X)∥+
s−1∑
m=1

Cs−m
m+1∥X∥s−m

m+1∥Y ∥s−m
m+1

= ∥ℓs(expg X)∥+
s−1∑
m=1

Cs−m
m+1∥X∥s−m

m+1

(
m∑
j=1

ℓj(Y )2

) s−m
2

≤ ∥ℓs(expg X)∥+
s−1∑
m=1

Cs−m
m+1∥X∥s−m

m+1m
s−m−1

m∑
j=1

∥ℓj(Y )∥s−m

= ∥ℓs(expg X)∥+
s−1∑
j=1

s−1∑
m=j

Cs−m
m+1∥X∥s−m

m+1m
s−m−1∥ℓj(Y )∥s−m.

We conclude from this that ϵsj = s− j is sufficient to give translation-boundedness. □

The reader can note that a lower triangular bounding matrix automatically satisfies
the decreasing cycle condition since its associated weighted directed graph has no cycles.
For instance, for a 5-step nilpotent group, the bounding graph is

1 1 1 1

2 2 2

3 3

4

.

Proposition 7.4. Let G be a simply connected s-step nilpotent Lie group. Then, for an
irreducible Clifford module E for Cldim g,(

Cc(G), L2(G,E), (Mℓn)
s
n=1

)
ϵij = max{i− j, 0}
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is an ST2 with nontrivial class in KKdim g(C
∗(G),C). This ST2 represents the Kasparov

product

[(Cc(G1), (Cc(G1, E1))C∗(G2),Mℓ1)]

⊗C∗(G2) [(Cc(G2), (Cc(G2, E2))C∗(G3),Mℓ2)]

⊗C∗(G3) · · · ⊗C∗(Gs) [(Cc(Gs), L
2(Gs, Es),Mℓs)]

where each Ej is a Clifford Cldim gj/gj+1
-module with generators (γj,k)

dim gj/gj+1

k=1 and
E = E1 ⊗̃ · · · ⊗̃ Es.

Proof. Take a t ∈ Ω(ϵ). Comparing with [54, Proof of Theorem 5.7], we see from the
description as an iterated Kasparov product that (C, C0(G,E)C0(G),Mℓt) represents the
dual Dirac class β ∈ KKG

dim g(C, C0(G)) [54, Definition 5.1]. By definition, α⊗C β = 1 ∈
KKG(C0(G), C0(G)) for the Dirac class α ∈ KKH

dim g(C0(G),C). The class of(
Cc(G), ℓ2(G,E), (Mℓn)

s
n=1

)
is the descent jH(β) ∈ KKdim g(C

∗(G), C0(G)⋊G) = KKdim g(C
∗(G),C) of β, which is

nonzero because jG(α)⊗C∗(G) j
G(β) = jG(α⊗C β) = 1. □

Proposition 7.5. Let G be a simply connected s-step nilpotent Lie group and H be a
cocompact, closed subgroup. Then(

Cc(H), L2(H,E), (Mℓn)
s
n=1

)
ϵij = max{i− j, 0}

is an ST2 with nontrivial class in KKdim g(C
∗(H),C).

Proof. To show nontriviality, we argue along the lines of [82, §6.2]. The class x ∈
KKdim g(C

∗(H),C) of (
Cc(H), ℓ2(H,E), (Mℓn)

s
n=1

)
is the product of the descent jH(β) ∈ KKdim g(C

∗(H), C0(G) ⋊H) of β with the class
[π] ∈ KK0(C0(G) ⋊ H,C) defined from descent along H applied to the element of
KKH(C0(G), C0(H)) defined from the inclusion map H ↪→ G. Using the cocompactness
of H ⊆ G, one can construct a class [θ] ∈ KK0(C, C0(G)⋊H), for which [θ]⊗C0(G)⋊H [π] =
1 ∈ KK0(C,C), as in [82, §6.2]. Then the fact that

[θ]⊗C0(G)⋊H jH(α)⊗C∗(H) j
H(β)⊗C0(G)⋊H [π] = [θ]⊗C0(G)⋊H 1⊗C0(G)⋊H [π] = 1

shows that x = jH(β)⊗C0(G)⋊H [π] is nontrivial. □

Malcev completion [72, Theorem 2.18] says that a group Γ is isomorphic to a lattice in
a simply connected nilpotent Lie group if and only if Γ is finitely generated, torsion-free,
and nilpotent. We thereby obtain

Proposition 7.6. Let Γ be a finitely generated, torsion-free, nilpotent group. Let G be a
simply connected nilpotent Lie group in which Γ is a lattice. Then(

Cc(Γ), ℓ
2(Γ, E), (Mℓn)

s
n=1

)
ϵij = max{i− j, 0}

is an ST2 having a nontrivial class in KKdim g(C
∗(Γ),C). The ST2 is f-summable for

f(t) >

s∑
j=1

dim gj/gj+1

tj
.

Proof. For the statement about summability, first remark that for t ∈ (0,∞)s the map

(x1, . . . , xs) 7→

1 +

s∑
j=1

(
dim gj/gj+1∑

k=1

x2
j,k

)tj/2
−1
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is an element of Lp(g) for p >
∑s

j=1
dim gj/gj+1

tj
. The Haar measure on a simply connected

nilpotent Lie group is the pushforward under the exponential of the Lebesgue measure on
its Lie algebra, so Lp(g) ∼= Lp(G). By [20, Proposition 5.4.8(b)], logG Γ is the union of
a finite number of additive cosets of a lattice in g. By the integral test for convergence,
then, the map

expg(x1, . . . , xs) 7→

1 +

s∑
j=1

(
dim gj/gj+1∑

k=1

x2
j,k

)tj/2
−1

is an element of ℓp(Γ) for p >
∑s

j=1
dim gj/gj+1

tj
. □

If one chooses the Malcev basis to be strongly based on Γ, as is always possible [20,
Theorem 5.1.6], then each ℓj will be valued in the Q-span of (γj,k)

dim gj/gj+1

k=1 [20, Theorem
5.1.8(a)]. By rescaling by a large enough integer, one can ensure that each ℓj will be
valued in the Z-span of (γj,k)

dim gj/gj+1

k=1 ; cf. [20, §5.4].

7.1. Carnot groups and equivariance. A Carnot group is a simply connected nilpotent
Lie group G with a stratification g =

⊕s
n=1 Vn of its Lie algebra g such that [V1, Vn] =

Vn+1. A basic consequence of the stratification is that gn =
⊕s

j=n Vj and so naturally
Vn = gn/gn+1; for more details see e.g. [58].

Proposition 7.7. Let G be a Carnot group and H be a cocompact, closed subgroup
(including G itself). Choose a Malcev basis ((ej,k)

dim gj/gj+1

k=1 )sj=1 with the property that
(ej,k)

dim gj/gj+1

k=1 ⊂ Vj. Then the collection (ℓj)
s
j=1 : G → EndE of weights and, conse-

quently, the ST2 (
Cc(H), L2(H,E), (Mℓj )

s
j=1

)
has the strictly lower triangular bounding matriix

ϵij =

{⌊
i−1
j

⌋
, i > j,

0, i ≤ j.

The reader can note that the bounding matrix in Proposition 7.7 for Carnot groups
improves the bounding matrix of Proposition 7.3 built from a general nilpotent Lie group’s
lower central series.

Proof. To verify the new bounding matrix, we again restrict to considering the translation-
boundedness of ℓs. Using the stratification of g, for X ∈ Vi and Y ∈ Vj ,

∥ℓi+j(expg[X,Y ])∥ ≤ Ci,j∥ℓi(expg X)∥∥ℓj(expg Y )∥

for some constant Ci,j . Furthermore, for the Baker–Campbell–Hausdorff expansion
z(X,Y ) = log(expX expY ),

∥ℓs(expg z(X,Y ))∥ ≤ C ′
i,j,s∥ℓi(expg X)∥⌊(s−j)/i⌋∥ℓj(expg Y )∥⌊(s−i)/j⌋

for some constant C ′
i,j,s. For X ∈ V1 and Y ∈ Vj , we obtain a bound

∥ℓs(expg X expg Y )− ℓs(expg Y )∥
≤ ∥ℓs(expg X)∥+ ∥ℓs(expg z(X,Y ))∥

≤ ∥ℓs(expg X)∥+ C ′
1,j,s∥ℓ1(expg X)∥⌊s−j⌋∥ℓj(expg Y )∥⌊(s−1)/j⌋.

Because expg V1 generates G, we see that ϵsj =
⌊
s−1
j

⌋
is sufficient for translation-

boundedness. □
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For a 5-step Carnot group, the bounding graph produced by Proposition 7.7 is

1 1 1 1

2 1 1

3 2

4

.

Remark 7.8. It is notable that the behaviour here, in contrast to the general nilpotent
Lie group case, is close to that of pseudodifferential operators. In the context of Remark
3.13, if we m = (1, 2, . . . , s), we expect a bounding matrix ϵ′ij =

i−1
j , which is just slightly

larger than the ϵ given above. We therefore may think of Mℓj as having order j. The ray

tm(τ) :=

(
τ

j

)s

j=1

(τ > 0)

is in the cone Ω(ϵ) when G is Carnot, but will not be, in general, for a nilpotent Lie group
and ϵij = max{i− j, 0}.

The stratification provides a canonical vector space isomorphism of g and
⊕s

n=1 gn/gn+1

because gn/gn+1 = Vn. We may write any element of g as a tuple (X1, · · · , Xs) ∈
⊕s

n=1 Vn

and any element of G as the exponential of such a tuple. The stratification induces a
dilation action of R×

+ as Lie algebra automorphisms on g, given by

δt : (X1, X2, . . . , Xs) 7→ (tX1, t
2X2, . . . , t

sXs).

This action exponentiates to a dilation action on G by automorphisms, given by

δt : expg(X1, X2, . . . , Xs) 7→ expg(tX1, t
2X2, . . . , t

sXs).

Let Vt be given by the pullback

Vtξ(expg(X1, . . . , Xs)) = ξ(expg(t
−1X1, . . . , t

−sXs))

on ξ ∈ L2(G). Recall that the Haar measure on a simply connected nilpotent Lie group is
the pushforward under the exponential of the Lebesgue measure on its Lie algebra. We
compute that

⟨V ∗
t ξ|η⟩ =

∫
ξ(expg(t

−1X1, . . . , t
−sXs))η(expg(X1, . . . , Xs))dX1 · · · dXS

=

∫
ξ(expg(Y1, . . . , Ys))η(expg(tY1, . . . , t

sYs))t
dimV1dY1 · · · ts dimVsdYS

= tdimh g⟨ξ|Vt−1η⟩

using the notation

dimh g =

s∑
n=1

n dimVn

for the homogeneous dimension of g (cf. (5.3)). Hence V ∗
t = tdimh gVt−1 . The unitary in

the polar decomposition of Vt is given by Ut = t− dimh(g)/2Vt. For 1 ≤ j ≤ s,

ℓj(expg(t
−1X1, . . . , t

−sXs)) = t−jℓ(expg(X1, . . . , Xs))
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and we see that the operator Mℓj transforms as

(UtMℓjU
∗
t ξ)(expg(X1, . . . , Xs))

= t− dimh(g)/2(MℓjU
∗
t ξ)(expg(t

−1X1, . . . , t
−sXs))

= t− dimh(g)/2ℓj(expg(t
−1X1, . . . , t

−sXs))(U
∗
t ξ)(expg(t

−1X1, . . . , t
−sXs))

= t−jℓj(expg(X1, . . . , Xs))ξ(expg(X1, . . . , Xs))

= t−j(Mℓjξ)(expg(X1, . . . , Xs))

on a vector ξ ∈ L2(G,E). We thereby obtain

Proposition 7.9. cf. [62, Proposition 3.28] Let G be an s-step Carnot group. Then(
Cc(G), L2(G,E),

s∑
j=1

Mℓj |Mℓj |−1+τ/j

)
is a conformally R×

+-equivariant higher order spectral triple for the dilation action δ and
conformal factor µt = t−τ/2.

8. Crossed products by parabolic diffeomorphisms

Spectral triples for crossed products by groups of diffeomorphisms have been considered
multiple times in the literature, first in [19, 5] for the group Z, later in [41, 66] for other
discrete groups as well as further developments in unbounded KK-theory [33, 34].

Let α be an action of a locally compact group G by automorphisms of a C∗-algebra A.
The (reduced) crossed product C∗-algebra A⋊α G possesses a densely defined, completely
positive map Φ : A⋊α G 99K A given on f ∈ Cc(G,A) by evaluation at the identity e ∈ G.
We may complete Dom(Φ) ⊆ A⋊α G to a right Hilbert A-module under the inner product

⟨f1|f2⟩A = Φ(f∗
1 f2), for f1, f2 ∈ Dom(Φ).

There is a natural isomorphism of this Hilbert module with L2(G,A)A, the representation
given by

fξ(g) =

∫
G

αg−1(f(h))ξ(h−1g)dµ(h)

for f ∈ Cc(G,A) ⊆ A ⋊α G and ξ ∈ Cc(G,A) ⊆ L2(G,A). Given a self-adjoint, proper,
translation-bounded weight ℓ : G → EndE, in the sense of Definition 7.1 (with n = 1 and
ϵ = 0), we may construct a vertical calculus for A ⋊α G, in the form of an unbounded
Kasparov A⋊α G-A-module

(A⋊α G,L2(G)⊗AA,Mℓ ⊗ 1).

More details of this construction and its generalisation to Fell bundles over locally compact
groups will appear in upcoming work of the third listed author with Anne Thomas. The
two weights which we shall particularly consider in later examples are the inclusions
ℓZ : Z → C and ℓR : R → C. The first of these gives rise to the number operator N = MℓZ

and the Pimsner–Voiculescu extension class and the second is related to the Connes–Thom
isomorphism.

A horizontal calculus is just a spectral triple (A,H , D). Provided that A is represented
nondegenerately on H , the internal tensor product module L2(G,A)⊗A H is naturally
isomorphic to L2(G,H ). To construct the Kasparov product of the vertical and horizontal
calculi, a compatibility condition is required.

Let M be a σ-finite measure space and H a (separable) Hilbert space. A function
f from M to bounded operators B(H ) is measurable if, for every pair ξ, η ∈ H , the
function m 7→ ⟨ξ|f(m)η⟩ is measurable [73, §XIII.16]. It suffices to check measurability
for ξ and η in a dense subspace of H (such as DomD in the context below), because of
the separability of H and the fact that the pointwise limit of measurable functions is
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measurable. One should compare the following Definition to the fact that a Lipschitz
function has a measurable weak derivative.

Definition 8.1. cf. [66, §1] A spectral triple (A, H,D) is pointwise bounded with respect
to an action α of G on A if, for all a ∈ A, the function g 7→ [D,αg(a)] is measurable and

supg∈G ∥[D,αg(a)]∥ < ∞.

In other words, g 7→ [D,αg(a)] is L∞.

Definition 8.2. Let A be a dense ∗-subalgebra of a C∗-algebra A. Let α be an action
of a locally compact group G on A which preserves A. If G is discrete, we write A⋊α G
for the algebraic crossed product. For a non-discrete group, we will generalise this by
defining A⋊α G ⊆ A⋊α G as the (dense) *-subalgebra generated by A and Cc(G) under
the canonical inclusions A ⊆ A ⊆ M(A⋊α G) and Cc(G) ⊆ C∗(G) ⊆ M(A⋊α G).

The following Theorem and other subsequent results will involve taking the Kasparov
product of (unbounded) Kasparov modules. In the interests of economy, we will not
give separate statements for different combinations of parities. Instead, we will use the
symbol ⊗̃ to represent a flexible tensor product of possibly Z/2Z-graded Hilbert spaces
and operators thereon. Let D1 and D2 be (odd) unbounded operators on (possibly graded)
Hilbert spaces H1 and H2 respectively. In the case when H1 and H2 are both graded,
⊗̃ will simply mean the graded tensor product. In the case when H1 is graded and H2

ungraded, H1 ⊗̃ H2 will refer to the plain tensor product, giving an ungraded Hilbert
module, and we will write D1 ⊗̃ 1 = D ⊗ 1 and 1 ⊗̃D2 = γ1 ⊗D2 where γ1 is the grading
on H1. In the case when H1 is ungraded and H2 graded, H1 ⊗̃ H2 will again refer to the
plain tensor product, and we will write D1 ⊗̃ 1 = D⊗ γ2 and 1 ⊗̃D2 = 1⊗D2 where γ2 is
the grading on H2. If both H1 and H2 are ungraded, we will let H1 ⊗̃H2 = H1 ⊗H2 ⊗C2,
with a grading given by 1⊗1⊗σ3 and write D1 ⊗̃1 = D⊗1⊗σ1 and 1 ⊗̃D2 = 1⊗D2⊗σ2,
where σ1, σ2, and σ3 are the Pauli matrices.

Theorem 8.3. cf. [19, Theorem 3.4], [5, §3.4], [41, Theorem 2.7], [66, Proposition 4.1]
Let (A,H , D) be a spectral triple. Let α be an action of a locally compact group G on A.
Let ℓ : G → EndE be a self-adjoint, proper, translation-bounded weight. If the spectral
triple is pointwise bounded with respect to the action,(

A⋊α G,L2(G,E) ⊗̃ H ,Mℓ ⊗̃ 1 + 1 ⊗̃D
)

is a spectral triple, representing the Kasparov product

(A⋊α G,L2(G,E)⊗AA,Mℓ ⊗ 1)⊗A (A,H , D).

Theorem 8.3 is known in the case of discrete groups but, to our knowledge, the
generalisation to locally compact groups has not appeared in the literature, although see
[66, Note after Proposition 4.1]. This is, however, simply an instance of the constructive
unbounded Kasparov product.

Proof. We confine ourselves to checking the boundedness of commutators, as the other
aspects of the proof are standard. By [26, Corollary 2.2], it suffices to show that the
elements of A ⋊α G take a core for Mℓ ⊗̃ 1 + 1 ⊗̃ D to the domain and have bounded
commutators on that core. Let η = η1 ⊗̃η2 ∈ Cc(G,E) ⊗̃DomD, a core for Mℓ ⊗̃1+1 ⊗̃D.
(If both E and H are ungraded, then η should have an extra C2 tensor factor, but this
detail does not change the argument below.) Then

(π(af)η)(g) =

∫
G

f(h)η1(h
−1g)dµ(h) ⊗̃ αg−1(a)η2 ∈ E ⊗̃DomD
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for all g ∈ G and∫
G

∥∥∥∥(ℓ(g) ⊗̃ 1 + 1 ⊗̃D)

∫
G

f(h)η1(h
−1g)dµ(h) ⊗̃ αg−1(a)η2

∥∥∥∥2 dµ(g)
≤
∫
G

∥∥∥∥(ℓ(g)∫
G

f(h)η1(h
−1g)dµ(h) ⊗̃ αg−1(a)η2

∥∥∥∥2 dµ(g)
+

∫
G

∥∥∥∥∫
G

f(h)η1(h
−1g)dµ(h) ⊗̃

(
[D,αg−1(a)] + αg−1(a)D

)
η2

∥∥∥∥2 dµ(g)
is finite owing to the compactness of the supports of f and η1 and pointwise-boundedness.
By [73, Theorem XIII.85], this implies that π(af)η is in the domain of Mℓ ⊗̃ 1 + 1 ⊗̃D. It
is routine to check that

[1 ⊗̃D,π(af)]η(g) = 1 ⊗̃ [D,αg−1(a)]π(f)η(g)

and

[Mℓ ⊗̃ 1, π(af)]η(g) = αg−1(a)

∫
G

(
(ℓ(h−1g)− ℓ(g))f(h) ⊗̃ 1

)
η(h−1g)dµ(h).

The commutator [Mℓ ⊗̃1+1⊗̃D,π(af)] is then bounded because of pointwise-boundedness
and the facts that ℓ is translation bounded and that f is compactly supported. By the
Leibniz rule, we are done. □

With the technology of ST2s available, we are not so constrained. We make the following
definition.

Definition 8.4. A spectral triple (A, H,D) has parabolic of order s ∈ [0,∞) with respect
to an action α of G on A and a weight ℓ on G if, for all a ∈ A, the function g 7→ [D,αg(a)]
is measurable and, for all g, the matrix inequality

∥[D,αg(a)]∥ ≤ C(1 + |ℓ(g)|s)

holds for some constant C > 0. (If s = 0, we recover pointwise-boundedness.)

Remark 8.5. Let α be an action of a locally compact group G on A. If β is an automorphism
of A preserving A, there is an isomorphism

A⋊β◦α◦β−1 G ∼= A⋊α G.

Let (A, H,D) be a spectral triple which is parabolic of order s with respect to the action
and a weight ℓ. Suppose that there is a constant C ′ > 0 such that, for all a ∈ A,

∥[D,β(a)]∥ ≤ C ′∥[D, a]∥.

Then (A, H,D) also is parabolic of order s with respect to β ◦ α ◦ β−1 and ℓ because

∥[D,β ◦ αg ◦ β−1(a)]∥ ≤ C∥[D,αg(β
−1(a))]∥ ≤ C ′C(1 + |ℓ(g)|s).

Theorem 8.6. Let (A,H , D) be a spectral triple. Let α be an action of a locally compact
group G on A. Let ℓ : G → EndE be a self-adjoint, proper, translation-bounded weight. If
the spectral triple is parabolic of order s with respect to the action and weight,(

A⋊α G,L2(G,E) ⊗̃ H , (Mℓ ⊗̃ 1, 1 ⊗̃D)
)

is an ST2 with bounding matrix

ϵ =

(
0 0
s 0

)
s .

The ST2 represents the Kasparov product

(A⋊α G,L2(G,E)⊗AA,Mℓ ⊗ 1)⊗A (A, H,D).
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Proof. The proof of Theorem 8.3 carries over with the appropriate modifications for the
tangled boundedness of commutators implied by the pointwise order.

For the last point, using Kucerovsky’s theorem [57] (and in particular its extension to
higher order spectral triples in [33, Theorem A.7]), we see that, e.g. for m > s, the higher
order spectral triple

(A⋊G,L2(G,E) ⊗̃ H ,Mℓ|ℓ|−1+m ⊗̃ 1 + 1 ⊗̃D)

represents the Kasparov product of (A⋊αG,L2(G,E)⊗AA,Mℓ|ℓ|−1+m ⊗1) and (A,H , D).
□

Remark 8.7. cf. [41, Theorem 2.7] In the context of Theorem 8.6, if G is discrete and
(1 + |ℓ|)−1 ∈ ℓp1(G,EndE), so that (Cc(G), ℓ2(G,E),Mℓ) is p1-summable, and (A,H , D)
is p2-summable, then (

A⋊α G, ℓ2(G,E) ⊗̃ H , (Mℓ ⊗̃ 1, 1 ⊗̃D)
)

is f -summable for f : (t1, t2) 7→ p1

t1
+ p2

t2
.

To see the meaning of parabolic order, we specialise to the case of a complete Riemannian
manifold (X,g) and a spectral triple (C∞

c (X), L2(X,S), D), with either the Atiyah–Singer
or Hodge–de Rham Dirac operator. Let φ be an action of a locally compact group G by
diffeomorphisms; the resulting action on C∞

c (X) is given by φ−1∗, the pullback of the
inverse. For f ∈ C∞

c (X), the commutator [D, f ] is just the one-form df acting by Clifford
multiplication. Hence ∥[D, f ]∥ = ∥df∥. Using the notation

(dφg)x : TxX → Tφg(x)X

for the pushforward by φg at x ∈ X, the chain rule gives

dφ∗
g(f)x = dfφg(x)(dφg)x.

Hence
∥dφ∗

g(f)∥∞ ≤ ∥df∥∞∥dφg∥∞
and the parabolic order condition reduces to the matrix inequality

∥dφg∥∞ ≤ C(1 + |ℓ(g)|s)
for a constant C > 0. In other words, the supremum norm of the Jacobian should be of
polynomial order. To be clear, the norm of dφg at x ∈ X is

∥(dφg)x∥ = supu∈TxM

∥(dφg)xu∥
∥u∥

= supu∈TxM

gφ(x)((dφg)xu, (dφg)xu)

gx(u, u)
.

Making our observation precise, we obtain:

Corollary 8.8. Let (C∞
c (X), L2(X,S), D) be the Atiyah–Singer or Hodge–de Rham Dirac

spectral triple on a complete Riemannian manifold (X,g). Let φ be an action of a locally
compact group G by diffeomorphisms on X. Let ℓ : G → EndE be a self-adjoint, proper,
translation-bounded weight. Suppose that, for some s ≥ 0, the matrix inequality

∥dφg∥∞ ≤ C(1 + |ℓ(g)|s)
holds for some constant C > 0. Then

(C∞
c (X)⋊G,L2(G,E) ⊗̃ L2(X,S), (Mℓ ⊗̃ 1, 1 ⊗̃D)

is a strictly tangled spectral triple with bounding matrix

ϵ =

(
0 0
s 0

)
s .

This ST2 represents the Kasparov product of

(C∞
c (X)⋊G,L2(G,E)⊗ C0(X)C0(X),Mℓ ⊗ 1)

and (C∞
c (X), L2(X,S), D).
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The behaviour of dynamical systems can be loosely classified into three paradigms:
elliptic, parabolic, and hyperbolic [39, §5.1.g]. These roughly refer to the Jacobian’s having
respectively constant growth, polynomial growth, or exponential growth. The classical
example of the distinction is the classification of Möbius transformations, which we discuss
in the following Example. The meaning of Corollary 8.8, then, is that ST2s can be built
for parabolic dynamical systems in addition to elliptic dynamical systems which already
fall within the scope of Theorem 8.3. For a survey of parabolic dynamics, we refer to [39,
Chapter 8]; see also [28, 2].

Example 8.9. In terms of the complex coordinate z on the Riemann sphere S2, a Möbius
transformation is given by

z 7→ az + b

cz + d

(
a b
c d

)
∈ SL(2,C).

The centre {+1,−1} of SL(2,C) acts trivially, so that the group of Möbius transformations
is PSL(2,C). Equip S2 with the round metric

ds2 =
4dzdz̄

(1 + |z|2)2

and a corresponding spectral triple (C∞(S2), L2(S2, S), D). We will consider the behaviour
of a Z-action generated by a single Möbius transformation, with the weight ℓ corresponding
to the number operator. A Möbius transformation φ is classified by its eigenvalues λ, λ−1

into three types:
• If λ, λ−1 ∈ T\{−1, 1}, φ is elliptic, possessing two fixed points. An elliptic Möbius

transformation φ is (smoothly) conjugate to a rotation τ : z 7→ eiθz, for which
∥dτ∗(f)∥ = 1. By Remark 8.5, (C∞(S2), L2(S2, S), D) is pointwise bounded with
respect to the Z-action generated by φ, placing it under the aegis of Theorem 8.3.

• If λ = λ−1 = ±1, φ is either the identity or it is parabolic, possessing one fixed
point (and not diagonalisable as a matrix). A parabolic Möbius transformation φ
is (smoothly) conjugate to a translation τ : z 7→ z + 1. We compute that

∥dτn∥∞ = supz
1 + |z|2

1 + |z + n|2
=

1

2

(
n2 + |n|

√
n2 + 4 + 2

)
∈ O(n2).

Again, by Remark 8.5, (C∞(S2), L2(S2, S), D) has pointwise order 2 with respect
to the Z-action generated by φ and the number operator weight ℓZ.

• Otherwise, if λ, λ−1 ∈ C \ T, φ is loxodromic, possessing two fixed points. A
loxodromic Möbius transformation φ is (smoothly) conjugate to a dilation, perhaps
combined with a rotation, τ : z 7→ λ2z. In this case,

∥dτn∥∞ = supz |λ|2n
1 + |z|2

1 + |λ|4n|z|2
= max{|λ|2n, |λ|−2n}

which is not of polynomial order in n.

Example 8.10. cf. [39, §8.3.a] The group SLd(Z) acts on the torus Td by large diffeomor-
phisms. The action is realised by identifying Td with Rd/Zd and SLd(Z) acting on Rd

in the usual way that a matrix acts on a vector. For ease of exposition, equip Td with a
constant Riemannian metric g. For A ∈ SLd(Z) and the corresponding action φA on Td,
∥(dφn)x∥ = ∥A−n∥g, which generically will be exponentially divergent. However, suppose
that A ∈ SLd(Z) is a unipotent matrix, i.e. such that (A− 1)s+1 = 0 for some s ∈ N. By
Newton’s binomial series, for n ∈ Z,

An =

s∑
k=0

(
n

k

)
(A− 1)k
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and

∥(dφ−n)x∥ = ∥A−n∥g ≤
s∑

k=0

∣∣∣∣(nk
)∣∣∣∣ ∥(A− 1)k∥g ∈ O(ns).

Hence (
C∞(Td)⋊φA Z, ℓ2(Z) ⊗̃ L2(Td, S), (N ⊗̃ 1, 1 ⊗̃D)

)
is an ST2 with bounding matrix

ϵ =

(
0 0
s 0

)
s .

This Example admits the following generalisation to outer automorphisms of noncom-
mutative tori.

Example 8.11. Let Θ be a skew symmetric d-by-d real matrix. For x ∈ Zd, define an
operator lΘ(x) on ℓ2(Zd) by

(lΘ(x)ξ)(y) = eπi⟨Θx,−x+y⟩ξ(−x+ y).

The algebra C∞(Td
Θ) of smooth functions on the noncommutative torus Td

Θ is the *-algebra
spanned by lΘ(x) for all x ∈ Zd. We call the C∗-algebra envelope C(Td

Θ). When Θ = 0,
we recover C(Td). As in the classical case, integer matrices can act by automorphisms.
Following [44, §2.3], let A ∈ SLd(Z) be such that A∗ΘA = Θ. Then αA : lΘ(x) 7→ lΘ(Ax)
defines an automorphism of C(Td

Θ). (For d = 2, the condition A∗ΘA = Θ is automatically
satisfied.)

Let (vi)
d
i=1 be a basis of Rd. To simplify notation, we will also write (vi)

d
i=1 for their

images in Cld. Let S be a Clifford module for Cld and define an unbounded operator

(Dξ)(y) =

d∑
i=1

⟨ei, y⟩viξ(y)

on ℓ2(Zd, S). We obtain a spectral triple (C∞(Td
Θ), ℓ

2(Zd, S), D). We have

([D, lΘ(x)]ξ)(y) = −eπi⟨Θx,−x+y⟩
d∑

i=1

⟨ei, x⟩viξ(−x+ y)

so that

∥[D, lΘ(x)]∥ =

∥∥∥∥∥
d∑

i,j=1

⟨ei, x⟩⟨ej , x⟩vivj

∥∥∥∥∥
1
2

=

∥∥∥∥∥
d∑

i,j=1

⟨x, ei⟩⟨vi, vj⟩⟨ej , x⟩

∥∥∥∥∥
1
2

= ∥V x∥

where V : Zd → Rd is the linear map taking ei 7→ vi.
If A ∈ SLd(Z) (with A∗ΘA = Θ) is unipotent, so that (A− 1)s+1 = 0 for some s ∈ N,

then ∥An∥ ∈ O(ns) as in Example 8.10, and

∥[D,αn
A(lΘ(x))]∥ = ∥[D, lΘ(A

nx)]∥ = ∥V Anx∥ ≤ ∥V ∥∥An∥∥x∥ ∈ O(ns).

Hence (
C∞(Td

Θ)⋊αA
Z, ℓ2(Z) ⊗̃ ℓ2(Zd, S), (N ⊗̃ 1, 1 ⊗̃D)

)
is an ST2 with bounding matrix

ϵ =

(
0 0
s 0

)
s .
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8.1. Nilpotent flows on homogeneous spaces. Let G be a connected Lie group.
Right-invariant Riemannian metrics on G are in bijection with inner products on g. If
ge denotes such an inner product on g = TeG, we define the Riemannian metric g at any
other point g ∈ G by

gg(u, v) = ge((dRg−1)gu, (dRg−1)gv)

where Rg−1 is the diffeomorphism of G given by right translation by g−1 and dRg−1 is its
pushforward. If the group is noncompact, the metric so obtained will not be left invariant
[64, §7]. The norm of the Jacobian of left translation Lg by g ∈ G, at h ∈ G is

∥(dLg)h∥ = supu∈ThG

ggh((dLg)hu, (dLg)hu)

gh(u, u)

= supu∈ThG

ge((dR(gh)−1)gh(dLg)hu, (dR(gh)−1)gh(dLg)hu)

ge((dRh−1)hu, (dRh−1)hu)

= supv∈TeG=g

ge((dAdg)ev, (dAdg)ev)

ge(v, v)

= ∥(dAdg)e∥
= ∥Adg ∥ge

where we have used the identity (dRh−1)gh(dLg)h = (dLg)e(dRh−1)h resulting from the
facts that left and right actions commute and that the pushforward at e ∈ G of the adjoint
action on G is the adjoint action on g.

If H is any closed subgroup of G then G/H is a quotient manifold. A right-invariant
Riemannian metric g on G reduces to a Riemannian metric h on G/H. To construct h,
let π : G → G/H be the quotient map. Its pushforward at any point g ∈ G,

dπg : TgG → TgH(G/H),

restricts to an isomorphism between Tg(gH)⊥ = (Ker dπg)
⊥ and TgH(G/H). Define h by

hgH(u, v) = gg(dπg|−1
Tg(gH)⊥

u, dπg|−1
Tg(gH)⊥

v).

There remains a left action of G on G/H. As a crude estimate, we have

∥(dLg)hH∥ ≤ ∥(dLg)h∥ = ∥Adg ∥ge

for the Jacobian of left translation Lg.
Recall the Campbell identity

AdexpX(Y ) = exp(adX)(Y ) =

∞∑
n=0

1

n!
adnX(Y ).

An element X ∈ g is nilpotent if ads+1
X = 0 for some step size s ∈ N. In that case,

Adexp tX(Y ) =

s∑
n=0

tn

n!
adnX(Y ).

Consider the flow ϕX given by ϕX
t = Lexp tX on G/H. We have

∥dϕX
t ∥∞ ≤ ∥Adexp tX(Y )∥ge

∈ O(ts)

so that (
C∞

c (X)⋊ϕX R, L2(R) ⊗̃ L2(G/H,S), (MℓR ⊗̃ 1, 1 ⊗̃D)
)

is an ST2 with bounding matrix

ϵ =

(
0 0
s 0

)
s .

Such flows ϕX constitute an important family of parabolic dynamical systems [39, §8.3.b].
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Example 8.12. cf. [39, §8.3.3] Let Γ ⊂ SL(2,R) be a cocompact lattice. A horocycle flow
ϕX on SL(2,R)/Γ is generated by a nilpotent element X ∈ sl(2,R). Of necessity, X will
be conjugate to (

0 1
0 0

)
∈ sl(2,R)

and so will be 2-step nilpotent.

Example 8.13. cf. [39, §8.3.2] [2, §2.2] A compact nilmanifold is a quotient G/Γ of a
simply connected nilpotent Lie group G by a lattice Γ ⊂ G. The nilflow ϕX generated by
a vector field X ∈ g is the restriction of the left action of G to the one-parameter subgroup
(exp tX)t∈R. Every element of a nilpotent Lie algebra is nilpotent, with step size less than
or equal to the step size of the Lie algebra, so the above construction may be applied.

Example 8.14. Let P ⊆ SO0(n, 1) denote the standard parabolic subgroup. The homo-
geneous space SO0(n, 1)/P is Sn−1 and the Lorentz group SO0(n, 1) acts by Möbius
transformations on Sn−1. We thereby recover Example 8.9 as a special case.
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