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Abstract

This thesis presents a number of new approaches to the treatment of group actions in unbounded
Kasparov theory. Its results are motivated by the desire to incorporate into spectral noncommutative
geometry several formerly problematic examples. We extend unbounded Kasparov theory to
encompass conformal group and quantum group equivariance. We use this, along with tools from
geometric group theory, to study the geometry of group C*-algebras and Fell bundles. We prove a
nontriviality result for Kasparov modules built from group actions on CAT(0) spaces. We also study
the geometry of group extensions using the unbounded Kasparov product.

We introduce a new multiplicative perturbation theory that enables us to treat conformal actions on
both manifolds and noncommutative spaces. As examples, we present unbounded representatives of
Kasparov’s y-element for the real and complex Lorentz groups and display the conformal
SL,(2)-equivariance of the standard spectral triple of the Podles sphere. In pursuing descent for
conformally equivariant cycles, we are led to a new framework for representing Kasparov classes. Our
new representatives, conformally generated cycles, are unbounded, possess a dynamical quality, and
also include known twisted spectral triples. We define an equivalence relation on these new
representatives whose classes form an abelian group surjecting onto KK-theory.

We also develop a new framework for the treatment of parabolic features in noncommutative geometry,
in the form of the notion of tangled cycle. Tangled cycles incorporate anisotropy by replacing the
unbounded operator in a higher order cycle that mimics a Dirac operator with several unbounded

operators mimicking directional Dirac operators, allowing for varying and dependent orders in
different directions, controlled by a weighted graph. Our main examples of tangled cycles fit into two
classes: hypoelliptic spectral triples constructed from Rockland complexes on parabolic geometries and

Kasparov product spectral triples for nilpotent group C*-algebras and crossed product C*-algebras of

parabolic dynamical systems.
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Introduction

In this thesis we take as our starting point Connes’s programme for spectral noncommutative geometry
[Con94]. We focus on the unbounded picture of Kasparov’s bivariant K-theory, which we regard as the
backbone of noncommutative geometry. We resolve a number of previously outstanding conundrums
relating mainly to group actions. In pursuit of this we generalise the unbounded picture [BJ83| of Baaj
and Julg in a number of ways. An underlying motivation for the work in this thesis is the unbounded
Kasparov product [Kuc97] on which great progress has been made in approximately the past decade
by a number of authors, e.g. [Mes12, KL13, MR16, LM19, Dun22]. In particular, a starting aim of
this work was to understand the Kasparov product for badly behaved dynamical systems, a problem
arising in [BMR10]. In this we have been partially successful and we turn to it in the final section of
Chapter IV. Many of the techniques used in this thesis are applicable to the understanding of the
problem and we hope they will contribute to its broader solution.

Let G be a locally compact group acting on a C*-algebra A. A primary goal of this thesis is to
understand the noncommutative geometry of the crossed product A x G. One means of doing this
is to study the G-equivariant KK-theory of A and then to apply Kasparov’s descent map [Kas88] or
the Green—Julg or dual Green—Julg maps. In following this thread we are led to a new understanding
of group equivariance in the unbounded picture. Equivariant unbounded KK-theory was studied
by Kucerovsky in his thesis [Kuc94] in the mid-1990s but has remained largely unexplored in the
intervening years. One reason for this is that Kucerovsky’s definition, although natural, fails to capture
all the degrees of freedom available in Kasparov’s bounded picture. Perhaps the easiest illustration of
the discrepancy is the Dirac spectral triple on a Riemannian manifold, equipped with the action of a
group. If the action is isometric, the Dirac operator is invariant. If the action is a conformal one, the
Fredholm module defined by the bounded transform yields a bounded equivariant Fredholm module,
but the corresponding spectral triple fails to be equivariant in the sense of Kucerovsky. The allowance
of conformal actions is a crucial feature of Kasparov’s equivariant KK-theory; for example, it was used
by Kasparov [Kas84], Chen [Che96], and Julg and Kasparov [JK95] to study the y-element of the real
and complex Lorentz groups.

We address this puzzle in Chapter IIl with a new general framework which we refer to as conformal
equivariance. We do this by means of a novel multiplicative perturbation theory for abstract differential
operators. We also define conformal equivariance for the actions of locally compact quantum groups,
lifting the bounded picture due to Baaj and Skandalis [BS89]. This allows us to display the SL,(2)-
equivariance of the Podles sphere, lifting a construction of Nest and Voigt [NV10]. Our techniques lead
to a new class of representatives of Kasparov classes which we call conformally generated cycles. These
new representatives include known examples of twisted spectral triples. In particular, the descent
map, when applied to conformally equivariant unbounded Kasparov modules, in general produces
conformally generated cycles instead of unbounded Kasparov modules. This applies to both group and
quantum group equivariance.

For the case of a compact manifold, conformally equivalent Dirac operators have been addressed
in the context of noncommutative geometry by Bér [Bar07]. A conformal change of metric has the
effect Ip ~» k='/2]pk=/2 on the Atiyah-Singer Dirac operator. By considering principal symbols,
the bounded transform (1 + lDQ)_l/ 2 changes only by a compact operator. In §III.1, we give new
tools to identify two self-adjoint regular operators as having ‘close’ bounded transforms in much

vii
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more general circumstances. One interpretation of conformal actions and changes of metric is via
Connes and Moscovici’s twisted spectral triples [CMO08]. One of the two main examples [CMO08, §2.2]
of twisted spectral triples given by Connes and Moscovici is built from a multiplicative perturbation
D ~ kDE. The other main example [CM08, §2.3] [Mos10, §3.1] is built from a Dirac spectral triple
(Co(X), L3(X,S), D) on a Riemannian manifold X, equipped with the conformal action of a discrete
group G. One extends the algebra Cj(X) to the crossed product Cy(X) x G and

(Go(X) %G, L*(X, S), )

becomes a Lipschitz regular twisted spectral triple. In §1I1.4.1, we will interpret this as the dual
Green—Julg map of a conformally equivariant unbounded cycle and show that such examples possess
well-defined bounded transforms without recourse to the Lipschitz regularity condition of [CMO08,
Definition 3.1].

Another way of analysing the crossed product A x G is to view it as a quantum principal bundle
over the dual quantum group G. The vertical geometry of the bundle can be given as an unbounded
Kasparov A X G-A-module. A case where this is well understood is that of the group Z for which the
cross-product is a quantum circle bundle. Quantum circle bundles have been studied by a number of
authors and fitted into unbounded KK-theory in generality by Carey, Neshveyev, Nest, and Rennie
[CNNR11]. At the level of KK-theory, the vertical geometry of AXZ is given by the Pimsner—Voiculescu
extension class. For other discrete groups G there is a well-known method for constructing a vertical
geometry for A x G, originating in an idea of Connes. In [Con89], Connes builds a spectral triple for
the group C*-algebra C*(G) from the data of a length function on the group. Such a spectral triple
can be upgraded to an unbounded Kasparov module for the cross product A x G. Although it has
been studied by many authors, this construction suffers from the serious drawback that because the
length function is defined to be positive, any resulting Kasparov module will always have trivial class in
KK-theory. Further, except perhaps in the case of the Connes—Thom isomorphism, the construction has
not been generalised to non-discrete groups. These are problems we resolve in considerable generality in
Chapter II. We work with matrix-valued weights on locally compact group G. Let % be a Fell bundle
over G which is fissured, a weakening of the saturation condition, generalising the spectral subspace
assumption of [CNNRI11]|. From a weight which is self-adjoint, proper, and translation-bounded, we
obtain a vertical geometry for & in the form of an unbounded Kasparov module for the cross-sectional
C*-algebra C*(%) over the unit fibre B,.

In Chapter II we also provide a general method for constructing weights for a locally compact group
G from its action on a CAT(0) space. The weight is given by a directed length function. The CAT(0)
condition is a generalisation of non-positive curvature to geodesic metric spaces. Examples of CAT(0)
spaces include simply connected Riemannian manifolds of non-positive sectional curvature and trees,
buildings, and certain other cell complexes. The appearance of non-positive curvature in equivariant
index theory is credited to Mis¢enko [MiS74]; another early appearance is in the work of Luke [Luk77].
Kasparov made use of this idea in his construction of the dual Dirac and y-elements for an almost
connected group [Kas88, Kas95]. An analogous construction was made for groups acting on trees and
buildings by Julg and Valette [JV84, JV87, Jul89] and Kasparov and Skandalis [KS91]. We discuss the
relationship of our construction of weights to this earlier work. We prove a quite general nontriviality
result for the Kasparov modules obtained from such weights which is applicable to manifolds, trees,
and complexes.

In Chapter I we also consider the building of a weight for a group extension from weights on the
constituent groups. This is a microcosm of the problem of the unbounded Kasparov product. For
some group extensions such as the universal cover of SL(2,R), the constructive unbounded Kasparov
product works well. Generically, however, the constructive product fails. We give two examples where
this occurs, in different ways, one a family of semidirect products, the other the Heisenberg group Hs.
With some effort, for both of these the Kasparov product can be represented, using different techniques.
In the case of the Heisenberg group, we encounter a phenomenon reminiscent of sub-Riemannian
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geometry: the Kasparov product can be repaired by ‘squaring’ in one direction and thereby obtaining
a second order operator. This turns out to be an instance of a much more general phenomenon, which
we explore in Chapter IV. This order-2 spectral triple for the Heisenberg group H; plays the réle of
Chekov’s rifle in this thesis. We study its conformal properties in Example 1II.2.10, contextualise it in
Example IV.1.13, and finally generalise it to all nilpotent Lie groups in §IV.3.1.

In Chapter IV we extend noncommutative geometry to situations which have parabolic features.
We use the term parabolic to encompass both parabolic geometry of filtered manifolds [éSOQ] and
parabolic dynamical systems [HK02, Chapter 8]. The key concept introduced in Chapter IV is the
strictly tangled cycle which is a new kind of representative for KK-theory. The idea is to replace the
Dirac operator in an unbounded Kasparov module with a finite collection of mutually anticommuting
self-adjoint regular operators. This allows us to treat situations where there may be different directions
with drastically different kinds of behaviour. We replace the usual bounded (or relatively bounded)
commutator condition with a collection of conditions determined by a bounding matrix €. Providing
that the bounding matrix satisfies the decreasing cycle condition, a higher order Kasparov module
can be constructed by adding the operators according to certain powers, giving the strictly tangled
cycle a well-defined class in KK-theory. Our definition of strictly tangled cycles was motivated in
the first instance by our desire to incorporate the Rumin complex of a contact manifold into spectral
noncommutative geometry, in which we have been successful.

Our examples of strictly tangled cycles come from two main sources: from Hilbert complexes, which
include Rockland complexes on filtered manifolds and the aforementioned Rumin complex, and from
unbounded Kasparov products, including for nilpotent groups, generalising the construction for Hg
already mentioned, and for crossed products of parabolic dynamical systems.

In parabolic geometry [6809], the tangent bundle is filtered and the different tangent directions
capture different geometric features. One encodes the geometry through the structure of a graded
nilpotent Lie group on each tangent space. Analytically one can study a parabolic geometry through a
BGG complex [éSSOl, DH22| that replaces the de Rham complex. While the de Rham complex and
associated Dirac operators are well understood, and even form prototypical examples in noncommutative
geometry, BGG complexes are still not well understood analytically. The study of BGG complexes
is motivated by recent work [GH25] implying that the known natural candidates for general classes
of Heisenberg elliptic differential operators with interesting spectral noncommutative geometry have
trivial index theory. The analytic foundations for BGG complexes were developed by Dave and
Haller [DH19, DH22] building on ideas of Rumin [Rum94] on contact manifolds. At the level of
noncommutative topology, i.e. index theory, BGG complexes were recently studied by Goffeng [Gof24].
Understanding the spectral noncommutative geometry of parabolic geometries is of interest in order to
organise efficiently the differential geometric machinery into a global theory well adapted for studying
global invariants. A problem motivating such a machinery is that of finding non-trivial global invariants
of parabolic geometries. In fact, already for CR-manifolds this problem is non-trivial; see the prominent
work of Fefferman [Fef79]. For more general parabolic geometries, Haller [Hal22] has studied analytic
torsion building on the work of Rumin and Seshadri [RS12] for contact manifolds.

The unbounded Kasparov product was studied by Kucerovsky [Kuc94, Kuc97] and later phrased
constructively by Mesland [Mes12]. We give further details in §1.4. In somewhat technical terms, the
unbounded Kasparov product of an unbounded A-B-cycle (A, E; g, S) with a B-C-cycle (A, Ey 5, T')
along a connection V is the data (A, (B, ®g Es5)c, S®1+1®y T') which under favourable circumstances
form an unbounded A-C-cycle. There are functional analytic issues with S ® 1 + 1 @y T forming a
self-adjoint operator, which additionally needs to be regular in the Hilbert C*-module sense. Such
questions were addressed in [Mes12] under some technical restrictions which have since matured in the
important work of Kaad and Lesch [KL12, KL13] and Lesch and Mesland [LM19]. An issue that is
more delicate and has evaded a proper axiomatisation in unbounded KK-theory concerns the condition
of bounded commutators in the unbounded Kasparov product. There are natural examples arising
from dynamics [GRU19, GMR19] where 1 ®y T does not have bounded commutators with a dense
subspace of A. Rather 1 ® T ends up being of ‘higher order’ in contrast to S ® 1 in the sense that



b'e Introduction

commutators with 1 ®y T are relatively bounded by (1 + S§2)=1/2+1/2m for an m > 1 playing the role of
an order. This phenomenon occurs for Kasparov products arising from parabolic dynamics. An ad hoc
solution would be to inflate the spectrum of S ® 1 or dampen the spectrum of 1 ®y 7' to compensate.
The aim of Chapter IV is to widen our view on spectral noncommutative geometry to allow for varying
orders of operators and potential anisotropies to persevere as a feature rather than as a bug.

A related issue stems from the early years of noncommutative geometry, when there was optimism
that quantum groups would be particularly well suited for noncommutative geometry [Con04, KRS12,
NT10]. The Podles sphere, for example, is a quantum homogenous space with a well-studied standard
spectral triple [DS03]. We show it to be conformally equivariant in §1I1.3.1, building on the work of
Nest and Voigt [NV10]. While much progress has been made in low dimension, little is known in
higher dimension despite algebraic versions of BGG complexes [HK07] that have been studied in a
noncommutative geometry context by Wagner, Diaz-Garcia, and O’Buachalla [WDGO22] and Voigt
and Yuncken [VY15, Yunl8]. The fundamental problem lies precisely in the complications found in the
algebraic relations between the various ‘directions’ in a quantum group, a statement made precise in
the work of Krahmer, Rennie, and Senior [KRS12]. In fact, the problems arising in Krahmer, Rennie,
and Senior’s work relate to the Kasparov product, as discussed above. The methods of Chapter IV do
not directly apply since the above alluded to parabolic behaviour does not capture the wild, hyperbolic
features seen for quantum groups. We mention the connection, nevertheless, since our main definition
drew inspiration from the noncommutative geometry of quantum groups in the work of Kaad and
Kyed [KK25], and as a source for future investigations.

In a number of examples, strictly tangled cycles have a conformally equivariant behaviour. Unfortu-
nately, we have been unable to develop a satisfactory abstract formulation of conformal equivariance for
strictly tangled cycles. In particular, a refinement of the multiplicative perturbation theory of Chapter
Il would be necessary to allow for power rescaling of abstract differential operators. Nonetheless, we
give a partial result and consider conformal equivariance in a number of examples.

The technical innovation which underpins Chapter IIl is a multiplicative perturbation theory for
self-adjoint regular operators on Hilbert modules. This perturbation theory relates the bounded
transforms D(1 + D?)~'/2 and pDp*(1 + (uDp*)?)~'/2 of D and its multiplicative perturbation pDy*,
for suitable p. Together with the well-known additive perturbation theory D ~~ D 4 A for (relatively)
bounded A, Theorem 1III.1.34 says, roughly, that any perturbation preserving the KK-class of the
bounded transform takes the form pDp* + A. We introduce several concepts making use of this
multiplicative perturbation theory, among which are:

o Conformal transformations between unbounded Kasparov modules, Definition III.1.2, and a
singular version, Definition III.1.38;

e Conformal group equivariance for unbounded Kasparov modules, Definition III.2.2;
o Conformal quantum group equivariance for unbounded Kasparov modules, Definition III.3.1;

o Conformally generated cycles, Definition 4.1, providing a new picture of KK-theory, generalising
unbounded KK-theory.

Conformally generated cycles have a dynamical aspect in addition to a geometrical one. To capture
this, we use the idea of matched operators on Hilbert C*-modules, defined and studied in §A.1.2.
We show that this framework is adapted to all known examples of twisted spectral triples with well-
defined bounded transforms. Key features of our approach are the lack of a ‘twist’, in the sense of an
algebra automorphism, and a bounded transform which does not depend on any additional smoothness
condition such as Lipschitz regularity. We show in §III.4.1 that Kasparov’s descent map (and the dual
Green—Julg map) applied to group and quantum group conformally equivariant unbounded Kasparov
modules give rise to conformally generated cycles whose bounded transforms define the same classes as
the descent map (dual Green—Julg map) applied to the bounded transforms of the original modules.
A theme hovering in the background of this thesis, although not completely fulfilled, is the building
of spectral triples for dynamical systems in full generality. We do however make a significant step
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in this direction in §IV.3.2. A miniature version of this problem is presented and solved, if not in
the most elegant way, in §11.4.1. An aim for future work is to employ the machinery of conformally
generated cycles to this end.

sl e K

The building blocks of spectral noncommutative geometry are unbounded Kasparov modules, including
spectral triples. We begin Chapter I with the definition of bounded and unbounded Kasparov modules,
which latter we give in the generality of higher order Kasparov modules. In §I.1, we generalise
cobordism of bounded Kasparov modules, as defined by Cuntz and Skandalis [CS86], to unbounded
Kasparov modules. We show in Theorem 1.1.15 that cobordism classes of unbounded Kasparov modules
form a Z/2Z-graded abelian group which surjects onto the usual KK-groups. In §1.2, we outline group
equivariance in the bounded and unbounded pictures, the former due to Kasparov [Kas88] and the
latter to Kucerovsky [Kuc94]. We mildly generalise Kucerovsky’s definition to our setting, and refer to
it as uniform equivariance; see Definition 1.2.7. The terminology is to contrast with the conformal
equivariance of Chapter Ill. We show how the descent and dual Green—Julg maps work in the setting
of uniform equivariance. In §1.3 we study C*-bialgebra equivariance, following the treatment in the
bounded picture by Baaj and Skandalis [BS89]. We give a definition for uniform equivariance of
unbounded Kasparov modules which, to our knowledge, has not previously appeared in the literature
(except in the isometric case [GB16]). We again show how the descent and dual Green—Julg maps
work in the setting of uniform equivariance. In §1.4, we discuss the Kasparov product, presenting the
Connes—Skandalis conditions [CS84] for the bounded picture as well as the current state of the art
of the Kucerovsky conditions [Kuc97] for the unbounded picture. We also point out that the same
conditions suffice for the product in equivariant KK-theory.

In Chapter II, we build and analyse unbounded Kasparov modules from matrix-valued weights
on locally compact groups. In §II.1, as a preparation, we study the KK-groups K K% (A, C,(G, B)),
KKG(A X, G,B), and KK(A %, G,B) for a locally compact group G and G-C*-algebras A and
B. We review Kasparov’s Dirac and dual Dirac elements for almost connected groups as well as
Pimsner’s six-term exact sequences for groups acting on trees. We also examine KK-theoretic Frobenius
reciprocity for cocompact subgroups. Finally, we point out a contrast between almost connected groups
and groups whose identity component is compact in how KK-theory behaves under restriction to a
compact subgroup. As a consequence, the groups K K%(A x,. G, B) and KK (A x, G, B) can behave
very differently.

In §1II.2, we present our construction of spectral triples for group C*-algebras from matrix-valued
weights. After an initial study of such weights, we give an introduction to Fell bundles. For the
construction of unbounded Kasparov modules for Fell bundles, we introduce the fissuration condition,
which generalises saturation and the spectral subspace condition of [CNNR11]. We then exhibit two
constructions of Kasparov modules using these weights, related to one another by Baaj—Skandalis
duality. In Theorems II.2.24 and II1.2.25, we prove

Theorem 1. Let G be a locally compact group, V a finite-dimensional complex vector space, and
£: G — EndV a self-adjoint, proper, translation-bounded weight. Let 9B be a Fell bundle over G. If &
is fissured,

(G} (B), L*(B) ®V, M,)

is an isometrically G-equivariant unbounded Kasparov C*(RB)-B,-module. Let A be a G-C*-algebra.
Then

(Aa CO(G7 A® V)CO(G,A) ) Z)

is a uniformly G-equivariant unbounded Kasparov A-Cy(G, A)-module.

In particular, for & the group bundle, we obtain a spectral triple for C*(G). In §1I.2.4, we explain
how weights can be restricted to or induced from cocompact subgroups, partly in preparation for §II.4.
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In §II.3, we give an explicit construction of weights for CAT(0) groups. For points z and y of a
geodesic metric space X, we denote by v(x,y) € S,(X) the direction of the geodesic from x to y as it
reaches y, where S, (X) is the space of directions. In Proposition II.3.4, we prove

Theorem 2. Let G be a locally compact group acting isometrically on a CAT(0) space (X,d). Suppose
that at a point x, € X, the space of directions S, (X) is isometric to a sphere S*™1 C R™. Let V be a
Clifford module for the Clifford algebra €¢,,. Define the function £ : G — End V by

£g) =d(g* -z, mo)v(g~" - Ty, T)

where v(g~! - g, 1y) € Sy, (X) = S~ C R™ C €7, acts by Clifford multiplication on V. Then { is
self-adjoint and translation bounded. If G acts properly on X, £ is proper.

We also prove a nontriviality result for the resulting KK-classes by pairing them with a suitable
Dirac class. In Theorem II.3.7 we prove

Theorem 3. Let G be a locally compact group acting properly and isometrically on a CAT(0) space
(X,d). Let A be a G-C*-algebra. Suppose that there is a complete subspace Y of X such that

o every path component of Y is a convex subset of X (Y may have infinitely many path components.);
e Y is isometric to a spin® Riemannian n-manifold; and

e Y contains a neighbourhood of a point x, € X.

Let x; € X be a point not in 'Y but with le(X) isometric to a sphere S™™1 C R™. Let Vj, and V] be
Clifford modules for €¢, and €7, respectively, with V; irreducible. Define the weights

¢, : G — End¥ 6,:G—EndV

g d(gtag, zo)v(g 2o, o) g d(g™ -z, z)u(gTh @y, ),

representing classes o ([€,]), 0 4([¢1]) € KKE (A, Cy(G, A)) and (M, ],[M, ] € KK*G(A X, G, A).

For any closed subgroup H of G preserving Y, let ny : Co(Y, A) — A be the x-homomorphism given
by evaluating at x,, giving a class [ng] € KKy(Cy(Y,A)H, A). For A=C, [ny] € KKy(Cy(Y/H),C)
is nonzero if and only if H acts cocompactly on'Y.

If there exists a closed subgroup H of G such that H preserves Y and acts by pin® automorphisms
and [ny] is nonzero then o 4([¢,]) € KKS(C,Cy(G)) is nonzero and not equal to o 4 ([¢;]).

If G itself preserves Y, acts by spin® automorphisms, and [ng] is nonzero then ré’l([MeD]) €

KK, (Ax, G,A) is nonzero and not equal to ré’l([Mel]).

We treat several examples, including Hadamard manifolds, trees and CAT(0) cell complexes,
illustrating the scope of our result. We relate our construction to Kasparov’s dual Dirac element for
almost connected groups and to the extension classes of Pimsner’s exact sequences for groups acting
on trees.

In §II.4, we discuss the problem of generalising the above constructions to group extensions. We
prove a general result and present one setting in which the unbounded Kasparov product succeeds
immediately, the universal cover of SL(2,R). We also exhibit two cases where the naive unbounded
product fails but can nevertheless be repaired by different technical manoeuvres: the semidirect product
R™ xR and the three-dimensional Heisenberg group H;. This latter example we return to in both
Chapters IIl and IV.

We begin Chapter Il by considering conformal transformations between (higher order) unbounded
Kasparov modules in §III.1. The motivation for such a framework is conformal changes of metric of
Riemannian manifolds and the noncommutative torus, of which we give some details in §II1.1.1. In the
simplest instance for unbounded Kasparov modules (A, E, D;) and (A, E’, D,), these transformations
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are a pair (U, p) with U : E — E’ unitary and g a bounded invertible endomorphism (which is even if
the module is graded) such that, for all a in a dense subset of A,

U*D,Ua — apD, p* (1)

is bounded. The Leibniz rule shows that those a for which (1) is bounded naturally form a (not
norm-closed) ternary ring of operators, rather than a *-algebra. The implicit presence of ternary rings
of operators will be a feature of many of our definitions. For the technical results in §1I[.1.3, we require
that the ‘conformal factor’ i be a bounded and invertible operator, although it need not have a globally
bounded derivative. We prove the following as Theorem III.1.4.

Theorem 4. Let (U, p) be a conformal transformation from the order-= cycle (A, Ep, Dy) to the
order-r— cycle (A, E;, D,). Then the bounded transforms (A, Eg, Fp) and (A, Eg, Fp) are unitarily
equivalent up to locally compact perturbation via the unitary U; that is

(U*Fp,U — Fp, )a € End’ (E)
for alla € A. Hence (A, Eg, Fp )| = [(A, ER, Fp,)] € KK (A, B).

On a noncompact manifold, this is not sufficient to describe all conformal changes of metric. One
technical issue which arises is that a complete Riemannian manifold, such as the hyperbolic plane,
may be conformally equivalent to an incomplete manifold, such as the unit disc, and therefore the
self-adjointness of a Dirac operator may not be preserved. With this caveat, we give in §II1.1.5 a
framework modelled abstractly on the idea of an open cover extending the idea in (1).

We also show in §1I1.1.4 that the logarithmic transform D — Ly = Fp,log((1 + D?)'/?), due to
Goffeng, Mesland, and Rennie [GMR19], turns multiplicative perturbations into additive ones. In
Theorem III.1.37 we prove

Theorem 5. Let (U, p) be a conformal transformation from the order-= cycle (A, Ep, Dy) to the
order-t= cycle (A, E}g, D,). Then the logarithmic transforms (A, Eg,Lp ) and (A,Ep,Lp ) are
related by the unitary U, up to locally bounded perturbation; in particular, A is contained in the closure
of the set of a € End*(FE) such that

(U'Lp,U —Lp )a [Lp,,a]
1s bounded.

We then, in §1I1.2 extend the uniform group equivariance of §1.2 to encompass conformal actions,
based on the idea of conformal transformation in (1). This is necessary to include the full range of
equivariance encoded for bounded Kasparov modules, as indicated by the results of Bar [Bar07] and
explained using the example of the ax + b group acting on IRR. In Theorem III.2.4 we prove

Theorem 6. The bounded transform of a conformally equivariant higher order Kasparov module is an
equivariant bounded Kasparov module.

The logarithmic transform again changes multiplicative perturbations coming from conformal
actions to additive perturbations. In Theorem II[.2.11 we prove

Theorem 7. The logarithmic transform of a conformally equivariant higher order Kasparov module is
a uniformly equivariant unbounded Kasparov module.

These results allow us to represent the y-elements of Kasparov and Chen for the Lorentz groups
and of Julg and Kasparov for the complex Lorentz groups, in §I1.2.1. We also give a genuinely
noncommutative example, the second order spectral triple for the C*-algebra of the Heisenberg group,
mentioned earlier, is equivariant for the dilation action.

In §II1.3 we define conformal quantum group equivariance for unbounded Kasparov modules. The
main example to which we apply this framework is the action of SLq(Q) on the Podle$ sphere. In
Theorems II.3.3 and II[.3.5 we prove
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Theorem 8. The bounded transform of a conformally quantum group equivariant unbounded Kasparov
module is a quantum group equivariant bounded Kasparov module.

Theorem 9. The logarithmic transform of a conformally quantum group equivariant unbounded
Kasparov module is a uniformly quantum group equivariant unbounded Kasparov module.

All of the generalisations we have considered so far are brought together in §II.4 wherein we
introduce conformally generated cycles. These unbounded representatives of Kasparov classes are
general enough to include known examples of twisted spectral triples, as we outline at the beginning
of §1I1.4, as well as the result of applying descent and dual Green—Julg maps to group and quantum
group conformally equivariant Kasparov modules as we see in §1I1.4.1, generalising the constructions
for uniform equivariance given in §1.2.2, in the group case, and §1.3.2, in the quantum group case.

Finally, in §1II.4.2, we show that cobordism extends to an equivalence relation on conformally
generated cycles, and the cobordism classes of such cycles form an abelian group which surjects onto
the usual KK-group. As a special case, we define conformism of unbounded Kasparov modules, using
the framework of cobordism to turn the conformal transformations of §III.1 and singular conformal
transformations of §III.1.5 into an equivalence relation. We show also that conformism classes of
unbounded Kasparov modules are an abelian group which surjects onto the usual KK-group.

In Chapter IV, we generalise the unbounded picture of KK-theory in a different direction. We
extend the notion of a higher order Kasparov module to that of a strictly tangled cycle in Definition
IV.1.7 where the Dirac operator is replaced with a finite collection D = (D;) < of self-adjoint operators
which satisfies an analogue of a mild ellipticity condition and an anticommutation relation. Our
generalisation of spectral triples we refer to as strictly tangled spectral triples or ST2s, and we focus
mainly on this case. The adjective strictly is to indicate that we assume the elements in the collection
to anticommute. We expect our results to hold under more general assumptions, e.g. when the
anticommutators are relatively small (see Remarks IV.1.9 and IV.1.19), but to reduce the technical
burden in Chapter IV we focus on the simpler case, which already enables the treatment of a number
of interesting examples. As mentioned above, a similar idea has appeared in the work of Kaad and
Kyed [KK20, KK25]. The these works respectively describe the metric geometry of crossed products
by Z and of SU,(2). Our main results are the following.

Theorem 10. Let (A, H, D) be an ST® with D = (D;),c; the finite collection of self-adjoint operators
and bounding matriz € € M;([0,00)). Consider the non-empty set

Q(e) :== {t = (t;) € (0,00)" : ;5t; < t; Vi,j}.

For t € Q(e), we define the operator
. n
D, := sgn(D;)|D,|".
=1

Ift € Q(e) N (0,1]", the triple (A, H,D,) defines a higher order spectral triple. If additionally the ST?
is (00) jc j-preserving, then the same holds for any t € Q(e).

The reader can find Theorem 10 as Theorem IV.1.16 below. We provide a number of examples of
ST?2s throughout Chapter IV and study the role of the transform (A, H, D) — (A, H, D,). In §IV.1.1,
we give a flavour of our main examples, the Rumin complex on the Heisenberg group, and two ‘bad
Kasparov products’ involving the group C*-algebra of the Heisenberg group and a dynamical system on
the torus. These examples are revisited in further detail and generality in §§1V.2.4, IV.3.1, and IV.3.2.
We then proceed to study the finer analytical properties of ST?s, for instance finite summability and
equivariance properties. A number of interesting examples carry conformal actions. In the absence of
a well-behaved general framework, we discuss a ‘guess-and-check’ method for conformal equivariance
of ST? in §IV.1.4, which we later see in play in §§IV.2, IV.2.4, and IV.3.1.
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Strictly tangled spectral triples also arise from Hilbert complexes [BL92]. We study ST?s arising
from Hilbert complexes in some detail in §IV.2, where the main example is that of Rockland complexes
on filtered manifolds. Describing the noncommutative geometry of filtered manifolds is a non-trivial
problem [Has14]. Of particular interest is to associate higher order spectral triples possessing further
properties with Rockland complexes. By choosing ¢ in Theorem 10 appropriately we can produce higher
order spectral triples from Rockland complexes either that are H-elliptic elements in the Heisenberg
calculus or that are differential operators. We summarize the results of §IV.2 in a Theorem.

Theorem 11. Consider a compact filtered manifold X equipped with a volume density and hermitian vec-
tor bundles E; — X, j=0,...,n. Assume that (C*(X; E,),d,) is a Rockland compler with all differen-
tials being differential operators. Then there is an associated ST* (C>(X), L*(X; ®,E;), D = (d;+d3);)
as in Theorem IV.2.17. Moreover, for any T > 0, D assembles into an H-elliptic pseudodifferential
operator D_ on @j E; of order 7, defining a higher order spectral triple (C>° (X), L*(X; GBjEj),ET).

In fact, the reader can find a version of Theorem 11 stated with conformally equivariant actions
as Proposition IV.2.25 below. To be somewhat more precise, assume that G is a locally compact
group acting as filtered automorphisms on X and that (C*°(X; E,),d,) is Rockland and G-equivariant
with the action of G on each FE; being conformal (with respect to the volume density on X and the
hermitian structure on E;). In Proposition IV.2.25 below we show that if the conformal factors in
the different degrees are multiplicatively dependent (with respect to powers from €2(€)) then we can
assemble the associated ST? (C*°(X), L*(X;@;E;), D) into a conformally equivariant higher order
spectral triple.

A sobering observation is that, in practice, Rockland complexes equivariant for semisimple Lie
groups of rank > 1 will not have a scalar conformal factor for the action on each degree in the complex.
Our framework cannot be applicable to semisimple Lie groups G of rank > 1. Indeed, by Theorem
II[.2.12, Proposition 1IV.2.25 would give a G-equivariant finitely summable bounded Fredholm module,
which is impossible for a Lie group of rank > 1, as shown by Puschnigg [Pusll]. The obstructions in
higher rank are discussed in further detail in Remarks II[.2.12 and 1V.2.27.

Let us also mention another natural example of an ST? built from the dual Dirac element of a
nilpotent group. If G is a simply connected nilpotent Lie group, the image of the dual Dirac element
under the descent map KK (C,Cy(G)) — KK, (C*(G), C) produces a K-homology class on the group
C*-algebra. We discuss in §IV.3.1 how computing this element explicitly at the unbounded level
produces an ST2?. We summarize the result as follows.

Theorem 12. Let G be a simply connected nilpotent Lie group of depth s and H be a cocompact, closed
subgroup (possibly G itself). Choose a Malcev basis ((e; k)zmigj/g’“ )i—1 of g through the lower central

series g = @,02 = [0, 0], ..., 05 Let E be an irreducible Clifford module for €¢y;y, 4, whose generators

we label ((v;, k):m{g )i—1- Then the collection (£;);_; : G — Endg(FE) of matriz-valued weights given by

s dimg;/g;q dimg;/g,.1
FeXPy Z Z Tikeik | Z T,k V4,k

k=1
gives rise to a strictly tangled spectral triple
(C*(H)a L2(H’ E)’ (Mén)fm=1)

with nontrivial class in KKy, ,(C*(H),C) and bounding matriz €;; = max{i — j,0}. Moreover,
the dual Dirac element of a cocompact closed subgroup of a nilpotent Lie group can be realized the
Baaj-Skandalis dual of a strictly tangled spectral triple of the form above.

If the group G is Carnot, it is possible to obtain a higher order spectral triple for C*(G) which is
conformally equivariant under the dilation action.
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In §1V.3.2, we show that parabolic dynamical systems [HK02, Chapter 8] give rise to crossed product
ST?s, generalising the constructions of [CMRV08, BMR10, HSWZ13, Pat14] for elliptic dynamical
systems. The following result appears as Corollary IV.3.18.

Theorem 13. Let (C*°(X), L3(X,S), D) be the Atiyah-Singer or Hodge—de Rham Dirac spectral triple
on a complete Riemannian manifold (X,g). Let ¢ be an action of a locally compact group G by
diffeomorphisms on X. Let £ : G — End E be a self-adjoint, proper, translation-bounded weight where
FE is some finite-dimensional vector space. Suppose that ¢ is parabolic in the sense that for some s > 0,
the matriz inequality

ldeylloe < C(1+ [€(9)I°)
holds for some constant C > 0. Then

(C®(X)xG,L*(G,E)®L*X,S),(M,®1,1® D)
is a strictly tangled spectral triple representing the Kasparov product of
(C=(X) % G, I2(G, B) & Co(X) gy xs Mo © 1)
and (C*(X), L*(X,S), D).

For group equivariance, we require certain identifications of Hilbert modules over locally compact
Hausdorff spaces and their operators, which we cover in §A.1.1, based on the approach of Kucerovsky
[Kuc94]. For conformal quantum group equivariance and conformally generated cycles, we use the
ideas of matched operators and compactly supported states. These generalise the multipliers of the
Pedersen ideal of a C*-algebra and their positive continuous dual. Given a C*-algebra C acting on
the right of a Hilbert B-module via a nondegenerate *-homomorphism C' — M (B), the C-matched
operators on F are a subset of the regular operators which form a x-algebra (in fact, a pro-C*-algebra),
as we show in §A.1.2. In §A.1.3, we characterise compactly supported states [Har23] on a C*-algebra
in terms of the Pedersen ideal and show that they are weak-*-dense in all states.

For the multiplicative perturbation theory of §III.1.3, we require certain bounds and domain
relationships involving fractional powers of positive regular operators on Hilbert modules. Although
these are well known in the Hilbert space case, we provide a complete proof in the Hilbert module
case in §A.3. In order to obtain a higher order cycle from a strictly tangled cycle, we require an
understanding of how power scaling a self-adjoint regular operator affects commutators with it; in
§A.3.1, we provide a general result, formalised in terms of the idea of a nearly convex set. In §A.3.2,
we give a form condition for relatively bounded commutators on Hilbert C*-modules, generalising the
well-known characterisation [BR87, Proposition 3.2.55] in the Hilbert space case.

In §A .4, we show how the holomorphic and continuous functional calculi interact with higher order
Kasparov modules.

Conventions

The Clifford algebras €7,, are complex Z /2Z-graded algebras, whose generators are self-adjoint and
square to 1.
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In this Chapter, we set the technical stage for this thesis. We include a combination of existing and
new results; most of these latter are mild generalisations of known results.

In 1957, Grothendieck proved an extensive generalisation of the Riemann—Roch theorem and, in
doing so, invented K-theory. He constructed an abelian group K (X) to count the locally free sheaves
on an algebraic variety X. In 1959, Atiyah and Hirzebruch [AH59, AH61] began the study of topological
K-theory, defining K°(X) to count the vector bundles on a compact Hausdorff space X. Generalising
topological K-theory, the K-theory of unital C*-algebras counts finitely generated projective modules,
informed by Serre-Swan duality [Swa62]. The search for a dual theory, K-homology, began with
Atiyah’s introduction in 1969 of the Fredholm module, defined below, which gives an abstract definition
of an elliptic operator [Ati69]. In the early 1970s, Brown, Douglas, and Fillmore [BDF73| encountered
the odd K-homology of certain spaces by classifying extensions of C*-algebras. In the succeeding
years, Kasparov [Kas75| took both threads and wove them into the modern theory of K-homology. A
standard reference on K-homology is [HR00].

KK-theory was introduced into the world by Kasparov in 1980, with the publication of [Kas81] and
the distribution of the Conspectus (later published as [Kas95]). KK-theory is bivariant, taking as inputs
two C*-algebras, and including K-theory and K-homology as special cases. A standard reference on
KK-theory is [Bla98]. Unbounded KK-theory, although in some sense implicit in Kasparov’s bounded
KK-theory, was formally introduced by Baaj and Julg in 1983 [BJ83]. Recently, a number of technical
refinements of the formalism of unbounded KK-theory have been made [DM20, Kaa20]. Connes and
Moscovici [CM95] introduced the term spectral triple, to refer to unbounded cycles for K-homology,
with the view to encapsulating other geometrical information, such as a metric or measure structure or
even a physics. A recent survey on unbounded KK-theory is [Mes24].

1



2 Chapter I. Pictures of KK-theory: what is known and a little more

For us, Kasparov cycles and their generalisations will be over ungraded C-algebras. When we
consider Kasparov classes, we will often write K K generically for classes of even or odd cycles, and
unless mentioned all C*-algebras will be trivially graded. We refer to Appendix A for our conventions
for Hilbert C*-modules; we write End’(E) to refer to the compact operators on a Hilbert module E.

Definition I.0.1. [Kas81, Definition 4.1] [Kas88, Definition 2.2] A bounded Kasparov A-B-module
consists of an A-B-correspondence E and a bounded operator F on E such that, for all a € A, the

operators
(F*— F)a (1—F%)a [F, al

are compact. If E is a Z/2Z-graded A-B-correspondence (that is, with A acting by even operators),
we require that F' be an odd operator and call (A, Ez, F') an even bounded Kasparov module. If FE is
ungraded, (A, Eg, F) is odd. If B = C, so that F is a Hilbert space, (4, E, F) is a Fredholm module.

We will mostly work in the generality of higher order unbounded Kasparov modules, due to Wahl
[Wah07]. We refer to [Wor91, Lan95] for the theory of regular operators on Hilbert C*-modules.
Throughout we use the notations (D) = (1 + D?)'/2 and F, = D(D)™!' = D(1 + D?)~/2 for a
self-adjoint regular operator D on a Hilbert module.

Definition 1.0.2. cf. [GM15, Definition A.1] Let D be a self-adjoint regular operator on a right Hilbert
B-module E. For 0 < a <1, let

Lip? (D) C Endp(E)
be the subspace consisting of elements a € Endz(E) for which adom D C dom D and [D, a](D)™®
and (D)~*[D, a] extend to bounded adjointable operators. By [GM15, Proposition A.5], Lip} (D) is a
x-algebra.

It is shown in §A.4.1 that Lipz (D) is a Banach #-algebra under an appropriate norm and is closed
under the holomorphic functional calculus, but we do not use this here. We will also weaken our
definition of unbounded cycles along the lines of [DM20, Definition 1.1] since morphisms between cycles
may not naturally preserve a given smooth subalgebra.

Definition 1.0.3. cf. [Wah07, Definition 2.4] [GM15, Definition A.2] [DM20, Definition 1.1] Let
0<a<l An order—ﬁ A-B-cycle consists of an A-B-correspondence E and a regular operator D on
E such that:

1. D is self-adjoint;
2. (1+ D?)"'a is compact for all a € A; and

3. A is contained in the operator norm closure of Lip’ (D).

If Eis a Z/2Z-graded A-B-correspondence (that is, with A acting by even operators), we require that
D be an odd operator and call (A, Eg, D) an even cycle. If E is ungraded, (A, Eg, D) is odd.

If we have a dense subalgebra & of A which is contained in Lip‘; (D), we will call the cycle an
order—ﬁ o-B-cycle. If a = 0 then we refer to order-1 cycles as unbounded Kasparov modules, and if
B = C, so that F is a Hilbert space, we call these cycles spectral triples.

Example 1.0.4. [GM15, Remark A.0.3] Let X be a complete Riemannian manifold and V a vector
bundle over X. If D is a self-adjoint elliptic pseudodifferential operator of order m > 0 acting on
sections of Vthen (Cy(X), L%(X,V), D) is an order-m spectral triple.

The generalisation to ‘higher order operators’ does not interfere with the main topological result
for unbounded Kasparov modules. The main tool in the proof is the integral formulaf

(1+ D?)~ = M/ A (A +1+ D?)ld), (1.0.5)
0

s

tReferred to by some as the ‘magic integral formula’



norm-convergent for 0 < R(a) < 1. Its use in noncommutative geometry is due to Baaj and Julg
[BJ83]; for more details we refer to [CP98, Lemma A.4]. We quote the following refinement of Baaj
and Julg’s bounded transform result which follows easily from the results of [Wah07, §2.1], [Grel2, §7],
[GM15, Appendix A].

Theorem 1.0.6. Let D be a self-adjoint reqular operator on a right Hilbert B-module E. Let S be an
adjointable operator such that Sdom D C dom D and [D, S](D)~“ extends to a bounded operator for
some 0 < a<1. Then

[Fp, SD)”

is bounded for B < 1 — «, with a bound Ca+5H[D, S](D)’O‘H where C,, 53 > 0 depends only on o+ .
Corollary 1.0.7. cf. [Wah07, Definition 2.4] [GM15, Theorem A.6] [DM20, Proposition 1.7] Let

(A,Eg, D) be an order -1~ A-B-cycle. Then the bounded transform D s Fy, := D(1 + D?)71/2 gives
a bounded Kasparov module (A, Eg, F},) of the same parity.

We will also make occasional reference to the summability of Fredholm modules and spectral triples,
confining ourselves to the case of unital C*-algebras. For this, we use the Schatten ideals

LP(H) = {T € K(H) | Tr(|T|") < oo}

with exponent p > 0 for a Hilbert space H. For any p > 0, £P(H) is a symmetrically quasinormed
ideal in the bounded operators and, for p > 1, it is a symmetrically normed ideal.

Definition 1.0.8. If A is unital, we say that a Fredholm module (A4, H, F') is p-summable if
F*—F,F? -1 £P?(H) and [F,a] € £P(H)

for @ in a dense *-subalgebra of of A.
If of is unital, we say that a higher order spectral triple (of, H, D) is p-summable if (1 + D?)~/2 ¢
LP(H).

Proposition 1.0.9. [FGM25, Theorem 2.2] cf. [SWW98, Proposition 1] With o unital, let (o, H, D)
be a p-summable order m spectral triple. Writing A for the C*-algebra closure of o, the Fredholm
module (A, H, Fy,) is mp-summable over o .

In the context of the above Proposition, g-summability of the Fredholm module for ¢ > mp follows
immediately from Theorem 1.0.6; to take ¢ = mp requires the careful use of an operator inequality.

Remark 1.0.10. In this thesis, we have chosen to work only with ungraded C*-algebras. We therefore
work with even and odd Kasparov modules, about which a small remark is in order. Let A and
B be ungraded C*-algebras. By definition [Kas88, §2.22], KK, (A,B) = KK,(A, B ® €¢,), where
€¢, is treated as a graded C*-algebra. The following is well known; variations can be found in
[Con94, Proposition IV.A.13(b)] and [HR00, (8.1.10)]. A more sophisticated discussion could involve
multigradings [HROO, Definition 8.1.11, §A.3].

If (A, Ep, F) is an odd bounded Kasparov module, we can build a bounded Kasparov A-B ® €7¢;-

module
F
(A, (E @ E)pger, (F ) )

where B ® €, acts on the right of E @ E by
b ¢
(€ n)ren)=(¢ n) |, ,|=(E@+ne &ctnp)  (En€Eb+en € BRE), (10.11)

and the grading on FE @ E is given by (1 _1); cf. [HROO, (8.1.10)].
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This process is completely reversible. Given a bounded Kasparov module (A, Eé@)%}l,F "), the
action of 7, € ¢, on the right of E’ identifies the even and odd parts of E’. Writing, therefore,
E'=E®Efor E=E'® = E"°Y, we write (4, Epgg, , F') as

(A, (E® E)pgge, (U V) ),

where the action of B ® €¢; on the right of E @ E is given by (1.0.11). The off-diagonal form of the

operator is a consequence of the requirement that F’ is odd. Since F’ must also be linear in the action

of €¢,, we must have U = V. We thus obtain an odd bounded Kasparov A-B-module (A4, Eg,U).
The same discussion applies equally to odd unbounded cycles.

I.1 Equivalence relations for KK-theory

Let A and B be C*-algebras. A homotopy between two bounded Kasparov A-B-modules is a Kas-
parov A-C(]0, 1], B)-module whose evaluations at 0,1 € [0, 1] recover them [Kas81, Definition 4.2.2].
Homotopy is an equivalence relation and compatible with direct sums. The homotopy classes of
bounded Kasparov A-B-modules, together with the direct sum, form a Z /2Z-graded abelian group
KK,(A,B) = KK,(A,B) ® KK, (A, B), contravariant in A and covariant in B [Kas81, Theorem
4.1, Definition 4.4]. Another relation on bounded Kasparov modules is operator homotopy [Kas81,
Definition 4.2.2]. If the C*-algebra A is separable, then operator homotopy, together with the addition
of degenerate modules, is equivalent to homotopy. The details of homotopy for unbounded Kasparov
modules have only recently been worked out [DM20, Kaa20]. It turns that out that, provided that A is
separable, one can indeed obtain K K, (A, B) from homotopy classes of unbounded Kasparov modules.

On the other hand, the strongest reasonable equivalence relation in the bounded picture of
KK-theory (apart from unitary equivalence) is locally compact perturbation. If (4,FEg, F) is a
bounded Kasparov module and T € End*(E) is such that Ta,aT € End’(E) for all a € A, then
(A, Eg, F + T) will still be a bounded Kasparov module. The only condition which is not immediate
is that ((F +T)? — 1)a € End®(E), demonstrated by the computation

(F+T)2—1)a=(F?-1)a+ (F+T)Ta+TFa= (F?—1)a+ (F+T)Ta+T[F,a] + TaF.

It is perhaps unclear, in the unbounded picture of KK-theory, what should stand in for equivalence up
to locally compact perturbation. The most immediate relation that suggests itself is equivalence up
to bounded perturbation. If (A, E5, D) is an unbounded Kasparov module and T'= T* € End*(E),
then (A, Eg,D + T) will still be an unbounded Kasparov module. The local compactness of the
resolvent takes a little work, see e.g. [CP98, Lemma B.6]. One can similarly consider locally bounded
perturbations, at least in the presence of an adequate approximate unit [Dunl8, §4].

By applying Theorem 1.0.6, we can study additive perturbations of higher order cycles in the
following sense; cf. [CP98, Lemmas B.6-7].

Proposition I.1.1. Let D, and D, be self-adjoint reqular operators on right Hilbert B-modules E, and
E,. Suppose that there is an operator a € Homiz(E,, E;) such that adom Dy C dom D; and

(Dya — aDy)(Dy) ™
extends to an adjointable operator for some 0 < a < 1. Then, fixing f <1 — q,
(Fpla - aFDO)<D0>B

1s bounded.
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_ (Do _ 0
_ 0 dom Dy |
Sdom D = (adomDO) = (dole) = domD

B 0
[D, S](D) =<(D1a—aDo)<D0>_a )

Proof. Consider the operators

on Ey ® E;. Then

and

By Theorem 1.0.6,

[P, SH(D)” = ((FDla — aFp,)(Dy)” 0)

is bounded for 8 < 1 — «, as required. O

Corollary 1.1.2. Let D, and D, be self-adjoint reqular operators on a right Hilbert B-module E
with densely intersecting domains. Suppose that there is a bounded operator a such that a dom D, C
dom Dy Ndom D; and

(Dy — Dy)a{Dy) ™ [Dy, al(Dg) ™

extend to bounded operators for some 0 < o < 1. Then, fizing f <1 — a,
(FD1 - FDO)G<D0>B

is bounded.
Proof. We have

(Dya — aDy)(Dy)™* = (Dy — Dy)a(Dy)™* + [Dy, al(Dy) ™
and

(Fp,a— aFDO)<Do>ﬁ = (Fp, — FDO)G<D0>’B + [Fp, al (Dp)”.
By Theorem 1.0.6, [Fp, , a] (D,)? is bounded, so (Fp, — FDO)LL(DO>ﬁ is also, as required. O

In [CS86, §3], cobordism is introduced as another equivalence relation on bounded Kasparov

modules; slightly weakening locally compact perturbation. (We remark that the similarly named

equivalence relation of bordism of unbounded Kasparov modules [Hil10, DGM18] is unrelated and will
not appear in this thesis.) First, we require a small Lemma.

Lemma 1.1.3. [CS86, §3] If (A, Eg, F) is a bounded Kasparov module and p € End*(E) is an even
projection commuting with the representation of A such that [F,pla is compact for all a € A, then
(A, pEg,pFp) is a Kasparov module.

Definition I.1.4. [CS86, Definition 3.1] Two bounded Kasparov modules (A, Ey, F}) and (A, Ep, F)
of the same parity are cobordant if there exists a Kasparov module (A, Eg, F) of that parity and an
partial isometry v € End*(E) (even if the parity is even), such that

« v commutes with (the representation of) A;

e [F,v]a is compact for all a € A;
(A, (1 —w*)Eg, (1 —vv*)F(1 —vv*)) is unitarily equivalent to (A, Eg, F}); and
(A, (1 —v*v)Eg, (1 —v*v)F(1 —v*v)) is unitarily equivalent to (A4, Ej, F).
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We call (A, Eg, F;v) a cobordism.

It turns out that cobordism is an equivalence relation, and is compatible with direct sums [CS86,
Lemma 3.3]. Even though apparently much stronger than homotopy, cobordism gives rise to the same
KK-groups, provided A is separable [CS86, Theorem 3.7]. (Our definition differs slightly from that of
[CS86, Definition 3.1], in that we deal only with trivially graded C*-algebras and work with odd as
well as even Kasparov modules. By Remark 1.0.10, it is straighforward to check that [CS86, Lemma
3.6, Theorem 3.7] are still valid.)

Example I.1.5. Suppose that two bounded Kasparov modules (A, Ej, F}) and (A, E%, F;) of the
same parity are unitarily equivalent, up to a locally compact perturbation, that is, there exists a

unitary U : Ey — E} (even if the parity is even), intertwining the representations of A, such that
(U*FEU — F,)a € End®(E) for all a € A. Then

(A,(E’GBE”)By (Fl F2>> v= (U 0)

constitute a cobordism between the two modules.

Lemma I.1.6. If two bounded Kasparov modules (A, E; g, F}) and (A, Ey g, F;) are cobordant, there
exists a cobordism (A, Eg, F;v) such that vv*, v*v, and F mutually commute.

Proof. Let (A, Eg, F’;v") be any cobordism between (A, E; 5, F;) and (A, E, g, F). Let w; : By —
(1—vv*)E" and w, : By — (1 —v"™*v")E’ be the unitaries of the cobordism. Then

(A,E,®E' ®@E,,F, ® F' & Fy;w; +v +w,)
is a cobordism between (4, E; z, F}) and (A, Ey g, F;). We have
(Wi +v" +wy)* (W) + v +wy)) =001 1 (wy + 0" +wy) (W +v +wy)* =101 0.
We can check that

[ & F' @ B, wi +v +wyla= (Fwj + F' (v +w,) — (wj +v')F' —wyF)a

([F',v'] + Fw} + F'wy, —wiF' —w,F) a
([F/, 0]+ wiF' (1 —0'v*) 4+ F'wy — wiF' — (1 —v*v)F'w,) a
([F', 0] —wi F'v'v* + 00 Flwy) a

= [F’,v']a — wi[F’,v"]av™* — v"*[F’, v ]awy

is compact for all a € A, as required. d

I.1.1 Cobordism of higher order cycles and positive degeneracy
We shall make a natural generalisation of cobordism to unbounded cycles but, first, a Lemma.

Lemma I.1.7. Let (A, Eg, D) be an order-— cycle and p € End*(E) a projection (even if the cycle
is of even parity) such that p commutes with A and D. Then (A,pEg,pDp) is an ordeT—ﬁ cycle and,

furthermore, F,p,, = pFpp on pE.

A similar result to Lemma 1.1.7 would follow from weaker assumptions than that p and D commute
but we do without.

Definition I.1.8. Two order-12— cycles (A, Ej, D;) and (A, E}, D,) of the same parity are cobordant
if there exist an order-r=— cycle (4, E, D) of that parity and a partial isometry v € End*(E) (even if
the parity is even), such that
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v commutes with (the representation of) A, and vv* and v*v commute with D;
vA C Lip? (D);

(A, (1 —vw*)Eg, (1 —vv*)D(1 — vv*)) is unitarily equivalent to (A, E%, D;); and
(A, (1 —v*v)Eg, (1 —v*v)D(1 — v*v)) is unitarily equivalent to (A, E%, D,).

For a dense *-subalgebra o C A, (¢, Eg, D;v) is a cobordism between (o, E, D, ) and (&, Eg, D,) if
v'ud C @.

At the cost of further technicalities, we could proceed with weaker assumptions than that D
commute with vv* and v*v. However, by a similar argument to Lemma 1.1.6, this would not be worth
the cost.

Proposition 1.1.9. ¢f. [CS86, Lemma 3.3] Cobordism of higher order cycles is an equivalence relation
and is compatible with direct sums.

Proof. For reflexivity, we take v = 0 € End*(F) to see that (A, Ez, D) is cobordant to itself.

For symmetry, note that v*A = (vA)* C Lip’ (D) so that making the substitution of v* for v
reverses the roles of (A, E%, D) and (A, E%, D,).

For transitivity, suppose that (A4, E, D;v) is a cobordism between the cycles (A, E; g, D;) and
(A, Ey g, D,), and that (A, E}, D’;v’) is a cobordism between (A, Ey 5, D,) and (A, E5 g, Ds). Let
U:(1—v'v)E — Eyand U’ : (1 —v'v"™*)E — E, be the unitary equivalences between the cycles

(A, (1 —v*v)Eg, (1 —v*v)D(1 —v*v)) (A, (1 —=2v"v*)Eg, (1 —vv™*)D' (1 —v'v™))
and the cycle (A, Ey g, D,), respectively. Then
(AJ(E®E ), D®D;v+U"U + )
is a cobordism between (4, E; 5, D;) and (A, E3 g, D;). We have
(w+U*U +v) v+ U*U+v ) = d 1 (w+U*U+v) v+ U*U +0') =1 v™*v.

Furthermore,
LipZ(D) &) Lip;(D/) C Lip’;(D e D),

so that (v +v")A C Lip’ (D@ D’). Because D commutes with (1 —v*v) and D’ commutes with
(1—=2"v™), D'U™U =U"D,U =U"*UD on E @ E’. Hence

U’ Lip’ (D,)U C Lip’ (D & D’)

and so U"UA = U AU C U"*Lip, (D,)U C Lip} (D @ D’) as required.
Finally, it is straightforward to check that direct sums of cobordisms are cobordisms of direct sums
in an obvious way. O

Example 1.1.10. Let (A, E%, D;) and (A, E%, D,) be two order—ﬁ cycles of the same parity. Suppose
that there exists a unitary U : E; — E% (even if the parity is even), intertwining the representations
of A, such that A is contained in the closure of the set of a € End*(E") for which Ua dom D; C dom D,
and

(U*D,Ua — aD,){D,)™® U(Dy) U (U*D,Ua — aDy)

extend to adjointable operators on E’. Then

(A, (E"® E")p, (Dl D2)) v= (U 0)

constitute a cobordism between the two cycles.
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Proposition I.1.11. Given two cobordant order-ﬁ cycles (A, Eg, D;) and (A, Eg, D,), their bounded
transforms (A, E, Fp ) and (A,E%, Fp,) are cobordant and so they define the same element in
KK, (A, B).

Proof. Let (A, Eg,D;v) be a cobordism between (A, E%, D;) and (A, E%,D,). By Lemma I1.1.7,
(A, Eg, Fp;v) is a bounded cobordism between (4, £, Fpp, ) and (A, ER, Fp ). O

A natural question to ask is whether one can identify unbounded cycles cobordant to the zero
module. In [DM20, §3—4]|, several notions of degenerate module are surveyed and shown to be homotopic
to zero. Instead of making a similar survey, we shall make the following definition, in the safety of
the knowledge that it contains as special cases the spectrally degenerate cycles of [DM20, Definition
3.5], the spectrally symmetric cycles of [DM20, Definition 4.6] (which, in turn, include the spectrally
decomposable cycles of [Kaa20, Definition 4.1]), the Clifford symmetric cycles of [DM20, Definition
4.13], and the weakly degenerate cycles of [DGM18, Definition 3.1].

Definition 1.1.12. An order—ﬁ cycle (A, Eg, D) is positively degenerate if there exists a self-adjoint
unitary s € End*(E) (odd if the cycle is of even parity), preserving the domain of D, such that

o As operators on dom D, Ds + sD > —¢(D)* for some constant ¢ > 0 and

e AC P, where P is the set of a € Lip? (D) such that [s,a] = 0.
Proposition 1.1.13. A positively degenerate order—ﬁ cycle (A, Eg, D) is cobordant to (A,0p,0).

Proof. Let s € End*(F) be a symmetry implementing the degeneracy. Let N be the number operator
and S the unilateral shift on ¢2(N,). Then (4, Ep ® ¢*(N5(),D® 1+ s ® N) is an order-— cycle.
The main point to check is the local compactness of the resolvent, for which we compute

(D®1+s®N)??>?=D*®1+1®N?>+(Ds+sD)QN>D?®1+1Q® N> —c(D)*® N.
Fix € € (0,1). The function f: R? — R given by
filay) o e@@® +y?) —c(l+2%)y
has a global minimum. Hence, for large enough A > 0,
A+ (DR®1+s®N)2>(1—6)(D?*®1+1® N?)

and so
aA+1+(D®1+s5®KkN)?)™1

is compact. The constructed order—ﬁ cycle, together with the isometry 1®.S, implements the required
cobordism. Using the relation NS = S(N + 1), we check that

DR1+s®N,(1® S)a] =s®[N,Sla=s® Sa
is bounded for a € A. O

We can now show that higher order cycles, subject to the equivalence relation of cobordism, form a
group under direct sum.

Corollary 1.1.14. Given an order-r— cycle (A, Eg, D),

(A,Eg, D) ® (A, ESY —D) = (A, (E® E)©°P))p, (D _D>) )

where E°P) is E with the opposite grading if E is graded, is cobordant to (A,0g,0).



1.2. Group-equivariant KK-theory 9

Proof. The symmetry s = (1 1) makes the direct sum cycle positively degenerate. O
Combining Propositions 1.1.9, 1.1.11 and Corollary I.1.14 proves

Theorem I.1.15. Let 0 < a < 1. Cobordism classes of order-ﬁ A-B-cycles form a Z/27.-graded
abelian group which surjects onto KK,(A, B). Further, cobordism classes of higher order A-B-cycles
(without a constraint on their order) form a Z/2Z-graded abelian group which surjects onto KK, (A, B).

For the final statement, we note than any order—ﬁ cycle can be considered to be an order—ﬁ
cycle for a < 8 < 1. It is presumably the case that cobordism of higher order cycles is strictly stronger
than homotopy. It is possible that the addition of the functional dampening of [DM20] could make
cobordism equivalent to homotopy. This remains a matter for future investigation.

I.2 Group-equivariant KK-theory

In this section we begin by recalling the definitions of equivariant KK-theory and the descent map, due
to Kasparov [Kas88]. The first attempt to generalise equivariance to unbounded KK-theory is [JV87,
§1], for the case of KKY(C,C). The first detailed treatment is by Kucerovsky [Kuc94, §8], which we
mildly generalise in §1.2.1 to apply to the higher order case and allow for local boundedness in the
definition. We refer to §A.1.1 for some technical preliminaries about Hilbert C*-modules over locally
compact Hausdorff spaces, mostly following [Kuc94, Appendix A].

The case of compact groups is much easier to handle in both the bounded and unbounded settings.
This is because, given the action of a compact group on a Kasparov module, one can integrate using
the Haar measure to produce a module for which the operator is actually invariant under the action of
the group. This fact has led to the definition of unbounded equivariant KK-theory in the case of a
compact group as unbounded Kasparov modules with group actions for which the operator is invariant
under the action. Alas, this does not represent the full range of geometrical situations available under
equivariant KK-theory.

The following definition introduces notation for tracking the action of operators implementing
equivariance. Throughout this section, G is a locally compact group.

Definition I.2.1. Let E be a right Hilbert B-module and 7 € Aut B. We define End3"(E) to be the
set of C-linear maps T : £ — E for which there exists a map 7™ : E — E such that

(T(@) [y)p =7z | T"(y)) p)-

These maps are not B-linear; however they satisfy T'(xb) = T'(z)7(b) since

(T(zb) | y)p = 7({xb | T*(y)) g) = 7(b")7((z | T*(y)) p) = T(b")(T'(z) | y) g = (T(x)7(b) | ¥) -

This gives an identification of End%"(F) with Hom;(E, E ®, B), where E ®,. B is the internal tensor
product of E with _B. The adjoint T* € EndBF1 (E), since

(T*(z) ly)p = W | T* (@) =7 (T(W) | 2)5) = 7' (& | T(v))p)-

The composition of S € End;’(E) and T € Endy"(E) is ST € End3””"(E). In particular, if 7 = o~}
then ST is an adjointable operator.

Definition 1.2.2. e.g. [Kas88, §1.2] Let 5 : G — Aut B be an action of a group G on a C*-algebra B.
A G-equivariant Hilbert B-module E is a Hilbert B-module equipped with a continuous C-linear map
U:G x E — FE such that

U = UgUn  Uy(ab) = Uy(2)B,(0)  B,((z | y)p) = (Uy(2) | Uy(y)) 5



10 Chapter I. Pictures of KK-theory: what is known and a little more

for g,h € G, z,y € E, and b € B. We may equivalently say that U, € End*B’Bg (E) with the conditions

Up=UU, Up=U'=U;

g

for all g,h € G.

Definition I.2.3. Let o : G — Aut A be an action of a group G on a C*-algebra A. An A-B-
correspondence F is G-equivariant if it is a G-equivariant Hilbert B-module and

U,(az) = ay(a)U,(z)

forallge G,a € A and z € E.

Definition I.2.4. [Kas88, Definition 2.2] cf. [Kuc94, Definition 8.5, Remark] A bounded Kasparov
A-B-module (A, Eg, F) is G-equivariant if E is a G-equivariant A-B-correspondence and, for all a € A,
the map g = (U,FU; — F)a is norm-continuous from G into End’(E).

Remark 1.2.5. cf. [Kuc94, Definition 8.5, Remark| By Lemma A.1.8, the norm continuity of the map
g (UgF U, —F )a into EndO(E) is equivalent to the condition that, when restricted to any compact
subset K C G, the function g = (U, FU; — F)a is in End’(C(K, E)).

We also record the following Definition.

Definition I.2.6. cf. [Pusll, Definition 2.7]. If A is a unital C*-algebra, we say that (A, H, F) is
a p-summable G-equivariant Fredholm module if (A, H, F) is a Fredholm module, p-summable and
G-equivariant, and U FU; — F € LP(H) for all g € G .

I.2.1 Uniform group equivariance

Again, throughout this section, G is a locally compact group. The following definition mildly generalises
that of Kucerovsky, in that we allow for higher order Kasparov modules and for the equivariance to be
checked locally in the algebra.

Definition 1.2.7. cf. [Kuc94, Definition 8.7] Let (A, Ep, D) be an order-— A-B-cycle with E a
G-equivariant A-B-correspondence. We say that (A, Eg, D) is uniformly G-equivariant if A is contained
in the closure of @, the set of a € End"(E) such that adom D C U,dom D for all g € G and the maps

g+ (U,DUsa — aD)(D)~ g = Uy D)=2Us(U,DUja — aD)

are *-strongly continuous as maps from G into Endg(E). If U,DU; = D for all g € G, we say that
the cycle is isometrically equivariant. If & is a dense x-subalgebra of A contained in @, we say that
(¢,Eg, D) is a uniformly G-equivariant order-1~ &/-B-cycle.

An example where the extra freedom in our definition, as compared to [Kuc94, Definition 8.7], is
needed is given in Proposition 1I.4.1.
Remarks 1.2.8.

1. We remark that @ C Lip;(D) by considering the conditions at g = e, the identity of the group.
Indeed, @ is a right ideal of Lip’ (D).

2. By Lemma A.1.12, the conditions on a € @ are equivalent to the condition that adom D C
U,dom D and, when restricted to any compact subset K C G, the functions

g+ (U,DUsa — aD){D)~ g+ UD)~>U;(U,DU;a — aD)

be in End*(C(K, E)).
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3. When a = 0, the conditions on a € @ are equivalent to requiring that [D,a] extend to an
adjointable operator and

g+ (U,DU; — D)a

be *-strongly continuous as a map from G into bounded operators. The higher order generalisation
allows for higher order differential operators on manifolds, for example.

To prove that the bounded transform is well-defined, we use the results of §A.1.1, based on the
approach of Kucerovsky [Kuc94, Chapter 8, Appendix AJ; see also [AK23, Appendix A].

Theorem 1.2.9. [Kuc94, Proposition 8.11] Let (A, Ep, D) be a uniformly G-equivariant order-—
cycle. Then (A, Eg, Fp) is a G-equivariant bounded Kasparov module.

Proof. The only difference from the non-equivariant case is the need to show that, for every a € A,
g+ (Fp — U, FpU;)a is norm-continuous as a map from G into End’(E).

Fix b € @, where @ is as in Definition 1.2.7. By definition, the map f : g = (U,DU;b — bD){D)~*
is *-strongly continuous as a map from G into End*(E). By Lemma A.1.12, this is equivalent to f|x
residing in End*(C(K, E)) for every compact subset K C G.

Fix a compact subset K C G and let E = C(K, E). Define D to be the self-adjoint regular operator
on E given by D at each point of K. Similarly, let b € End*(E) be given by b at each point of K. Let
U denote the C-linear map from E to itself given by (U¢)(g) = U,&(g). Then

(UDU*b — bD)(D)~

is bounded. Applying Proposition I.1.1, the operator (Fy;pp. — F' '5)b(D)? is bounded for all § < 1 — a.
By the functional calculus, Fy;p. = UFpU”. Fixing an element ¢ € A, let ¢ denote the operator on E
given by ¢ € End*(E) at every point of K. Since (D) #c € End’(E),

(D)=8¢ € C(K,End’(E)) = End’(E).

Hence

(UFpU* — Fp)bé = (Fypy- — Fp)b(D)?(D)~Fé

is in End’(E) = End°(C(K, E)).

Define the map f’ : g = (Fp — U, FpU;)be from G into bounded operators on E. By Lemma A.1.8,
the norm-continuity of f’ is equivalent to the condition that f’|; be in End’(C(K, E)) for every
compact subset K C G. By the inclusion of A C GA, we are done. O

Remark 1.2.10. Let A be a unital C*-algebra and o/ a dense unital x-subalgebra of A. Let (o, H, D)
be a uniformly G-equivariant p-summable order m spectral triple. Because (U, FpUy — Fp)(1 + D?)B/2
is bounded for 8 < m™!, the G-equivariant Fredholm module (A, H, F},) is g-summable over & for any
q > mp (see Definition 1.2.6).

1.2.2 Descent and the dual Green—Julg map

An important feature of equivariant KK-theory is Kasparov’s descent map
j¢ : KK%(A,B) - KK(Ax, G,Bx,G)

for either topology t € {u,r}, universal or reduced [Kas88, Theorem 3.11]. There can be other, exotic,
topologies t for which there is a descent map [BEW15, §6] but we will not pursue this.
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Definition 1.2.11. [Kas88, Definition 3.8|, [Bla98, Definition 20.6.1] Let E be a G-equivariant A-B-
correspondence. The algebra C,(G, B) acts on the right of C_(G, E) by

- /G EWBL(f(h1g)du(h) (€ € GG, B), f € C(G, B))
where 3 is the action of G on B. We define a right C.(G, B)-valued inner product on C,(G, E) by
(€ln) 6,9 / B (E(W)n(hg)) p)du(h) (6 € CL(G. B)).
The algebra C,(G, A) acts on the left of C.(G, E) b
- /G F(WUERg)du(h)  (f € CL(G, A),€ € C,(G, E))

where U is the representation of G on E. For t € {u,r}, we denote by E x, G the A x, G-B x, G-
correspondence obtained by completing C,(G, E) in the C,(G, B)-valued inner product. We may also
realise £/ X, G as the internal tensor product E ® 5 (B X, G), but the left action of Ax, G is difficult to
see in this picture.

Proposition 1.2.12. [Kas88, Theorem 3.11] Let (A Eg, F) be a G-equivariant bounded Kasparov
module. Then, for t € {u,r}, (Ax; G, (E %, G)py a F) is a bounded Kasparov module, where F is the

operator given on ¢ € C.(G,E) C Ex, G by (F¢)(g) = F(&(g)).
If G is a compact group and acts trivially on A there is the Green—Julg isomorphism
O, : KK%(A,B) - KK(A,BxG);

see [Bla98, 20.2.7(b)]. On the other hand, when G acts trivially on B, there is the dual Green—Julg
map

V¢ : KK%(A,B) - KK(Ax, G, B)
which is an isomorphism when G is discrete [Bla98, 20.2.7(b)]. The existence of ¥ is proved in the
next proposition, and then we present the isomorphism for discrete groups. The universal crossed
product is needed because it is universal for covariant representations.

Proposition 1.2.13. Let (A, Eg, F) be a G-equivariant bounded Kasparov module, with G acting
trivially on B. Then (Ax, G, Eg, F) is a bounded Kasparov module, with the integrated representation
of Ax, G.

Proof. With « the action of G on A, 7 the representation of A on E, and U the representation of G on
E, the pair (m,U) is a covariant representation of the C*-dynamical system (A, G, a). We obtain by
[EKQRO6, §A.2] the integrated representation 7 x U of A x,, G on E, and it is here that the universal
crossed product is needed. We will consider the dense subalgebra C,(G, A) C A %, G. For an element
feC.(G,A),

(F* — F)(xx U)(f) = /G (F* — F)n(f(9))U,dp(g).

Because f is compactly supported and the integrand norm continuous, the integral converges. The
integrand being valued in compact operators, the result is also compact. In the same way,

(F> —1)(r % U)(f) = /G (F? — V)(£(9))U,dps(g)

and

[F, (% U)(/)] = /

G
are compact. By the density of C,(G, A) C A x,, G we are done. O

[, 7(f(9))Ugldu(g) = /G ([P, = (f(9)U, + m(f(9))(F — U,FU;)U, ) dpu(g)
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Proposition 1.2.14. Let (A X, G, Eg, F) be a bounded Kasparov module, with G a discrete group
and A X, G represented nondegenerately on E. Then (A, Eg, F') is a G-equivariant bounded Kasparov
module, with the group action given by (U,),eq € Cy(G) € M(A %, G), acting trivially on B.

Proof. Because G is discrete, A is included in A X, G. Hence,
(F*— F)a (F?2 —1)a [F, al

are compact for all a € A. Inside M (A x,, G) are unitary elements (U, ) . representing G, such that
aU, € Ax, G foralla € Aand g € G. Then

(F=U,FU;)a=[F,U,Uja = [F,a] — [F,Uja] = [F,a] + [F, aU,]*
is compact, as required. O
Before we define the descent map for uniformly equivariant cycles, let us introduce some notation.

Definition 1.2.15. Let & be a dense x-subalgebra of a C*-algebra A. Let a be an action of a locally
compact group G on A which preserves &. If G is discrete, we write & x G for the algebraic crossed
product, which is dense in A X, G. For a non-discrete group, we will generalise this by defining
A G C Ax, G as the (dense) x-subalgebra generated by & and C,(G) under the canonical inclusions
d CACM(Ax,G)and C,(G) CC*(G) C M(Ax, G).

Proposition 1.2.16. Let (A, Eg, D) be a uniformly G-equivariant order—ﬁ cycle. Then for either
topology t € {u,r}, (Ax, G, (E %, G)py,c, D) is an order-- cycle, where D is the regular operator
given on § € C,(G, E) C E >, G by (D§)(g) = D(£(9))-

If, for a dense x-subalgebra of C A, (o,Eg,D) is a uniformly G-equivariant order—ﬁ cycle,
('Q{ X Ga (E Xy G)thGv D) '

Proof. We have, for f € C.(G,A) and ¢ € C,(G, E)
(14 D)7 £9)(9) = [ (14 D) S0V g)duh).
G

As f is compactly supported and the integrand continuous, the integral converges. Observe that
(14 D?*)~'f is an element of C,(G,End®(E)), given by g = (1 + D?)~'f(g). By [Kas88, Proof of
Theorem 3.11], C.(G,End’(E)) C End’(E x, G), so (14 D?)~! f is compact.

Next, note that the closure of @C,(G) includes A x, G. Let a € @, f € C.(G), and ¢ €
span(C,(G)dom D) C C,(G,dom D). Then we find that

([D,af)(D [D, aU, (D)~ f(R)&(h ™" g)du(h)

0=,
[ (Da—a, DU (D) U U, F)E( g)dih).
G

As fis compactly supported and the integrand is continuous, the integral converges. Observe that the
closure of [D,af](D)™® is an element of C.(G,End*(E),_,) given by

g+ f(g9)(Da—aU,DUs)U, (D) *Us.

As C,(G,End*(E),_,) C End"(E %, G) (see [Rae88, Lemma 7]) [D,af fI{D)~* is bounded. Similarly,
(D)=*[D, af] is bounded. Hence for b € of x G, [D,b](D)~® and (D)~*[D, b] are bounded, proving the
second statement. O

For uniformly equivariant cycles, we have a dual Green—Julg map for the universal crossed product.
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Proposition 1.2.17. Let (A, Eg, D) be a uniformly G-equivariant order-ﬁ cycle, with G acting
trivially on B. Then (A, G,Eg, D) is an order—ﬁ cycle, with the integrated representation of
Ax, G.

If, for a dense x-subalgebra o C A, (A, Eg, D) is a uniformly G-equivariant order—ﬁ cycle, with
G acting trivially on B, (4 X G, Eg, D) is an order-ﬁ cycle.

Proof. With « the action of G on A, 7 the representation of A on E, and U the representation of G on
E, the pair (m,U) is a covariant representation of the C*-dynamical system (A, G, a) and we obtain
the integrated representation m x U of A x,, G on E. For an element f € C,(G, A),

(1+ D) (xx U)(f) = /G (1+ D?)'n(f(9))U,dulg).

As f is compactly supported and the integrand norm-continuous, the integral converges, and as the
integrand is valued in compact operators, the integral is also compact. As in the proof of Proposition
1.2.16, we note that the closure of QC,(G) includes Ax, G. Let a € @, f € C.(G), and £ € dom D;
then

D, (x % U)(af)|(D)-“¢ = / 1(9)[D, 7(@)U, (D)~ €du(g)

G
f(9)(Dr(a) — w(a)U,DU;)Uy (D)~ *Edp(g)-

N

As fis compactly supported and the integrand is continuous, the integral converges. By Corollary
A1.10, [D, (mxU)(af)](D)~* extends to an adjointable operator, as does (D)~*[D, (m xU)(af)]. O

In order to display the inverse of the dual Green-Julg map for discrete groups, a dense subalgebra
o of A is required.

Proposition 1.2.18. Let (o x G, Eg, D) be an order—ﬁ cycle, with G a discrete group and the
representation of o X G on E nondegenerate. Then (o, Eg, D) is a uniformly G-equivariant order-ﬁ

cycle, with group action given by (U,),cc € Ci(G) € M(A X, G), acting trivially on B.

Proof. Because G is discrete, of is included in & x G. Hence, (1 + D?)"'a is compact and [D, a] is
bounded for all a € &. Inside M(A X, G) are unitary elements (U,),c representing G, such that
aU, € 4 X G forall a € o and g € G. Then

U,DUza —aD = U,[D,U; ]
so that (U,DU;a —aD)(D)~“ and (D)~*U; (U,DUya — aD) are bounded, as required. O

Remark 1.2.19. It is immediate that the bounded transform (A x, G, (E X, G) gy ¢, Fp = F) of the

descent (A X, G, (E %, G) gy, ¢ D) of a uniformly G-equivariant cycle (A, Eg, D) is exactly the descent
of the bounded transform (A, Eg, F},). The same is true for the dual Green—Julg map.

I.3 Quantum group—equivariant KK-theory
Quantum group—equivariant KK-theory, in the bounded picture, is due to Baaj and Skandalis [BS89].

A detailed account can be found in [Ver02]. We first recall the notions of a C*-bialgebra and a locally
compact quantum group.
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Definition I.3.1. e.g. [Tim08, Definitions 4.1.1,3] A C*-bialgebra is a C*-algebra S equipped with a
comultiplication map, a coassociative, nondegenerate *-homomorphism A : S — M (S ® S) such that
A(S)(S®1) and (1 ® S)A(S) are contained in S ® S. A C*-bialgebra S is simplifiable if

span(A(S)(S®1)) = S® S =span((1 ® S)A(S)).

A von Neumann bialgebra is a von Neumann algebra M with a comultiplication map, a coassociative,
unital, normal *-homomorphism A : M — M ® M, the von Neumann tensor product.

Commutative C*-bialgebras are in duality with certain locally compact semigroups; see [Val85, §3]
for precise statements.

Definition I.3.2. e.g. [Tim08, Chapter 8] A locally compact quantum group G is given by the equivalent
data of either:

o A simplifiable C*-bialgebra Cj(G) with left- and right-invariant, KMS, faithful weights; or

e A von Neumann bialgebra L*°(G) with left- and right-invariant, normal, semifinite, faithful
weights.

For the precise meaning of the adjectives on the weights, see e.g. [Tim08, §8.1.1-2], but we will not use
these details. From such data, one obtains:

o The Hilbert space L?(G), on which L>(G) and CJ(G) are represented, obtained by the GNS
construction from the left Haar weight (of either algebra);

o The universal function algebra C§'(G), which surjects onto CJ (G);
e The dual locally compact quantum group G, for which LQ((G) ~ L2(G), and the C*-algebras

A A

CHG) := C§(G) and C}(G) := C(G);

o The multiplicative unitary W € M(C§(G) ® C5 (G)) C B(L*(G) ® L?(@)) satisfying the equation
Wyo W3 Was = Was Wy, and, for a € CJ(G), A(a) = W*(1® a)W on L?(G) ® L?(G); and

A Banach algebra L'(G) := L>°(@),, the predual of L>(G).

We next recall the details of C*-bialgebra-coactions on C*-algebras and Hilbert modules.

Definition I.3.3. [EKQRO06, Definitions 1.39, A.3] Let B and C be C*-algebras. The C-multiplier
algebra of B® C'is

My(B®C)={meMB®C)|m1®C)U(1®C)me B&C}.
If F is a Hilbert B-module, the C-multiplier module of E ® Cgg( is the Hilbert M(B ® C)-module
Mo(E®C) = {m € Hompgo(B® C,E® C)|m(1®C)U(1® C)m € E® C}.

Definition 1.3.4. [BS89, §2], [Ver02, §3.1] A coaction of a C*-bialgebra S on a C*-algebra B is a
coassociative nondegenerate *-homomorphism éz : B - M¢(B ® S). A coaction of S on a Hilbert
B-module F is a coassociative C-linear map 05 : E — Mg(E ® S) such that

s 05(£)dp(b) = dp(£b) and (05(E) | 5E(77)>MS(B®S) =0g((§ [ m)p) for all §,n € E and b € B; and
e Jp(E)(B®S)isdensein E® S.

Let £ ®;, (B ® S) be the internal tensor product of Hilbert modules where the left action of B on
B ® S is given by dp. For an element £ € E, denote by T; € Hompgs(B® S, E ®; (B ® S)) the map
b® s E®;, (b®s). A unitary Vg € Hompes(E ®; (B® S), E® S) is admissible if

o VT, € Mg(E® S) for all £ € E; and
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o (Ve ®c 1)(Vg ®s,8id,1) = (Vg ®iq,ea l) € Hompgges(E ®52(BR® S®S), E® S ®S), where
0% = (05 ®idg)dp = (idp ® Ag)dp.

The data of a coaction on E is equivalent to the data of an admissible unitary Vg, by the identity
VT = 6p(&) for § € E.

If A is a C*-algebra with an S-coaction é 4, an A-B-correspondence F is S-equivariant if it possesses
a Hilbert B-module coaction §5 such that

64(a)dp(8) = dp(af)
for all a € A and £ € E. In terms of the admissible unitary, this is equivalent to Vgz(a ® 1)Vg = d4(a).

Definition I.3.5. cf. [Pod95, Definition 1.4(b)], [BSV03, §5.2] Let S be a C*-bialgebra. An S-
coaction 0z on a C*-algebra B satisfies the Podles condition (sometimes called simply continuity) if
span(dz(B)(1®S)) = B® S. An S-coaction ¢y on a Hilbert B-module E then automatically satisfies

SPaT(0(E)(1 ® S)) = Span(6 ()3, (B)(1® S)) = span(dx(E)(B® S)) = E® S

and Vg(E ®; (1®S)) is dense in E® S.

Definition I.3.6. An action of a locally compact quantum group G on a C*-algebra B is a CJ(G)-
coaction on B satisfying the Podle$ condition. A G-action on a Hilbert B-module E is a Cj (G)-coaction
on E.

In the above Definition, the reduced C*-algebra is used following [Ver02] and [NV10, §4]. One
could perhaps define the action of a quantum group G as a Cj'(G)-coaction instead, as is done in
[EKQRO06], although it is unclear what the consequences of this would be, particularly for the descent
map.

Definition 1.3.7. [BS89, Définition 3.1] cf. [NV10, §4] Let A and B be C*-algebras equipped with
coactions of a C*-bialgebra S. A bounded Kasparov A-B-module (A, Eg, F') is S-equivariant if E is
an S-equivariant A-B-correspondence and for all a € A and s € S

(Vo(F &5, )V — F @ 1)a®s

is compact. If A and B are C*-algebras with G-actions, a bounded Kasparov module (A, Eg, F) is
G-equivariant if it is CJ (G)-equivariant.

1.3.1 Uniform quantum group equivariance

We make the following definition in the unbounded setting. To our knowledge, except in the case of
the isometric coaction of a compact quantum group (see e.g. [GB16, Definition 2.3.1]), such a definiton
has not appeared in the published literature (but see [Gof09, Definition 3.3.1}).

Definition 1.3.8. Let A and B be C*-algebras equipped with coactions of a C*-bialgebra S. Fix
0 <a < 1. Fora € Lip, (D) let &, be the set of s € S such that a ® sdom(D® 1) C Vydom(D ®;, 1)
and
(Va(D®s, )Vi(a®s) — (a®s)(D®1))(D®1)™
and Vig(D ®5, 1)~V (Va(D ®; 1)Vi(a®s) — (a®s)(D®1))

extend to adjointable operators on E®S. An order—ﬁ A-B-cycle (A, Eg, D) is uniformly S-equivariant
if Eis an S-equivariant A-B-correspondence and A is contained in the closure of

@ ={a € Lip(D)|S, =S} .
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If V(D ®5Bl)V§ = D ® 1, we say that the cycle is isometrically equivariant.

If A and B are C*-algebras with G-actions, a cycle (A, Eg, D) is uniformly G-equivariant if it is
uniformly CJ(G)-equivariant.

If of is a dense x-subalgebra of A such that o C @, we say that (¢, Eg, D) is S-equivariant (or
G-equivariant, as the case may be).

Remark 1.3.9. The dense subset &, C S need not be the same for different a € @. For many locally
compact quantum groups, there may be a natural choice, fixed for all a. For a discrete quantum group
G, i.e. when Cy(G) is isomorphic as an algebra to the C*-algebraic direct sum

@ Mnx ((C)

AEA

of finite-dimensional matrix algebras, &, would contain all elements of the algebraic direct sum. In
this case, the admissible unitary would be labelled by the index set A € A, so that

Vi € Homp(E ®5 (B C™), EQ® C™)
and the equivariance condition becomes that

(VE)'\(D ®551)VE)'\*(0’ ® ]'n)\) - ((Z ® ]'n)\)(D ® 1n>\))<D ® ]'n)\)ia
and VE>\<D ®5Bl>_aVE)\* (VE)\(D ®5B]‘)VE>\*<G ® 1n>\) - (a’ ® 1nA)(D ® 1n/\))
be bounded for all A € A. (Note that there need not be any bound uniform in A € A.) For the dual G

of a group G, we suspect it always makes sense to assume that &, contains the right ideal C*(G)*° of
smooth elements [WN92, §§2-3], as in Example 1.3.11.

Theorem 1.3.10. A uniformly S-equivariant order-ﬁ cycle (A, Eg, D) gives rise to an S-equivariant
bounded Kasparov module (A, Eg, Fp).

Proof. The only difference from the non-equivariant case is the need to show that, for every a € A and
s€S, (Fp®1—Vg(Fp®;,1)Vi)a® s is compact. Let b € @ and s € S, so that

(Ve(D®; )W —D®1)(b®s)(D®1)°
extends to an adjointable operator. By Corollary 1.1.2,
(Ve(Fp ®;, 1)Vs —Fp®1)(b®s)(D)’ ® 1
is bounded for all § < 1 — a. With ¢ € A,
(Ve(Fp ®5, )V — Fp @ )b ® s = (Vi (Fp ®;, 1)V — Fp @ 1)(b® 5)((D)’ ® 1)(D) Pe® 1
is compact and, by the density of &, C S and the inclusion of A C @A, we are done. O

Example 1.3.11. Let G be a connected Lie group with a left-invariant Riemannian metric g, such as
the affine group R X IR of the real line as the real hyperbolic plane. The left-invariant Riemannian
metric on G is exactly determined by the inner product g, on the tangent space 7,G = g at the
identity e € G. The left-invariant differential operators and differential forms on G can be identified
with U(g) and A*(g), respectively. The Clifford algebra €#(g) acts on the left of A*(g). The Hodge-de
Rham Dirac operator d + 0 on (G, g) can be written as

dimg
i=1
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where X, € g CU(g) and v, € g C €¢(g). We have an isometrically G-equivariant spectral triple

Elements of U(g) act as affiliated operators on C(G); see [WN92, §§2-3]. By abuse of notation, we
also write d + 6 € U(g) ® €7 (g) for the corresponding regular operator on (G (G) ® A*(8))cs (). By
Baaj—Skandalis duality [BS89, §6], it is reasonable to expect that

(C,(CHG) @ A(9)) ey, d +9)

is a uniformly G-equivariant C-C*(G)-unbounded Kasparov module. To see that it is, first consider
the coaction on the module (C;(G) ® A*(9))cs()- The admissible unitary is a map from

(CH(G) @ A*(9)) s, o, (CF(G) ® G (G)) = CF(G) ® A(9) ® G (G)
to
(CHG) ® A*(9)) ®¢ G (G) = G (G) ® A*(g) ® 7 (G).

Under these identifications,
Tyt CH(G) ® CH(G) = CHG) ®A(9) @ CHG)  y® 21 2y @Y @y

Ty @Yz =06z ®Y) =V, =V(z ) Q@Y QxH))

so Vs just the identity in Ende. ) (G (G) ® A*(g) ® C(G)). Because X; € g, in the universal
enveloping algebra U(g), AX, = X, ®1+1Q® X, and

(d+0) ®50 0 1= D (X ®7) ®a,, 1=) (X;©7,01+18070X,).

7 1

Therefore,
V((d+9) ®senic) V= (d+96)®1=107 1 X,.

For (C, (C(G) ® A*(9))cx()» d + ) to be G (G)-equivariant, we require a dense subalgebra of C'(G)
in the common domain of the derivations g. There is in fact such a subalgebra, the right ideal C*(G)>
of smooth elements for the G-action on C(G) by unitary multipliers [WN92, §§2-3].

1.3.2 Descent and the dual Green—Julg map

Crossed products are not defined in the generality of Hopf C*-algebra—coactions. One needs a well-
defined notion of duality and, for that, we restrict to locally compact quantum groups. (It is possible
to work in the greater generality of a weak Kac system [Ver02, §2.2], but we forgo this in the interests
of readability.)

We use the symbol ¥ for the flip map on a tensor product. Recall the multiplicative unitary
W e M(CH(G) ® Cr(G)) € B(L*(G) ® L*(G)) of a locally compact quantum group G.

Definition 1.3.12. [Tim08, Definition 7.3.1] cf. [BS93, Proposition 3.2, Définition 3.3] A locally
compact quantum group G is regular if

span{(w ® 1)(WE) | w € BLA(G)),} = K(L*(G)).

Equivalently, G is regular if the reduced crossed product Cj(G) %, G = K(L?(G)); see Definition 1.3.14
below.
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For example, every locally compact group G and its dual G are regular.
In the following proof, one might expect

(A®1)U(1® B)C A® B

to hold automatically for a unitary U € M (A ® B) but this is not the case, as [LPRS87, Remark after
Lemma 1.2] shows.

Lemma 1.3.13. Let E be a Hilbert B-module with a G action, G acting trivially on B. Then C;(G) is
represented on E. Conversely, if G is a reqular quantum group, a (nondegenerate) representation of
Cx(G) on a Hilbert B-module gives rise to a G action on E which is trivial on B.

Proof. Let E be a Hilbert B-module with a G action, G acting trivially on B. The fundamental unitary
Vj is then an element of End*(E ® CJ(G)) and can be thought of as an element of End*(E ® L?(G))
by the left regular representation of CJ(G). By [Kus01, Proposition 5.2], there is a nondegenerate
representation of C;;(G) on E.

On the other hand, suppose that C;(G) is represented nondegenerately by 7 on a Hilbert B-module
E. Let V € M(CJ(G) ® C*(G)) be the unitary of [Kus01, Proposition 4.2]. By [Kus01, Corollary 4.3],
we obtain an element X = (7 ® id)(£VX) € End*(E ® S) such that (1® A)(X) = X;,X,3. The only
thing stopping X from being the admissible unitary of an action of G on E (with trivial action on B)
is the possible failure of (1 ® CJ(G))X(E ® 1) to be contained in E ® CJ(G). If we assume G to be
regular, by [BS93, Proposition A.3(d)],

span(1 ® (g (G)) X (m(C(G)) ® 1) = n(C3(G)) ® G5 (G)
and therefore
(1 G (G)X(E®l) =1 (G)X(r(C;(G)E®1) C E®C(G),
as required. O

It is unclear if the converse statement of Lemma 1.3.13 is true without the assumption of regularity.

Definition I.3.14. cf. [Ver02, Définitions 4.2, 5.1, Lemmes 4.1, 5.2] Let A be a C*-algebra with a
G-action. The reduced crossed product A X, G is given by

SPAT(0,(A) (1 ® CF(G))) € M(A® K(L2(G))).

There is also a universal crossed product A x,, G; for a definition we refer to [Vae05, §2.3]. For our
purposes, the following details will suffice. Let  E be a G-equivariant A-B-correspondence, with G
acting trivially on B. There is an integrated representation of A %, G on E whose image is

span(r(A)C;(G)) C End’(E).

If G is regular, the algebra A x,, G is universal for such integrated representations; if G is not regular
A x,, G is universal for a slightly larger class of representations; see [Ver02, Définition 4.2] and [Vae05,
§2.3]. There is a canonical surjection A x, G — A x, G.

Let E be a right Hilbert B-module with an action of G. For either topology ¢ € {u,r}, the crossed
product Hilbert module E x, G is given by the internal tensor product E @5 (B %, G). By [Ver02,
Lemme 5.2], End%(E) %, G is naturally identified with End%xtG(E X, G).

In the locally compact quantum group setting, there is a descent map

% KK%A,B) - KK(Ax, G,Bx, G)
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for either topology t € {u,r}, universal or reduced, generalising Kasparov’s descent map for classical
groups. If G is the dual of a classical group, descent is due to Baaj and Skandalis [BS89, Théoréme
6.19], and in general due to Vergnioux [Ver02, Proposition 5.3]. In the locally compact quantum group
setting, a refinement of the reduced descent is possible, to a map

J¢: KK®(A,B) - KK®(Ax, G,Bx, G)

whose composition with the forgetful functor KK ¢ KK is §8. If G is regular, CJ(G) %, G =
K(L*(@)) = C*(G)x, G and the maps J€ and J¢ are mutually inverse isomorphisms [BS93, Remarque
7.7(b)]. We refer to these isomorphisms as Baaj-Skandalis duality.

Proposition 1.3.15. [Ver02, Proposition 5.3] Let (A, Eg, F) be a G-equivariant bounded Kasparov
module. Fort € {u,r}, let v be the inclusion End®(E) — M (End®(E) x, G) = Endp, ¢(Ex; G). Then
(Ax, G, (E X, G)py @i t(F)) is a bounded Kasparov module.

If G is compact and acts trivially on A, we have the Green—Julg isomorphism
¢ : KK%(A,B) - KK (A, BxG);

see [Ver02, Théoréme 5.10]. On the other hand, when G acts trivially on B, there is a dual Green—Julg
map for the universal crossed product

V¢ : KK%(A B) - KK(Ax, G,B)
which is an isomorphism when G is discrete [Ver02, Proposition 5.11].

Proposition 1.3.16. [Ver02, Proposition 5.11] Let (A, Eg, F) be a G-equivariant bounded Kasparov
module, with G acting trivially on B. Then (Ax, G, Eg, F) is a bounded Kasparov module, with the
integrated representation of A x,, G.

Proposition 1.3.17. [Ver02, Proposition 5.11] Let (A x,, G, Eg, F) be a bounded Kasparov module,
with G a discrete quantum group and A x,, G represented nondegenerately on E. Then (A, Eg, F) is

a G-equivariant bounded Kasparov module, with the coaction of Cj(G) on E given by the action of
Ci(G) C M(Ax, G) on E, acting trivially on B.

In the unbounded setting, we have the following picture of descent.

Proposition 1.3.18. Let (A, Eg, D) be a uniformly G-equivariant order-ﬁ cycle. Fort € {u,r}, let
be the inclusion End’(E) — M(End’(E) x, G) = Endp, ¢(Ex; G). Then (Ax, G, (EX; G)py, ¢, (D))
is an order—ﬁ cycle.

If, for a dense x-subalgebra o C A, (o, Eg, D) is a uniformly G-equivariant order-ﬁ cycle, the
data

(span{(1 ®w)((1(a)* ® s*)X)|a € o, 5 € &,,w € L}(G)}, (B %, G) gy ¢, U(D))
defines an order—ﬁ cycle, where X is a unitary on (Ex, G) @ Cj(G) described in the proof.

Proof. Note that the image of the representation of A, G is span(c(A)C;(G)) C End*(E %, G). Using
the identification End%(E) x, G = End%xtG(E X, G), we see that, for a € A and f € C}(G),

(1+uD)*)2(a) f) = e((1 + D*) "V 2a) f

is compact, cf. [Ver02, Démonstration du Proposition 5.3]. By the universality of the crossed product
[Ver02, §4.1] [Vae05, §2.3], the morphism End’(E) x, G — End’(E) x, G gives rise to the morphism
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I

¢ : End’(E) - M(End"(E) %, G) = End*(E x, G) and a unitary X € M((End’(E) x, G) ® CJ(G))
End*((End’(E) %, G) ® CJ(G)) such that

XT)®)X* = (t®id)(Vg(T ®;, 1)Vg)
for T € End’(E). Let a € @ and s € &,. For X*(1(a) ® s,) € End*((E %, G) ® C(G),
(L(D) ®1, X" (v(a) ® s)](u(D))™™
= X* (X(D) ® )X*(u(a) ®5) — (:®id) (a® 5)(D ® 1))) (D))
= X*(1®id) ((Va(D &5, NV5(a®s) — (a®5)(D@1)) (D))
and

(D)D) ®1,X*(t(a) ® s)]
= X*X (D))" X* (X(«(D) @ ) X*(1(a) ® 5) — (1 ®id) ((a ® 5)(D ® 1)) (1(D))~®)

= X" (1 ®id) (VE<D ®5,1) Vit (Va(D ®;, DVi(a®s) — (a®s)(D® 1)))
are adjointable. The representation of A x, G on E %, G consists of
()G} (€)) = 5531 {1(a) (1 @ w)(X)] a € A, € L1(@)}
=span {1(a)(1 @)X (1 ®m5)|a € A,my,m, € L2(G) }
— spam {(1 @ n) (a)* ® ") X(1@ 75| a € 4,5 € GJ(C),m,m, € L2(G))}
C span { (1 ® 1) (1(a)* ® s*) X (1 ®n3) w1y € L2(G)}
by the density of & C Cj(G) and the inclusion A C Q. ]

We also have a realisation of the dual Green—Julg map on uniformly equivariant unbounded
Kasparov modules.

Proposition 1.3.19. Let (A, Eg, D) be a uniformly G-equivariant order-ﬁ cycle, with G acting
trivially on B. Then (A X, G,Eg, D) is an order—ﬁ cycle, with the integrated representation of
Ax, G.

If, for a dense *x-subalgebra of C A, (d, Eg, D) is a uniformly G-equivariant unbounded Kasparov
module, with G acting trivially on B, then

(span{(l Quw)((a*®@s)Vg)|lace d,seS,,we Ll(G)},EB,D)
is an order—ﬁ cycle.

Proof. The only point which is not immediate is the boundedness of commutators with D. Let a € @
and s € 8, and let w € L*(G), so that

(1®w)((a*®s*)Vg)
is in the integrated representation of A X, G on E. By the uniform equivariance condition,
[D,(1®w)((a* ® s*)Vp)] = (1®w) ((Ve(D@NVz(a®s) — (a®s)(D® 1)) V)
and so (1 ® w)((a* ® s*)Vg) € Lip, (D). The representation of Ax; G on E x; G consists of
SPAm(AC,(G)) = 5587 {a(1 @ w)(Vy) | a € A,w € L}(@)}

= span {a(1 @ n})Vp(1®@nj)|a € A,;ny,my € LX(G)}

— span { (1@ n}) (0" ® s*) Vi (1 @ 713) §(G),m1,my € L*(G) }

C span{ 1en)(a*®s)Ve(l®n)|ac @seS,,n,n € L2(G)}
by the density of §,L?(G) C CF(G)L*(G) C

L?(G) and the inclusion A C @. O
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For the inverse map, more structure is required, including the presence of a dense subalgebra & of

A

A. A discrete quantum group G has a compact dual, whose polynomial algebra we denote by O(G).

A

We write & x G for the subalgebra of A x,, G generated by & and O(G).

Proposition 1.3.20. Let ( x G, Eg, D) be an order—ﬁ cycle, with G a discrete quantum group
and the representation of o X G on E nondegenerate. Then (o, Eg, D) is a uniformly G-equivariant
order-ﬁ cycle, with the G-action on E given by Lemma 1.3.18 and trivial on B.

Proof. Because G is discrete, & is included in & x G. Hence (1 + D?)"!a is compact and [D, a] is
bounded for all a € &. The inclusion C(G) C M (A x, G) gives a (nondegenerate) representation 7
of C}(G) on E. Because G is discrete, it is regular. Applying Lemma 1.3.13, we obtain an action of
G on E, acting trivially on B. Let V be the admissible unitary. Discreteness means that Cy(G) is
isomorphic as an algebra to the C*-algebraic direct sum

@ M”A <(C)

AEA

of finite-dimensional matrix algebras. The admissible unitary is the direct sum over the index set
A€ A of
Vg € 1(0(G)) ® M, (C) C n(C;(G)) ® M, (C) C Endp(E ® C™),

cf. [VY20, §4.2.3] for the inclusion in the polynomial subalgebra. Then, for a € &,
(DR ael)—(a@)(D)(De1) =V [De 1,V (a@)[(De 1)
and
VD1V (VA(D® )V (a®1) — (a®1)(De1)) =VMDe 1) [De1,V3*(a®1)]

are bounded for all A € A, because V2*(a ® 1) € n(0(G))o ® M, (C) C(4xG)® M, (C). O

Remark 1.3.21. 1t is clear that the bounded transform (A x, G, (E %, G)py, ¢, F,(p) = t(Fp)) of the
descent (Ax; G, (EX; G) gy, g, ¢(D)) of a uniformly G-equivariant cycle (A, E, D) is exactly the descent
of the bounded transform (A, Eg, F,). The same is true for the dual Green—Julg map.

I.4 The Kasparov product

Let A, B, and C be (complex) C*-algebras with A separable. The internal Kasparov product is a
Z-bilinear pairing

KK,(A,B) XKKJ-(B,C)—>KK7;+J~(A,0) (X,y) » XQ®pY,

for i,j € Z/27Z. Tt has a number of nice properties: it is contravariant in A, covariant in C, and
associative, in the sense that, if B is separable and D is a C*-algebra,

(x®pYy)®cz=x®p (y®cz) € KK, ;. (A, D)

for all z € KK, (C,D). The pairing also exists, and has these same properties, for G-equivariant
KK-theory, for G a o-compact locally compact group [Kas88, Theorems 2.11,14], and for S-equivariant
KK-theory, for S a c-unital C*-bialgebra [BS89, Théorémes 5.3,5].

Example 1.4.1. [Kas88, Definition 2.15] [BS89, Remarque 5.11(1)] Let G be a o-compact locally
compact group. The Kasparov representation ring R(G) is defined to be the graded abelian group
KKE(C,C) with multiplication given by the internal product. Similarly, for S a c-unital C*-bialgebra
and G a o-compact locally compact quantum group, the Kasparov representation rings R(S) and
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R(G) are defined to be the graded abelian groups K K2 (C,C) and KKE(C,C), respectively, with
multiplication again given by the internal product in each case. Each of R(G), R(S), and R(G) is a
Z /27Z-graded unital ring; R(G) is commutative, while R(S) is commutative only if S is commutative,
and R(G) is commutative only if G is a (classical) locally compact group. If G is a compact group,

R(G) agrees with the usual representation ring. If G is discrete, R(G) is isomorphic to the group ring
Z|[G].

Many subsequent results in this thesis will involve taking the Kasparov product of (usually
unbounded) Kasparov modules. In the interests of economy, we will not give separate statements
for different combinations of parities. Instead, we will abuse the symbol ® to represent a flexible
tensor product of possibly Z/2Z-graded Hilbert modules and operators thereon. Let E; be a Hilbert
B-module and E, a B-C-correspondence. Let T be a regular (or, as a special case, adjointable) operator
on F.

o In the case when E; and E, are both graded, ® 5 will simply mean the graded tensor product.

o In the case when E, is graded and F, ungraded, E; ® 5 E, will refer to the plain tensor product,
giving an ungraded Hilbert C-module, and we will write T® 1 :=T ® 1.

o In the case when F; is ungraded and E, graded, E; ® 3 E, will again refer to the plain tensor
product, but this time we will write T® 1 = T®1 if T®1 is understood to be even or T®1 := T'®~,
if T® 1 is understood to be odd, where 7, is the grading on H,.

o If both E, and E, are ungraded, we will let E; ® 3 E, = E; Qg E, ®¢ C?, with a grading given
by 1®1®05, and write T® 1 = D®1®1 if T®1 is understood to be even or T® 1 = D®1® 04
if T® 1 is understood to be odd, where o, 05, and o5 are the Pauli matrices.

Let E; be a Hilbert B-module and F, a Hilbert C-module. We will write E; ® E, for the external
tensor product, with the same parity adjustments as above. For S a regular (or, as a special case,
adjointable) operator on E,,

o In the case when E, is graded and E, ungraded, we will write 1® S = 1® S if 1® S is understood
tobeeven or 1®S =, ® Sif 1 ® S is understood to be odd, where 7, is the grading on H;.

o In the case when E, is ungraded and F, graded, we will write 1® S =1® S.

o If both F, and E, are ungraded, we will write 1® S=1® S® 1 if 1 ® S is understood to be
evenor 1® S=1® S® o, if 1 ® S is understood to be odd, where o,, 05, and o4 are the Pauli
matrices.

As all our C*-algebras are assumed to be ungraded, this abuse of notation should hopefully cause
no confusion. As an alternative, one could use the machinery of multigradings [HR00, §A.3]. That
Theorem 1.4.2 (and so also Theorem I1.4.2) is valid for each combination of parities is well known; see
[HROO, Proposition 9.2.5, Exercises 9.8.1-2].

Theorem 1.4.2. [CS84, Definition A.1, Theorem A.5] [Kas88, Definition 2.10, Theorem 2.11] [BS89,
Définition 5.2, Théoréme 5.3] Let A, B, and C be C*-algebras with A separable. Let (A, E; g, 1),
(B,Ey 0, F), and (A, E, ®g E, ¢, F) be bounded Kasparov modules. If

1. For all § € Ey, with T, € Homg(Ey, E) ® E,) given by n — £ &,

is a compact operator on (Ey @z E,) & E,; and
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2. There exists 0 < k < 2 such that
a(F(F1 ®1)+ (K ® 1)F)a* > —kaa*

modulo End’(E, &5 E,)

then (A, E, ®p E, ¢, F') represents the Kasparov product
[(A7 El,B’ Fi)] ®B [(Ba E2,Ca 172)]

If (AJE, g, F), (B,Eyc, B), and (A, E, ®g Ey ¢, F) are G-equivariant for G a o-compact locally
compact group, the latter represents the G-equivariant Kasparov product of the other two. Similarly, if
the three bounded Kasparov modules are S-equivariant for S a o-unital C*-bialgebra, (A, E; Qg Ey o, F)
represents the S-equivariant product of the other two. Moreover, whether in equivariant KK-theory or
not, a module (A, E; ®g EzyC,F) satisfying the above conditions can always be found and is unique up
to homotopy.

The following is essentially the state of the art for conditions for the unbounded Kasparov product,
without assuming the existence of an approximate unit as in [Dun22]. The statements about the
product in equivariant KK-theory follow immediately from the above; cf. [Kuc94, Theorem 8.12].

Theorem 1.4.3. ¢f. [Kuc94, Theorem 8.12], [Kuc97, Theorem 13], [GM15, Theorem A.7], [Dun22,
Definition 3.2, Theorem 3.3] Let A, B, and C be C*-algebras with A separable. Let (A, E, g, D),
(B,Ey ¢, Dy), and (A, E, & E, ¢, D) be order-— cycles. If

1. For all § in a dense subspace of By, with T, € Homg(Ey, By ® g Ey) given by n — {&n,

(0 T£> (domD) c (domD)

T¢ dom D, | = \ dom D,

(o) () @)
D, |’ \T¢ (Dy)~

extends to an adjointable operator on (E; @ E,) ® E,; and
2. We have dom D C dom(D; ® 1) and there exists A > 0 such that

(Dy @ 1) | DY) + (DY | (Dy @ 1)¢h) > =A@ | (D)y)

then (A, E|, ® g E, ¢, D) represents the Kasparov product
[(Aa El,Ba Dl)] ®B [(B7 E2,07 D2)]

If (A,E, g,Dy), (B,Ey ¢, Dy), and (A, E; & E, ¢, D) are uniformly G-equivariant for G a o-compact
locally compact group, the latter represents the G-equivariant Kasparov product of the other two.
Similarly, if the three bounded Kasparov modules are uniformly S-equivariant for S a o-unital C*-
bialgebra, (A, E, ®pg E, ¢, D) represents the S-equivariant product of the other two.

Conditions 1. and 2. in both Theorems 1.4.2 and 1.4.3 are referred to as the connection and positivity
conditions, respectively. Both Theorems are sometimes referred to as ‘guess and check’ methods. The
positivity condition of Theorem 1.4.3 is, in some sense, not well adapted to higher order cycles. By
considering classical differential operators it may be desirable and, indeed, by inspecting [Dun22, Proof
of Lemma 3.9], may be possible to adapt the form bound to include a factor of (S)* on the right-hand
side.
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For any C*-algebra C, there is a homomorphism o, : KK,(A,B) - KK,(A® C,BQ® C) given by
taking an bounded Kasparov module (A, Ep, F) to (A® C, (E ®¢ C)pgc, F ® 1). In the unbounded
picture, o, takes an unbounded cycle (A, Eg, D) to (A® C,(E ®¢ C)pgc, D ®1). If Cis a G-C*-
algebra for some locally compact group G, o : KK&(A,B) - KKS(A® C,B® C) is defined in the
same way, where A ® C' and B ® C have the diagonal actions of G. If C is a S-C*-algebra for some
commutative C*-bialgebra, o, : KK%(A,B) - KK?(A® C,B® C) is again defined in the same way
[Ver02, §3.3]. A C*-algebra A permits a nondegenerate x-homomorphism ¢ : A ® A — M(A) such
that p(a ® 1) = a = ¢(1 ® a) if and only if A is commutative [Wor80, §2]. The commutativity of S
ensures that there is a nondegenerate *-homomorphism S ® S — M (S), Gelfand dual to the diagonal
embedding, which allows one to define a coaction of S on A ® C and B® C. It is perhaps easier to
think of this in terms of the Gelfand dual of S, which is a locally compact semigroup [Val85] [BS89,
Exemple 1.4(3)].

Let A,, A,, By, and B, be (complex) C*-algebras with A; and A, separable. The external Kasparov
product is a Z-bilinear pairing

KK;(Ay,B;) x KK;(Ay, By) = KK, ;(A; ® Ay, B; ® By) (x,y) = X®¢ Y,

for i,j € Z/2Z. 1t is defined in terms of the internal product, by

X®cY =04,(X)®p ga, 05, (¥)

As a consequence, it too has a number of desirable properties: it is contravariant in A; and A,,
covariant in B, and B,, and associative. Furthermore, it is commutative, that is, x ®c y =y ®¢ x.
The pairing also exists, and has these same properties, for G-equivariant KK-theory, for G a o-compact
locally compact group [Kas88, Theorems 2.11,14], and for S-equivariant KK-theory, for S a c-unital
commutative C*-bialgebra [Ver02, §3.3]. We should also mention here that the external product has
been generalised to the setting of locally compact quantum groups by [NV10], using the machinery of
the Drinfeld double and braided tensor products.

A key feature of unbounded KK-theory is the fact that the external product becomes completely con-
structive. Extending [BJ83, §3] to our setting, the external product of order-L cycles (4, E, g, D)
and (Ay, By g, Dy) is the order-=— cycle

(A; ® Ay, (B, ®¢ Ey)p g, D1 ®1+1& D).

For G a locally compact group or S a commutative C*-bialgebra, the external product of G-equivariant
or S-equivariant higher order cycles is defined in the same way.

In many examples, the internal product of order- cycles (A, Ey g, D;) and (B, E, ¢, D,) can be
represented by an order—ﬁ cycle of the form

(A, (E; ®5 Ey)c, D ®1+1Qy D).

Here, one has to make sense of the operator 1 ®¢ D,, using the data of a connection; see [Mes12].
Further, the combined operator D; ® 1 + 1 ®¢ D, has to be shown to be self-adjoint, have locally
compact resolvent, and satisfy the positivity condition; the current state of the art for guaranteeing
these is by checking that D; ® 1 and 1 ®¢ D, weakly anticommute; see [LM19]. Finally, one has
to check that 1 ®g D, has (relatively) bounded commutators with the algebra, which is the most
fragile part of the procedure, being most likely to fail. Together, these techniques are known as the
constructive unbounded Kasparov product, the eventual hope being to make it truly constructive under
reasonable assumptions. This project has been pursued by a number of authors, most notably Mesland;
see [Mes12, KL13, MR16, LM19, Dun20] and the survey [Mes24].
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In this Chapter we employ tools from geometric group theory to study the geometry of group C*-
algebras and Fell bundles. We construct spectral triples for group C*-algebras from matrix-valued
weights. Our innovation, on the one hand, consists in extending the theory to locally compact groups
and in working naturally with Fell bundles; on the other hand, it lies in exhibiting the nontriviality of
the resulting KK-classes using carefully chosen “directed length” functions from CAT(0) spaces. We
also study the geometry of group extensions using the unbounded Kasparov product.

II.1 KK-theory of group algebras
In this section, we make a study of the KK-groups
KKS(A,C,(G,B)) KKS(Ax,GB) KK,(Ax,G,B)

27
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for G a locally compact group and G-C*-algebras A and B. The commuting diagram

KKS(A,Cy(G, B)) —2s KKC(Ax, G,Cy(G, B)», ¢F Z P K KC(Ax G, B)

_ e e
]7‘

2
KK, (A%, G,Cy(G,B)», G 8 KK, (A%, G, B)

summarises their relationship. By the external Kasparov product, the KK-group K K% (A, Cy(G, A))
is a left module over the unital ring R(G) := KK%(C,C) and a right module over the unital ring
KK%(Cy(G), Cy(@)). By Baaj—Skandalis duality, K K% (Cy(G), Cy(G)) is isomorphic to the Kasparov
representation ring R(é) = KK C3(((3‘, C). Recall that, if G is discrete, R(@) is isomorphic to the group
ring Z[G]. This right module structure naturally accounts for the action of G on KK% (A, Cy(G, B))
by the automorphism of right translation on Cy(G, B). As a consequence, the restriction map

re, KKS(Ax, G B) > KK,(Ax, G, B)

factors through KK*G (Ax, G,B) ®pg) L.

We refer to §A.2 for details of proper actions, our conventions for crossed products, and the
definition of a cut-off function, among other things. Throughout this Chapter, we take all groups to be
o-compact unless otherwise mentioned.

II.1.1 The Dirac, dual Dirac, and y-elements

Let X be a Riemannian manifold, with perhaps infinitely many connected components. We will make
the simplifying assumption that all the components of X are of the same dimension n. By C.(X) we
denote the algebra of sections, vanishing at infinity, of the (complex) Clifford bundle €£(T*X) of the
cotangent space of X [Kas88, Definition 4.1]. Beware that C (X) is a Z/2Z-graded C*-algebra. An
isometric action on X by a group G pulls back to an action on the bundle €#(7*X). With the action
of €¢(T*X) on differential forms by Clifford multiplication, we obtain an isometrically G-equivariant
even spectral triple

(C(X),LA(*X),d + d*) (I.1.1)

for the Hodge-de Rham Dirac operator d + d*, representing an element of K K§(C,(X), C). For our
purposes, it will be preferable to replace the Clifford bundle algebra C,.(X) with Cy(X). Doing this is
contingent on the existence and choice of a spin® structure on X, preserved by the action of G. One
standard reference on spin® structures is [LM89, Appendix D]. We will give a brief summary.

The group Spin€(n) is a central extension of SO(n) by T. The Riemannian structure implies a
reduction of the structure group of the frame bundle of X along O(n) < GL(n). A spin® structure
on X is a further reduction of the structure group of the frame bundle of X along Spin¢(n) — O(n).
Since the image of Spin®(n) — O(n) is SO(n), a spin® structure includes a choice of orientation. We
will think of a spin® structure as a more elaborate kind of ‘orientation’; indeed, it is sometimes called a
K-orientation. Another way of expressing this, more in tune with the machinery of KK-theory, can be
found in [Ply86, §2]. A spin® structure can be described as the data of an orientation € on X together
with a Morita equivalence bimodule & [Ply86, Definition 2.2]. If n is even we require that & be a
Z,/27Z-graded Morita equivalence bimodule between C (X) and Cy(X). If n is odd we require that
& be a Morita equivalence bimodule between C (X)® and Cy(X). If n is odd, & can be given the
structure of a left C_(X)-module by using the unit pseudoscalar [Ply86, §2.6]. The fundamental spinor
bundle $ is the complex Hermitian vector bundle determined by I}, (X, §) = &. The fibres of § are
irreducible representations of €7, and it is Z/2Z-graded if and only if n is even. When we compose
the cycle of (II.1.1) with the dual of I;;(X, §), we obtain an isometrically G-equivariant spectral triple

(Co(X), LX(X, §), ),
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where § is the Atiyah-Singer Dirac operator, representing a class a € KK&(C,(X),C) (where, as
usual, n is taken modulo 2).

We will later want to allow for group actions which are not orientation preserving, for instance, a
group of reflections of R™. Just as Spin®(n) is a central extension of SO(n) by T, there is a central
extension of O(n) by T called Pin®(n). A pin® structure is exactly what is left over when one removes
the data of an orientation from a spin® structure. Following [Ply86, §2.7], given a spin® structure (e, &),
the reversed spin® structure is (—e, %(Op)), where —e is the reversed orientation and &°P) is & with, in
the case of n even, the opposite grading. We will say that a group G acts on X by pin® isometries if it
acts by spin®-structure preserving and spin®-structure reversing isometries. Because the composition
of two spin®-structure reversing isometries is spin€-structure preserving, the subgroup of G acting by
spin®-structure preserving isometries is of index 2.

In [Kas88, Definition 5.1, Kasparov uses the term special manifold, repurposed from [Ree83], for a
Riemannian manifold with a suitable dual Dirac element of KK-theory. A spin® Riemannian n-manifold
X, on which a locally compact group G acts isometrically and by spin®-automorphisms, is special if
there exists an element 3 € KKS(C, Cy(X)) satisfying

a®q B =1¢€ KK§(Cy(X),Cy(X))

where a € KK§ (Cy(X), C) is the Atiyah-Singer Dirac element, as above. The element vy := B®c, (x)o €
KK¢%(C,C) is automatically an idempotent; we shall shortly return to its significance.

The motivating example of a special manifold is a simply connected manifold of non-positive
sectional curvature [Kas88, §5.3]. Let X be a simply connected spin® Riemannian n-manifold of
non-positive sectional curvature on which a locally compact group G acts by spin® isometries. Fix
zy € X and let p: X — [0,00) be given by p(z) = d(z,z). The dual Dirac element 3 is represented
by the uniformly G-equivariant unbounded Kasparov module

(Cv FO(X7 $)C’O(X)7pdp)

where pdp € Q' X acts on I,(X, §) by Clifford multiplication [Kas95, Definition 5.4] [Kuc94, Chapter
8]. An early study of the properties of pdp as an unbounded operator is in [Luk77].

In fact, for any almost connected group G, the quotient X = G/K by the maximal compact
subgroup K is a special manifold [Kas88, Theorem 5.7] (modulo a spin® caveat). Kasparov shows this
by an inductive construction, using the derived series of the Lie group G/N, where N is a compact
normal subgroup of G. However, although the ingredients can be assembled as unbounded Kasparov
modules, the final construction involves a troublesome Kasparov product. We will return to the issue
of Kasparov products for group extensions in §II.4. In the case of an almost connected group G,
Kasparov shows that the element v € KK (C, C) is independent of the choice of special manifold,
and is so denoted g

Let A and B be G-C*-algebras, with A separable. By [Kas88, Corollary 5.7], if G is almost
connected with maximal compact subgroup K, the restriction map

KKC(A B) - KKX(A, B)
is surjective with kernel (1 — 'y(@)KK*G(A, B). That is,
Vo) KK (A, B) = KK[X(A, B),

where ) € KK G(C,C) acts on KKE (A, B) by the external Kasparov product. In other words, when
~ acts on a KK-group, it has the effect of reducing the equivariance to the maximal compact subgroup.
It is therefore of interest to understand for which almost connected groups G one has 75y = 1, and so
KKE(A,B) 2 KKK(A, B). This question was answered conclusively by Julg and Kasparov [JK95,
Theorem 8.2]: Y@ =1 if and only if the quotient of G by its radical, that is, its maximal solvable
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connected normal closed subgroup, is locally isomorphic to a product of a compact group and a finite
number of real and complex Lorentz groups. The fact that the real Lorentz groups SO,(n,1) and the
complex Lorentz groups SU(n, 1) have 7, = 1 was proved in [Kas84] and [JK95], respectively, in each
case using a representative for the y-element based on the action of the group on a sphere. We shall
outline these constructions and lift them to unbounded KK-theory in §1II.2.1, using the technology of
conformal equivariance developed in Chapter III.

Example I1.1.2. Again, let G be an almost connected group and let A and B be G-C*-algebras, with
A separable. By [Kas88, Theorem 5.8], 7, always acts as the identity on K KE(A, Cy(G, B)). Hence

Futher, using also the Green—Julg isomorphism, we record that

KEZ(C,C(Q)) = KK (C,Cy(G))
~ KK, (C,Cy)(G)x K)
~ KK, (C,C)(G/K))

{ZEBO dimG/K =0

(mod 2)
006Z dimG/K =1

RdimG/K.

since G/K is homeomorphic to ; see e.g. [CH16, Theorem 2.E.16]. As a ring, using also

Baaj—Skandalis duality,

R(G) = KK (G(G), Gy (@)
= e KKZ(G(G), G (@)
=~ KK (Gy(G),G(G))
=~ KKX(Cy(K) ® Gy(RM™E/K) Gy (K) ® Cy(RI™E/K))
=~ KK (Cy(K), Co(K))
~ R(K).

The idea of the y-element can be applied to other than almost connected groups; a survey can be
found in [AJV19, §§3.5, 4.4]. A y-element for locally compact groups acting on trees was constructed
by Julg and Valette [JV84]. These same authors made a generalisation to the case of reductive Lie
group over a nonarchimedean local field acting on its Bruhat—Tits building in [JV87]; we return to
discuss buildings in §II.3.3. In [KS91], Kasparov and Skandalis placed these constructions in context:
Dirac and dual Dirac elements « and S are constructed for locally compact groups acting on Euclidean
buildings with product 8 ® « the y-element; see also [Jul89].

The method of Kasparov and Skandalis was formalised by Tu, who simultaneously generalised it
to the setting of groupoid equivariant KK-theory [Tu00]. Recently, Nishikawa extended the idea of
the y-element to allow its identification without needing classes o and § [Nis19]. Such a generalised
v-element in KK (C,C) is called an element with property (y), and is unique when it exists, so
includes the y-elements already discussed. In [BGHN20], an element with property (y) is constructed
for groups acting properly on CAT(0) cube complexes; we will have more to say about these latter
in §11.3.3. We record, in particular, that an element in K K¢ (C,C) with property (y) restricts to
1 € KKX(C,C) for every compact subgroup K of G.

II.1.2 The Pimsner exact sequences for groups acting on trees

In [Pim86], six-term exact sequences are given for the K-theory and K-homology of crossed product
C*-algebras by groups acting on trees. We shall give a brief outline. To set notation we make
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Definition II.1.3. [Pim86, §1] cf. [Ser80, Definition 1] An oriented graph X is given by the data of

o sets X? and X! of vertices and edges, respectively;

e origin and terminus maps o,t: X' — XO°.

An oriented tree is a connected oriented graph X with no cycles. We shall from now on refer to
oriented trees simply as trees.

Fix a locally compact group G acting on a tree X and a separable G-C*-algebra A. Let X be the
quotient graph of X by G. To the set of edges X', we adjoint an ‘edge at infinity’, which we denote oo.
For any vertex P € XY, we denote by X5 the set of edges whose terminus is closer than their origin to
P, in other words, edges ‘pointing toward’ P. We denote by x p the characteristic function of X3 LI {oo}
on X' U {oo}. We construct the C*-subalgebra C, (X') of Cy(X' LU {co}) generated by Cy(X') and xp
for all P € X°. The C*-algebra C, (X', A) := C, (X') ® A fits into the G-equivariant exact sequence

0 — (X', 4) — C (X" A) — A —— 0. (I1.1.4)

Fixing P € X% p : a — xpaxp gives a completely positive cross-section. (Beware that p is not
equivariant. By [Tho0O1, Theorem 1.1], the six term exact sequences in equivariant KK-theory of [BS89,
Théoréme 7.2] can nevertheless be constructed.) The extension class associated with the sequence
(II.1.4) is

(A, Co(X1, A) gy x4y, 2xp— 1) (I.1.5)

as a G-equivariant bounded Kasparov module.

By [Pim86, Proposition 10] and [BS89, Remarque 7.5(3)], one can construct two elements a €
KK%(Cy(X°),C,(XY)) and B € KKE(C(X1),Cy(X?)) satisfying

a®c xyB=1€ KK (CG(X"),G(X%)  B®gxoya=1€ KK (C (X'),C (X)),

The existence of a and 8 make C, (X') and Cy(X°) KK-equivalent as G-C*-algebras. By [Bla98,
Examples 19.1.2(c)], C, (X*, A) and C,(X°, A) are also KK-equivalent as G-C*-algebras.

Putting all of this together, we obtain two six-term exact sequences by [BS89, Théoréme 7.2] and
[ThoO1, Theorem 1.1]. For any separable G-C*-algebra B, the sequence

I |

KK (B, A) «——— KKC(B,Gy(X?, A)) +— KKE(B,Cy(X", A)
is exact and for any G-C*-algebra B, the sequence

| [

is exact.

We can present these sequences in terms of the Baaj—Skandalis duals. By [Pim86, Lemma 4], there
is a G-equivariant exact sequence

0 — Co( X' A) %, G — C (XM A)x, G — Ax, G —— 0. (I.1.6)
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Fixing P € X°, p:a — xpaxp gives a é—equivariant completely positive cross-section. The extension
class associated with the sequence (II.1.6) is

(Ax, G, Co(X1, A) %, G, (x1, 4,6 2Xp — 1) (IL.1.7)

as a G’—equivariant bounded Kasparov module, which is Baaj—Skandalis dual to the extension class
(II.1.5).

By Baaj-Skandalis duality, C, (X', A)x, G and Cy(X°, A)X,.G are KK-equivalent as G-C*-algebras.
Further, it is useful to incorporate the G-equivariant Morita equivalences between Co(XY, A) %, G and
@D ps0 A%, Gp and between Co(X1, A)x, G and @y€21 Ax,.G,. (Recall that ¥ is the quotient of X by

G.) For vertices P € X, the inclusions 7p : Gp — G have open image and give rise to homomorphisms

T, = ZTP* T = ZTI*D.
Pexo Pex0
For edges y € X!, the injections oy G, = G, and o, : G, = Gy, similarly have open image and
give rise to homomorphisms o : G (G,) — G (G,(,) and o, : G (G,) — C(Gy,))- Let

0.= (0. —05) o =) (0503

yex? yexl

We obtain two six-term exact sequences by [BS89, Théoréme 7.2]. For any separable G-C*-algebra B,
provided that X is finite, the sequence

P KK (B,Ax, G,) —2 @ KK (B,Ax, Gp) —— KK (B, Ax, G)

yex! Pexo
dl [

KKZ(B,Ax,G) «—— P KK (B,Ax, Gp) +5— P KKF(B,Ax, G,)
Pexo yext!

is exact. For any G-C*-algebra B (and with no restriction on X), the sequence

P KK (A%, G, B) +—— P KK§(Ax, Gp,B) «+——— KK (Ax, G, B)
yext Pex0
la BT (I.1.8)

KKG(Ax,G,B) ——— @0 KK{(Ax,Gp,B) —=— P KK (Ax, G,,B)
Pex yexlt

is exact. These sequences remain exact if one forgets the é—equivariance everywhere, which is the form
in which they are presented in [Pim86, Theorem 17]. One can then also remove the need for ¥ to be
finite if B is KK-compact; see §11.1.4 and [Pim86, Theorem 18|.

IO.1.3 Induction from cocompact subgroups

The following Proposition is well known but we have been unable to locate a suitable reference, so we
sketch a proof; but cf. [Bla06, Theorem 20.5.5] and [MNO06, §3.2]. An analogous result for quantum
group equivariant KK-theory can be found in [NV10, Proposition 4.7]. The proof of the following
Proposition uses the induction homomorphism i : KKH (A, B) - KKE(Cy(G, A)H,Cy(G, B)H) of
[Kas88, Theorem 3.5, §3.6]. We have chosen not to give a fuller account of this map, partly as there
are technical issues arising in the unbounded picture which would necessitate the use of symmetric
operators and so half-closed chains.
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Proposition I1.1.9. Let H be a cocompact closed subgroup of a locally compact group G. Let A be a
G-C*-algebra and B an H-C*-algebra. There is an isomorphism K KF(A, B) = KK&(A,C,(G, B)H).

The isomorphism can be interpreted as a KK-theoretic analogue of Frobenius reciprocity.

The closed subgroup H of G acts on G by right translation. This means that, for a C*-algebra B
with an action S of H, C,(G, B) has a left action o of G by left translation and a right action 8" of H
given by the combination of right translation and the action on H. That is,

ag(f)(s)=flg7's)  BL(f)(s) = Bu(f(sh)).

The group G then acts on Gy(G, A)7 by oy, (f)(h) = f(g7"'h).

Proof. Let x € KK (A, B) and y € KK%(A, C,(G, B)H). By [Kas88, Theorem 3.5, §3.6], there is a
homomorphism 7% : KKH (A, B) - KKE(C,(G, A)¥,Cy(G, B)*). By [Kas88, Proof of Corollary
3.15], ifC is related to descent by

it (x) = "Gy (G, A)] ®c, (G, A)x, H jﬁ(UCO(G) (%)) ®c, (G, B)w, 1 [(PCo(G, B))*.
Because G acts on A and on Cy(G, B)¥, by [Kas88, Lemma 3.6],
Co(G, AV =~ C(G/H, A)

and
CO(G7 CO(Gv B)H)H = C(G/H7 CO(Ga B)H)>

see also [RW98, Hooptedoodle 6.15]. Let [\] € KK (A, Cy(G, A)H) be given by the homomorphism
A:A— C(G/H,A) taking an element of A to a constant function. The product

Al ®c, (6,48 6 (x)

is an element of KK (A, Cy(G, B)H). Let [¢] € KKH(Cy(G, B)¥, B) be given by the homomorphism
Cy(G, B)H — B of evaluation at the identity in G. The product

rSH(y) ®c,a,p)m [

is an element of K K*(A, B). Note that i"%([¢]) € KKY(C(G/H, C,(G, B)®),Cy(G, B)H) is equal
to o¢,c,mr([¥']) where [¢'] € KK(C(G/H),C) is given by evaluation at the identity coset in

G/H. Note also that [A] ®c(q/m,4) oa([¥']) € KKC(A, A) is the identity. By [Kas88, Theorem 3.6],

PG o pGH — oc(q/m)- By careful use of the relationship between the exterior and interior Kasparov

products,

Al ®c(a/m,a) G (TG’H(Y) ®c,(G,B)H W])
= [N ®c(aym,a) I (r(Y)) ®c(aym,cycmm) ¢ ([¥])
=[N ®c(a/m,4) ccm (Y) Ocia/u,cyc,B)") Tcyc,m)7 ([¥'])
= N ®c(a/m.a) (¥ ®c ])
= [N ®c(/m,a) ([T/)/] Q¢ Y)
=[Nl ®c(a/m,a) oal¥']) ®4y
—y.
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On the other hand, note that 7% ([(¥C,(G, B))*]) ®c,c,p)H Y] € KKH(Cy(G, B) x,. H, B) is equal
to jH (o 5([n))) ®c, (H)u, H [L?(H, B)] where o : Cy(G) — Cy(H) is given by the H-orbit of the identity
in G. By careful use of the relationship between the exterior and interior Kasparov products,

(%)) ®c, (G, B)x, H [("Cy(G, B))*] ®c,(c,B)H Y]

(00,(6) (X)) ®cy (6,81 i (0p([N) ®c, (m)w, 1 [L*(H, B)]

it(oc,

=Jr

v

LI

(UCO(G (x) ®c,(c,B) UB([W])) Qc, (H)x, H [L*(H, B)]
(X ®¢ [ ) ®cy (), 1 [L°(H, B)]
( )
CA

ok

ok

=]
=]
= jr ([n] ®(CX ®c, (s, 11 [L? (H, B)]
= Jr (0a([n]) ®c oc,(m) (X)) ®c, (myx, 1 [L*(H, B)].
Finally, we have
TG’H([/\] ®c,(G,A)H iH’G(X)) ®c,(c,p)H Y]
= TG’H([)\] ®c,c,a)x TGy (G, A)]
®c, (a0, 1 v (0c,(@) (X)) ®c, G,y 1 (TG (G, B))*]) ®c,(c,B)H V]
= 195 (A ®c, .47 [MCo(G, A)))
®c,(G,A)x, H J}{{(UA([U]) Q¢ ¢, (H) (X)) ®c, (myx, o1 [L* (H, B)]

= r&H(N) ®¢, (g aym [TCo(H, A)] @cy (1, a0, 11 I8 (06, (1) (X)) Oy (myw, 1 [L*(H, B)]

= [L2(H, A)*] ®c, (w1, apn 1 I+ (00, () (X)) @, (1), 11 [L? (H, B)]

= X.
We hence obtain the required isomorphism of KK-groups. ]

Remark 11.1.10. [EKQRO06, Example A.12] Let A be a G-C*-algebra and denote by A the same
C*-algebra with the trivial G-action. The C*-algebras Cy(G, A) and Cy(G, A) are G-equivariantly
isomorphic.

Corollary II.1.11. Let H be a closed subgroup of a locally compact group G and let A and B be
G-C*-algebras. Calling the inclusion ¢ : H < G, there is a homomorphism

90*7‘%0 ; KK*G(A?CO(Ga B)) - KK*{{(A? CO(Ha B))
which is an isomorphism if H is cocompact in G.

Proof. Let B be the C*-algebra B equipped with the trivial G-action. Remark that Cy(G, C,(H, B))#
is G-equivariantly isomorphic to

Co(G,Co(H, B))" = Gy(G x H)" ® B= Gy(G) ® B = Gy(G, B).
The conclusion follows from applying Proposition II.1.9. O
Example II.1.12. If K is a compact group and A and B are K-C*-algebras,
KKK(A,C(K,B)) = KK!*(A4,C({e}, B)) = KK,(A, B).

The C*-algebra C*(K) of a compact group K is isomorphic to a direct sum of matrix algebras
@D, Maim(C) over the set A of the equivalence classes of irreducible unitary representations of K.
By [Kas88, Theorem 2.9],

K*(C*(K),(C):KK*(@MdimA((C ) [ KK.(My 1 (C),C) = [ Zoo0.

AEA AEA AEA
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The descent map from KKX(C,C(K)) to KK,(C*(K),C) is injective, taking 1 € KK,(C,C) =
KKX(C,C(K)) to the left regular representation in KK, (C*(K),C). Remark also that, by the dual
Green—Julg isomorphism, A
R(K)= KKX(C,C) 2 KK(C,(K),C)

as abelian groups. (The right-hand side is not a ring.)

Example I1.1.13. If G is abelian, C*(G) is the commutative C*-algebra of functions on the Pontryagin
dual group GG. Within locally compact abelian groups, it is natural for our purposes to restrict to those
which are compactly generated. In some sense, this corresponds to the finite-dimensionality of the
geometry of C*(G). A compactly generated locally compact abelian group can always be decomposed

as
GR™xZ" x K

for integers m,n and a compact group K, see e.g. [CH16, Example 5.A.3]. Because R™ x Z" is a
cocompact subgroup of R™ x Z™ x K and a cocompact subgroup of R™*", we have an isomorphism

KKE™E">K(A Cy(R™ x Z" x K,B)) =~ KKX"*2" (A, Cy,(R™ x Z", B))
~ KK*"" (A, Cy(R™", B))
~ KK, pnin(A, B).
In contrast,

KE(C*(@),0) = [[ KK.m(©,0) = J] @ 027",

AEA 5 AEA L

As KKE(C,Cy(Q)) is singly generated, it is straightforward to check that the descent map to
KK,(C*(G),C) is injective. By Proposition II.1.9, Baaj-Skandalis duality, and the Green—Julg
isomorphism, as an abelian group,

R(G) = KK (Gy(G), Gy(@))
>~ KK}¥"Z" (C(R™ x Z™ x K), Cy(R™ x Z"))
>~ KK¥"T"(Cy(R™ x Z™ x K) x (R™ x Z™), Cy(R™ x Z™) x (R™ x Z™))
> KKF"*T"(Cy(K), ©)
= V(RmxT")KK;En (CO(K)7 (C)
= KKI"(Cy(K),C)
= KK, (G (K),C*(T"))
=~ (P KK, (Gy(K),C).
Zn

A

It is not difficult to check that R(G) is isomorphic as a ring to R(T") ®
0)

N

=
5>
1%

=
5>
=
s

A

by considering the range of the two injections R(T") < R(G) and R(

L
=
E}/>

II.1.4 Restriction to compact subgroups

We say that a C*-algebra A is KK-compact if KK, (A, ) is continuous, i.e. commutes with direct limits
[Uuyl1, Definition 2.9]. To set notation, if (B;, ¢;;); jea is an inductive system of C*-algebras over a
directed set A (see e.g. [Bla98, §3.3]), if A is KK-compact then

KK,(A,lim B;) = lim KK, (A, B)).
— —

The limit on the right is the algebraic direct limit of abelian groups. In particular, if (C;),c; is a
collection of C*-algebras,

KK, (A, P q.) ~ () KK,(A,C,).

el el
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The most important example of a KK-compact C*-algebra is C; a sufficient condition for A to be
KK-compact is that it satisfy the Universal Coefficient Theorem and have finitely-generated K-theory
[Uuyl1, Definition 2.10.1].

Proposition II.1.14. Let G be a noncompact locally compact group for which the connected component
of the identity G, is compact. Let A and B be G-C*-algebras with A a KK-compact C*-algebra. If K
is a compact subgroup of G,

r&K . KKG(A,Cy(G,B)) - KKK(A,C,y(G, B))
18 zero.

Proof. By [CH16, Corollary 2.E.7(2)], we can find a compact open subgroup H of G containing K. It
will suffice to show that

r&H . KKCG(A,Cy(G, B)) - KK (A, Cy(G, B))

is zero. Because H is open, the quotient space X := G/H is discrete and G is H-equivariantly
homeomorphic to H x X. Choose o : X — G such that Ho(Hg) = Hg for Hg € X. By Corollary
m1.11,

oril: KKH(A C,(G,B)) — KK,(A,Cy(X, B))

is an isomorphism. It therefore suffices to show that
r&l = pH1GH . KKC(A,C)(G, B)) — KK, (A, Cy(G, B))

is zero.

Since e € G has a compact open neighbourhood H, so does every element of G. Let % be the set
of compact open subsets of GG, partially ordered by inclusion. For U,V € ¥ such that U C V| denote
by ¢y v the inclusion C(U, B) < C(V, B). We thus form the inductive system (C(U, B), ¢y )y ves
of C*-algebras. For every U € X, there is an inclusion ¢ : C(U, B) < Cy(G, B), making C,(G, B)
isomorphic to the direct limit h_r)nC (U, B). Suppose that A is KK-compact, so that

Let x € KKE (A, C,(G, B)), so that r®1(x) € KK, (A, C,(G, B)). By the definition of the algebraic
direct limit, there must exist some U € ¥ and y € KK, (A,C(U, B)) such that y®c p)[¢y] = r&l(x).
Let V € ¥ such that U C V. Now, with py, € C,(G, B) the projection onto C(V, B) C Cy(G, B) and
[pV] € KKO<CO(G7 B)7 CO(G7 B)>7

r9(x) ®c,(q,p) PVl = ¥ @cw,p) [90] ®c,(6,p) [PV = ¥ ®cw,p) [6y] = ¢ (%).

In particular,

rél(x) ®c, (B [PVl = rol(x) ®c,(c,B) [PUl-
By the noncompactness of G and the properness of its action on itself by left translation, choose g € G
such that gU NU = (). Taking V = gU U U, we see that r%!(x) ®c,(,B) [Pgu] = 0. Let o and j be the
actions of G on A and C,(G, B) respectively. Because x € KKF (A, Cy(G, B)),

[a,1] ®4 79 (x) ®c, () Byl = rél(x).
Hence

(1] ®4 TN (X) @y 6.8y [Pgr] ®cy(G,B) 18] = [g1] ®4 791 (X) @, (a,m) [By] ®c,(c.m) [PU]

=r&l(x) ®c, () [Pul

and so r1(x) = 0, as required. O
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As a consequence, we have the following counterpoint to Corollary 1.1.11.

Proposition II.1.15. Let G be a locally compact group and A and B be G-C*-algebras. Let K be a
compact subgroup of G. Call the inclusion 1  : K < G. The homomorphism

Ui 67K : KKS(A,Gy(G, B)) - KKX(A,C(K, B))
is an isomorphism if G is compact and zero if G is noncompact and either

1. The connected component G, of the identity is noncompact or

2. A is KK-compact.

Proof. Let K be a compact subgroup of a locally compact group G. By Corollary 1I.1.11,
KKK(A,C(K,B)) ~ KK!*(A,C({e}, B)) = KK,(A, B).
With the inclusion ¢f., ¢ : {e} < G, the homomorphism
vyt KKE(A,Cy(G, B)) —» KK (4,C({e}, B)) = KK, (4, B)

factors through
L*K,GTGVK ; KK*G(Aa CO(Gv B)) - KK*K(Aa C<K7 B))

so one is zero if and only if the other is zero.

If G, is compact but G is noncompact and A is KK-compact, the result follows directly from
Proposition II.1.14. On the other hand, suppose that the connected component G, of the identity
is noncompact. Let K, be the maximal compact subgroup of Gy. With ¢ ¢ : Gy < G and
Li,,G, P Ko < Gy and iy g+ {e} < K| the inclusion homomorphisms,

* G,1 _ % * * G,1
L{e}7G er - L{e}ﬁKO © LKOVGO © L007G or ’

So it will suffice for 1. to show that
L%O,GO ; KK*(A’ CO(G07 B)) - KK*(Av CO(KOa B))

is zero. By [CH16, Theorem 2.E.16], G, is homeomorphic to R™ x K|, for some n > 1. The class
[tk,.6,) € KKo(Cy(Gy), Co(Kyp)), which implements ¢} by the external product on the right, is
equal to o (k) (W) where w € KK, (C, Cy(R"™)) is the class given by point evaluation (unique because
R™ is path connected). But, since R"™ is path-connected and noncompact, w is homotopy equivalent
to zero, and we are done. ]

Remark 11.1.16. Let G be a locally compact group and let A and B be G-C*-algebras. If H is an open
subgroup of G, there are inclusions

AiAx, H= A, G p:Bx. H<= Bx,G.

It is routine to check, using in particular the nondegeneracy of A and u, that the diagram

G
KKC(A,B) - KK,(Ax, G,Bx,G)

\

e KK.(Ax, H,Bx,G)

/

H
KKH(A,B) -5 KK,(Ax, H Bx, H)
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commutes. As a special case, with the inclusion p’ : Cy(G, B) X, H < Cy(G, B) x,. G, we have the
commuting diagram

G
KKC(A,Cy(G,B)) —— KK,(Ax, G,Cy(G,B)x, Q) =~ KK,(Ax, G,B)

l*

rG.H KK, (Ax, H ,C)(G,B)x, G) 2 KK,(Ax, H,B) -
MLT
KKH(A,C,(G, B)) " KK,(Ax, H,Cy(G, B) %, H)

In particular, if G is noncompact and H is a compact open subgroup, Proposition II.1.14 implies that
N : KK, (Ax, G, B) - KK,(Ax H,B)

is zero on the image of K KC (A, Cy(G, B)) under the descent map. Taking into account Baaj—Skandalis
duality, this implies also that

AN orGl: KK9(Ax, G B) = KK,(Ax H,B)

is zero.

Remark 1.1.17. Let G be an locally compact group, A a G-C*-algebra, and B a C*-algebra with
the trivial action of G. Let H be an open subgroup of G and denote by A, and A, the inclusions
Ax,. H > Ax,.Gand Ax, H > Ax,G. Let 7 and 75 be the quotient maps Ax, G - A X, G and
Ax, H— Ax, H, respectively. With ¥& and U the dual Green—Julg maps, the diagram

KKS(Ax, G,B) —— KK,(Ax, G,B) —%= KK,(Ax, G, B) <X~ KKE(A,B)

lx; l,\; lTG,H

KK,(Ax, H,B) —"5 KK,(Ax, H,B) ¢— KK!(4,B)

commutes. As a consequence, if G is infinite and discrete and H is a finite subgroup, because the dual
Green-Julg maps ¥¢ and ¥ are isomorphisms,

rGH o (W) Lo 0rGl : KKC(Ax,, B) - KKX(A, B)
is zero. In particular, if A= B = C,
rGH o (W) 107 0rGl: KKC(CHG),C) - KKX(C, Q)

is zero, which means that, for x € KK*G(A X, G, B), the element (V%)~1 o7 o r&1 of KKC%(C,C)
cannot be 1 nor any of the generalised y-elements discussed at the end of §1I.1.1.

Remark 1.1.18. Let G be a (countably) infinite discrete group. For any finite subgroup K of G, denote
by Ak ¢ the inclusion C*(K) < C(G). Remark 11.1.16 says that

N orGl: KKS(CHG), C) - KK,(C*(K),C)

is zero. Let x € KK*GY(C;*(G), C). If p € C¥(G) is a projection supported on K, that is, inside the
subalgebra C*(K), representing a class in K,(C?(G)), then its pairing with r%!(x) is

[p] ®cu(c) ré(x) = [p] ®c+(k) (A Bcx () ré1(x) = 0. (I.1.19)

Suppose that
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1. C*(QG) satisfies the Universal Coefficient Theorem;

2. K,(C!(Q)) is free and represented by projections in C;'(G) which are supported on finite subgroups
of GG; and

3. K,(CX(G)) is zero.
For example, G could be

o The free product of a finite number of finite groups [Cun83, §3]; or

o The (countable) direct limit of finite groups, including any torsion abelian (discrete) group, such
as the Priifer p-group Z(p*°) cf. [Bla98, Definition 22.3.4(N2)].

(We remark that, by [Tu99, Théoréme 9.3, Proposition 10.7], a sufficient condition for C}(G) to
satisfy the Universal Coefficient Theorem is that G have the Haagerup property; see [CCJIJVO01].) By
the Universal Coefficient Theorem [Bla98, Theorem 23.1.1] and the freeness of K, (C}(G)), there are
isomorphisms

KEKy(C}(G),C) = Hom(Ky(CH(G)),Z) KK, (C}(G),C) = Hom(K, (C(G)), Z) = 0.

In particular, if an element y € KK (C}(G),C) pairs trivially with every element of K,(C!(G)),
then y = 0. By assumption, all the elements of K,(C}(G)) are supported on finite subgroups. So, if

x € KKE(C*(G),C), (I1.1.19) implies that 7¢1(x) = 0. In other words, the forgetful map
r@t KKS(C7(G), €) = KK, (CH(G),©)

is zero. By Baaj—Skandalis duality, this implies also that the descent map
i s KKZ(C,Gy(G)) — KK, (C}(G), )

is zero.

We shall show in Example II.3.18 that, for a free product H; * H, of finite groups H; and H,, the
KK-group A
KKZ(C}(G),0)

1

is nonzero, so the forgetful map rGl s really losing substantial information.

II.2 Unbounded Kasparov modules from weights on groups

II.2.1 Length functions and weights on groups

The building of spectral triples for group C*-algebras has its origin in Connes’s 1989 paper [Con89].
There is actually more than one such construction present in the article, but the most influential has
been the first. A length function on a discrete group G is a map £: G — R such that

L. £(gh) < £(g) + £(h),
2. U(g7t) =£(g), and
3. L(e)=0

for g,h € G and e the identity. If, in addition, (1 + ¢2)~! € C,(G), then
(CH(G), (G), My) (I.2.1)

is a spectral triple, where the operator M, is multiplication by ¢ [Con89, Lemma 5].
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Any isometric action of G on a metric space (X, d) and choice of a point z, € X gives rise to a
length function ¢ : g = d(g - zy, 7). By Proposition A.2.2, the condition that (1 + ¢2)~! € Cy(G) is
equivalent to the properness of the action. Conversely, given a length function ¢ on G, the expression
d: (g,h)  £(gh™') defines a pseudometric on G and gives rise to a metric on the quotient space of G
by the equivalence relation g ~ h <= d(g,h) = 0.

The isometry groups of spectral triples of the form (II.2.1) were studied by Park [Par95a, Par95b].
More recently, other authors have considered the quantum isometry groups [BS10] and e.g. [GB16,
Chapter 8|. Rieffel addressed whether the construction gives rise to a compact quantum metric
space, first for G = Z™ [Rie02] and later, with other authors, for hyperbolic [OR05] and nilpotent
groups [CR17]. In [BCLO6], spectral triples for group C*-algebras were considered for their categorical
properties. The length functions were here allowed to be RR-valued to include the number operator on Z.
Following the construction of spectral triples for crossed products by Z in [CMRV08, BMR10] spectral
triples for crossed products by discrete groups in general were constructed in [HSWZ13, Pat14].

In spite of the pervasiveness of the use of length functions to build spectral triples of the form
(II.2.1), the construction suffers from a serious drawback. Since the operator M, is positive, the
spectral triple must represent the zero class in the K-homology of C*(G). Even where the length
function is allowed to be R-valued, no serious attempt has been made to produce examples other than
the aforementioned number operator on Z. In [Rub22, AGIR22|, where spectral triples for twisted
crossed products are considered, the length function is permitted to be matrix-valued, cf. [HSWZ13,
Remark 2.15]. Still, beyond Z™, no new examples are given. Further, this loosening to matrix-valued
weights comes at the cost of the geometrical interpretation of £ as a (pseudo)metric on G. A further
generalisation can be found in [GRU19, §2.2.4], in which semifinite spectral triples are built from
weights valued in bounded operators on an infinite dimensional Hilbert space.

We will consider how the situation can be remedied, using both ingredients dating back a half-century
and new ideas. We also work in the generality of locally compact groups although, for nondiscrete G,
C*(G) is non-unital and so we enter the realm of non-compact noncommutative geometry. We make
the following boilerplate definition.

Definition II.2.2. Given a locally compact group G and a finite-dimensional complex vector space V,
a weight is a continuous function
{:G — EndV.

If Vis Z/2Z-graded, we require that £ be odd. We say that £ is

o self-adjoint if £* = ¢;
o proper if (1+ ¢*0)7! € Cy(G,End V) = Cy(G) ® End V; and

o translation-bounded if, for all g € G, sup, _, [€(gh) —£(h)| < co and there exists a neighbourhood
U of the identity in G such that sup__;;, [€(gh) —£(h)| < oco.

When G is discrete, our definition coincides with [Rub22, Definition 6.1].

For the following, we use the notion of a k-space; see e.g. [Wil70, Definition 43.8]. (Further details
can be found in Appendix A.1.1, particularly in Definition A.1.6.) Note that any locally compact space
is a k-space.

Lemma II.2.3. Let X be a k-space, Y a locally compact Hausdorff space, and E a locally convex
complete topological vector space. Let f : X x Y — E be a continuous function. The following are
equivalent:

1. The function A(f) : X — C(Y, E) given by A(f)(x)(y) = f(z,y) is an element of C(X, C,(Y, E)p),
where B is the strict topology; and

2. For every compact subset K C X, sup__,. erHf(:c,y) | < oo.
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Proof. To show 1. = 2., suppose that ¢ € C(X,C,(Y, E)g). Let K be a compact subset of X. Since
K is compact, its image under ¢ is also a compact set ((K) C (Y, E)z. A compact subset of a
topological vector space is closed and bounded so, in particular, ((K) is bounded in x. By [Buc58,
Theorem 1(iii)], ((K) is uniformly bounded, i.e. sup__, . [f(z,y)] < ococ.

We now show 2. = 1.. By e.g. [Eng89, Theorem 3.4.3] (cf. [Eng89, §2.6]), a function f: X xY — E
is continuous if and only if A(f) € C(X,C (Y, E), ), where k is the compact-open topology on C(Y, E).
Assume 2. holds. By taking K = {z} for each x € X, we obtain that ( € C(X,C,(Y,E),). Now
let K be any compact subset of X. By [Buc58, Theorem 1(iii)], {(K) is bounded in 8. By [Buc58,
Theorem 1(iv)], on any S-bounded set, 8 and k coincide. Hence the restriction (|, is an element
of C(K,G,(Y,EndV)g). By e.g. [Wil70, Lemma 43.10], the fact that (|, € C(K,G,(Y, E)g) for all
compact subsets K C X is equivalent to ¢ € C(X,Cy(Y, E)g). O

Lemma II.2.4. Let G be a locally compact group, V a finite-dimensional complex vector space, and
{: G — EndV a weight. The following are equivalent:

1. For all g € G,
sup [[£(gh) — £(h)[ < oo
heG

and there exists a neighbourhood U of the identity in G such that

sup [[€(gh) — £(h)| < oo.
geU,heG

2. For every compact subset K C G,

sup [£{(gh) — £(h)| < oc.
geK ,heG

3. The function ¢ : G — C(G,End V) given by
C(g)(h) = t(gh) — £(h)
is an element of C(G, G,(G,End V')g), where 8 is the strict topology.

Proof. Suppose that 1. holds and let K be a compact subset of G. The open sets (Ug) gek cover K.
Let Ug,,...,Ug, be a finite subcover. We have

sup [[€(gh) —£(h)| < max  sup [€(gh) — £(h)]
geK ,heG 1<i<k geUg,,heG
— max sup [(ggr"h) — €]

1<i<k geU,heq@

< max su 0(gg;*h) — L(g;th)| + |€(g;th) — (R

max swp (|90 ) — E(ar W] + 12007 ) — €0

< sup [é(gh) — £(h)] + max sup [[€(g; 'h) — £(h)]
geU,heG 1<i<k peg

< 00,

that is, 2. is satisfied.

Suppose that 2. holds and, by the local compactness of GG, take an open neighbourhood U of the
identity in G contained in a compact set K. Then

sup [[€(gh) —£(h)| < sup [£(gh) —£(R)| < oo,
g€U,heG geK ,heG

so 1. is satisfied.

That 3. < 2., is a consequence of Lemma II.2.3 with f : G x G — EndV given by f(g,h) =
£(gh) — £(h). By the continuity of £ and of group multiplication, f is continuous and, furthermore,

¢=A(f). O
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In our construction of weights from directed length functions in §11.3, we will have a bound
sup [[€(gh) — £(h)[ = [£(g)l),
heG

which implies the translation-boundedness of /.

Remark 11.2.5. Let X be a locally compact Hausdorff space and V a finite dimensional complex vector
space. The *-strong topology on End*co( X) Co(X,V) = Cy(X,V) coincides with the strict topology
on Cy(X,V). This follows from the definition of each topology and the finite-dimensionality of V; for
further details see [Gab21].

Example II1.2.6. cf. [Rub22, Examples 6.2-3] Let G be a compactly generated locally compact abelian
group. There is an isomorphism

G2R™xZ"x K

for integers m, n, and a compact group K, see e.g. [CH16, Example 5.A.3]. The group G acts properly
on R™*™ by translation, with K the stabiliser at every point. Let (v;)1™ be a basis of R™*". To
simplify notation, we will also write (v;)!*{™ for their images in €¢ Let V be a Clifford module

for €7,,,, and define a weight £ : G — End V on the group by

m+n-

m+n

l(g) = Z 9;v;

where g, is a real or integer component of g. The self-adjointness of v; € €7,,,, means that £ is
self-adjoint. The weight ¢ is a homomorphism from G to the additive group of End V] so

[£(gh) — £(R)] = 1Ie(g)l

for all g,h € G. We have

m-+n

£g)* = Z gigj<vi | Uj)a
i,j=1
which is a positive-definite quadratic form in g, and so £ is proper.

Example II.2.7. Let K be a compact group. Let V be equal to the Z/2Z-graded vector space C & 0
and let £ : k — 0. Because K is compact, £ is proper; it would not be otherwise.

Example II.2.8. Let k be a local field with absolute value | - [, such as R, C, @, or F,(()). Define a
weight £ : k* — C for the multiplication group of k by ¢(a) = log |a|. The weight is clearly self-adjoint,
and being, in fact, a homomorphism, is translation bounded. The weight ¢ is proper since the subgroup
|k*| of R* is either all of R*, if k is archimedean, or equal to ¢Z for some ¢ > 1, if k is nonarchimedean.

On the other hand, let &k be a locally compact field with absolute value | - | which is not local. Then
| - | must be the trivial absolute value, giving k the discrete topology. Then |k*| = {1} and, if we define
£:a —loglal, £ is zero. Only if k is a finite field is £ a proper weight.

If we had a third hand, we could consider a field k with absolute value | - | which is not locally
compact. As k™ is not necessarily locally compact, let us equip it with the discrete topology. Suppose
further that |k*| is a dense subset of R*. For instance, consider @ with the usual archimedean absolute
value, in which case |Q*| = Q}, or consider the p-adic complex numbers C,, for which |C}| = @, for
some ¢ > 1. Let £: a — log|a|. Although ¢ is self-adjoint and translation bounded, it is not proper.
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II.2.2 Fell bundles

One of the goals of this Chapter is to study KK-theory for dynamical systems and to provide tools
for the future study of such. Partial dynamical systems are naturally captured by the ideal of a Fell
bundle. A standard reference from this point of view, in the discrete group case, is [Exel7].

Definition I1.2.9. [FD88b, Definitions VIII.2.2,3.1,16.2] cf. [MWO08, Definition 1.1] A Fell bundle
3B over a locally compact group G is a Banach bundle over G with a continuous bilinear associative
multiplication map - : B X B — P and a continuous conjugate-linear antiautomorphic involution
*: B — P, such that

1BgBthhand( ) CB—l,

2. The fibre B, at the identity e € G is a C*-algebra with respect to the multiplication, involution,
and norm on %; and

3. For each g € G, the fibre B is a partial imprimitivity B,-B,-bimodule with the module actions
determined by the multiplication on & and inner products given by

B, (a|b) = ab” (a|b)p, =a"b
for a,b € B,.

These axioms imply that B, .. is isomorphic to the dual bimodule of B, by the involution and that
multiplication induces an isomorphism of B; ® g B, with a partial imprimitivity B,-B,-subbimodule
of By, [MWO08, Lemma 1.2].

Definition I1.2.10. [EN02, Definitions 2.2,7, Proposition 2.10] Let % be a Fell bundle over a locally
compact group G. A section of & is a continuous function y from G to % such that y(g) € B,.
The space of compactly supported sections is denoted C.(9). The convolution product of sections
y,z € C.(AB) is given by

(v2)(g) = / y(h)=(h"g)du(h).
G

The adjoint of a section is given by y*(g) = A(g~!)y(g~')*. With these operations, C,(2) is a x-algebra.
The Hilbert B,-module L?(%) is defined as the completion of C,(%) under the B,-valued right inner
product given by

€l mp, = (Ene) =/ £(g)n(g)dul(g)  (§,n € C.(RB)).
G

The representation of C,(%) given by left multiplication on L?(%) when completed gives the reduced
C*-algebra C(%). The elements of & itself act naturally as multipliers on C(%).

The Fell bundle & gives its C*-algebra C*(%) a canonical G-action § [EN02, Proposition 2.10] cf.
[KMQW10, Proposition 3.1, Remark 3.2]. The coaction § : C*(%B) — M(C} (%) ® C}(G)) is given by

5(y)=/y(g)®ugdu(g) (y € C.(R)), (I.2.11)
G

where u, € M(C;(G)) are the unitaries corresponding to elements of G. Indeed, [Qui96, Corollary
3.9] says that a C*-algebra A is isomorphic to C(%) for some Fell bundle % over a discrete group if
and only if A has a coaction of G and the conditional expectation to its fixed point algebra is faithful.
This is very far from being true for a non-discrete group; see [LPRS87, Example 2.3(6)]. The Hilbert
B,-module L2(%) also carries a G-action (with G acting trivially on B,), given on C,(%) C L2(%) by
the same formula (II.2.11), for which the representation of C*(%) is G-equivariant.
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Examples 11.2.12.

1. [FD88b, Example VIIL.2.7] The group bundle % is defined as C x G as a Banach bundle over G.
We define multiplication on 9% by

(Z, g) <w7 h) = (zw, gh)

and an involution by
(z,9)" = (Zg7")
There is an isomorphism between C} (%) and C(G).
2. [FD88b, §VII1.4.2] Let A be a C*-algebra with an action « of a locally compact group G. We

define the semidirect product Fell bundle % as A x G as a Banach bundle over G. We define
multiplication on & by

(a,9)(b, h) = (acy(b), gh)
and an involution by

(a,9)" = (ag1(a)",g71).
There is an isomorphism between C(%) and A %, ,. G.

3. [Exe97, ELI7| cf. [FD88b, §VII1.4.7] Let A be a C*-algebra and G a locally compact group. A
twisted action of G on A is a continuous map « : G — Aut(A) and a strictly continuous map
0:Gx G— UM(A) to the group of unitary multipliers of A, satisfying

a, =idy a,oa, = Ad(a(g,h)) o ay,
a(g,e) = ole,g) = 1 (g, h)a(gh, k) = ay(a(h, k))o(g, hk).

The twisted semidirect Fell bundle & is defined as A x G as a Banach bundle over G. We define
multiplication on & by

(a,9)(b; h) = (acry(b)a(g, h), gh)
and an involution by
(a,9)" = (az1(a)*a(g™!,9)",97").
There is an isomorphism between C(%) and the reduced twisted crossed product C*-algebra
Axg .G

4. [FD88b, §VII1.4.8] Consider the special case of 3. when A = C (and so @ = id). Then o :
G x G — T is just a 2-cocycle. The twisted group bundle 9B is C x G as a Banach bundle over G.
Multiplication on & is given by

(2,9)(w, h) = (zwo(g, h), gh)

and involution by
(z,.9)" = (zo(g7",9)" 97 ).
There is an isomorphism between C;(%) and the reduced twisted group C*-algebra C(G, o).

II.2.2.1 Saturated and fissured bundles

In [CNNRI11, §2.1], an unbounded Kasparov module is constructed from a C*-algebra A with a circle
action to its fixed-point algebra, under a certain assumption. This condition, the spectral subspace
assumption, is a weakening of the condition of saturation. We will give the following generalisation,
which reduces to [CNNR11, Definition 2.2] when G = Z. In the case when G is discrete, the condition
is simpler to state and Theorem II.2.14 can be proved along the lines of [CNNR11, Lemmas 2.4,8].
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Definition II.2.13. cf. [CNNR11, Definition 2.2] Let 9 be a Fell bundle over a locally compact group
G. Let & be the continuous field of C*-algebras over G with fibre

B,=B,®p B, =Endy (B,) < B,
at g € G. The C*-algebra of its continuous sections I}y(2) is an ideal of Cy(G, B,). We say that & is
fissured if T (%) is a complemented ideal of C(G, B, ), that is, when there exists an ideal J < Gy (G, B,)
such that Cy(G, B,) = I)(%) ® J. If [,(B) = G4(G, B,), i.e. B, = B, for all g € G, & is saturated
[FD88b, Definition VIII.2.8].

For instance, all of Examples I1.2.12 are saturated [FD88b, §4.3,7]. Fissuration is not to be confused
with semi-saturation [Exel7, Definition 16.10(b)]. An example of a Fell bundle which is fissured but
not saturated is that associated to the partial Bernoulli action of a discrete group G; see [Exel7,
Definition 5.12] and also [Exel7, Proposition 5.7].

Theorem I1.2.14. Let & be a Fell bundle over a locally compact group G. Let
Q:C*(B)x G — End* (L2(RB))

be the integrated representation. Then the image of 2 is End®(L?(RB)) if and only if B is fissured.
Further,  is an isomorphism from C*(#B) x G to End®(L?*(RB)) if and only if B is saturated.

To prove this, we will use a result of [Abal8]. (Note that the arXiv version [Abal8] corrects an error
in the published version [Aba03] of the article.) By [Abal8, Proposition 9.1], there is a presentation of
Cx(RB)x G as a C*-algebra of kernels. A compactly supported continuous function k£ : G x G — B
such that k(g,h) € B,,-1 is a compactly supported kernel of %. By [Abal8, Proposition 6.1], the set of
such kernels forms a x-algebra k_(9) with the convolution product

(kyk) (9, h) = / 1 (0, 8k (5, ) dpa(s)
G

and involution k*(g,h) = k(h, g)*. There is an integrated representation 2 of k,(%) on L?(%B) given
by (2(k)¢)(g) = fG k(g,h)¢(h)du(h). There is in addition a faithful representation of k(%) on

L2?(%) ® L*(G) under which the norm completion of k(%) is isomorphic to C*(%) x G.

Proposition I1.2.15. [Aba18, Proposition 6.9] Let B be a Fell bundle over a locally compact group G.
Let

Q:C*(B)x G — End* (L*(RB))

be the integrated representation on the Hilbert B,-module L?(B). There is an ideal I C C*(RB) %, G

which is represented faithfully by Q as Q(I) = End®(L?(B)). The ideal

T

I = {k € k.(B) | k(g,h) = &(g)n(h)", €§,n € C.(B)}
of k(RB) is dense in I. The kernel of Q2 is equal to the annihilator ideal

Jz{aeCT*(%’)xé Vm’EI,asz}.

In particular, the image of Q is End®(L?(RB)) if and only if I is a complemented ideal and Q is an
isomorphism from C*(B) x G to End®(L*(B)) if and only if I = C*(B) x G.

In particular, [Abal8, Proposition 6.9] already implies the saturated case of Theorem II.2.14.
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Proof of Theorem II.2.14. First, let
10 ={k € k(%) | k(g,h) € B, ®p_By-1}

An application of [FD88a, Theorem I1.14.6] gives us that I, is dense in I in the inductive limit topology
and so that the norm closure of I/ is I.
Second, the algebra C,(G, B,) acts on k(%) by

(FE)(g:h) = f(9)k(g,h)  (kf)(g:h) = k(g,h)f(h)  (f € GG, Be), k € k.(B)).

These extend to a nondegenerate injective *-homomorphism ¢ : Cy(G, B,) — M(C*(%) x Q).
Suppose that C(B) x G = I & J for an ideal J of C¥(%) x G. Then there exists a projection
P e M(C} (%) xG) such that

P(C*(B)xG) = (C*(B)xG)P =1.
At g € G, Pis given by the projection P(g) € End%e(Bg) = Eg for which
P(g9)By+ = B, ®p_ By Byg-1P(9) = By, ®p, By
Since P(g9)B, = B, ®p_B,1 = Eg, we have
Py(C.(G, B,)), »(C.(G, B,))P C ¢(L.(B))-

For a € Bg, choose b € B, such that P(g)b = a. Then, choosing f, € C.(G, B,) such that f,(g) = b,
we obtain f; € Pp(C,(G, B,)) such that f;(g) = a by taking
fi(h) = (Po(fo))(h).

Similarly, we can find f, € ¢(C.(G, B,))P such that f,(g) = a. Applying [FD88a, Corollary I1.14.7],
we obtain that

Py(Gy(G, B,)) = ¢(Gy(G, B,))P = p(Ly(%)).

A

This means that Cy(G, B,) = I,(%) ® J" where

p(J) = (1= P)p(G(G, B,)) = ¢(Go(G; B,)) (1 = P).

A

On the other hand, suppose that 3 is fissured. Because I})(9%) is a complemented ideal of Cy(G, B,),
there is a projection p € M(Cy(G, B,)) = G,(G, M(B,) ) such that

pGy(G, B,) = Gy(G, B,)p = F0(9§>'
At g € G, p is given by the projection p(g) € M(B,) for which
p(9)B. = B.p(9) = B,

Since
p(9)Byp-+ = B, ®p, By1 ®p_ Byy-1 € By ®p, By

and
Bg ®Be Bh—l - Bg ®Be Bg—l ®Be Bg ®Be Bh—l g Bg ®Be Bg—l ®Be th—l,

we have p(g)By,-1 = B, ®_ B, and, similarly, B, 1p(g) = B, ® g By-1. This means that

o(p)k.(B), k. (B)p(p) C L.
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For a € B, ®p_Bj,-1, choose b € By,-1 such that p(g)b = a. Then, choosing f, € k.(9%) such that
folg,h) = b, we obtain f; € ¢(p)k.(%) such that f;(g,h) = a by taking

fi(h) = (e(p) fo)(h).

Similarly, we can find f, € k,(%)y(p) such that f,(g,h) = a. Applying [FD88a, Theorem II.14.6], we
obtain that

o(p)(C;(B) 1 G) = (G (B) % G)plp) = 1.
This means that C*(%) x G = I & J where
J = (1 9(0)(C:(B) % C) = (C:(5B) % C)(1 - 9(p)).

By Proposition 11.2.15, Q(C*(%B) x G) = End®(L2(%)) if and only if I is a complemented ideal, in
other words

I®J=CHB)xG.

Hence, I < (C*(%B) x G) is complemented if and only if T, (%) < Cy(G, B,) is complemented. O

Remark 11.2.16. Let A = C*(%B) %, G as a G-C*-algebra and denote by A the same C*-algebra with
the trivial G-action. Applying Baaj-Skandalis duality and the Morita equivalence between B, and
End®(L%(%)),

KKE(Cr (), B,) = KKS(A,Cy(G, B,))
~ KKS&(A,Cy(G,End®(L?(R))))
~ KKC(Ax, G,End’(L%(R))),

where B, and End®(L2(%)) both carry the trivial G- and G-actions. By forgetting the G-equivariance,
we also obtain an isomorphism

KK,(C} (%), B,) = KK, (A%, G,End’(L*(%))).
If & is saturated, A is isomorphic to End’(L?(%)), so
KKS(C;(B), B,) = KKE(A,C(G, A) = KKE (Ax, G, A)

and KK, (C¥(%),B,) =~ KK,(Ax, G,A). If & is not necessarily saturated, by Proposition II.2.15,
End®(L?(%)) is isomorphic to an ideal of A, so we have homomorphisms

KKC(C!(B),B,) « KKC(A,C,(G, A)) =~ KK (Ax, G, A)

and KK,(C*(®B),B,) + KK,(Ax, G, A). If B is fissured, by Theorem I1.2.14, End®(L?(R)) is
isomorphic to a complemented ideal in A, so there are injections

KKC(CH(B),B,) < KKC(A,Cy(G, A)) =~ KK (Ax, G, A)
and KK,(C*(®),B,) < KK,(Ax, G,A), making KKS(C*(%),B,) and KK,(C*(%®),B,) direct

summands in each case. Throughout, recall also that, by Remark II.1.10, Cy(G, A) is G-equivariantly
isomorphic to Gy (G, A).
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II.2.2.2 Partial cross-sectional bundles

An important method for constructing Fell bundles is to take an existing Fell bundle over a locally
compact group G and form a new bundle over G/N for some closed subgroup N. We here give a brief
account of these partial cross-sectional bundles, as introduced in [FD88b, §VIII.6]; however, we here
use the reduced C*-algebraic completion rather than the L' completion.

Let N be a closed normal subgroup of a locally compact group G. Recall that the modular function
Ay of N is the restriction of the modular function A, of G [DE14, Corollary 1.5.5]. We choose Haar
measures fi, fy, and pig/n to be normalised such that

/ f(g)duc(g /G/N/ flgn)duy(n)dug/n(g)

for all f € C,(G). This can always be done; see e.g. [DE14, Theorem 1.5.3]. We note that, for
feC.(N)and g€ G,

[ #ahg™dun(n) = AG/N / F(h)dpn(h (11.2.17)

by [FD88a, Proposition II1.13.20].

Definition I1.2.18. Let N be a closed normal subgroup of a locally compact group G. Let B = (Bg) e
be a Fell bundle over G. We define the restricted Fell bundle By = (B,) c - Over each coset sN € G/N
we also define a Banach bundle B,y = (B,) csn- Let Cy = C(%By) be the reduced cross-sectional
C*-algebra. For ¢ € C.(%B,y) and ¢ € C.(%B,y), we define ¢y € C,(B,,n) by

= [otsmwts  ghdun(h) = [ ot ghyw(h () (1.2.19)

for g € stN. Again for ¢ € C,(%B,y), we define ¢* € C.(B,-1y) by
¥\ — e Agle ) _ e Aglg™h) 1.2.20
¢"(9) = d(g™) Ron(g TN) ¢(g) g (s TN) (I1.2.20)

for g € s7IN. For ¢, € C,(B,y), using (11.2.17), ¢*h € C.(By) is given by

o) = [ ety uin ) 22 )

= / G(th™!)"y(th~g) AG/N({; 11\[) AA;%N)) dpuy ()

- / B(th)*(thg)dpn(h) (I.2.21)

for g € N. We define left and right C,(%y)-valued inner products on C,(%, ) by

oyl ) =¢y" (b, =Y (4,9 € C(Bin))-

By [RW98, Corollary 3.13], the completion of C,(%,y) is a partial imprimitivity Cy-Cy-bimodule,
which we call C,y. We denote by € the bundle (C,n)¢nyeq v over G/N. Every element y € C,.(%)
gives rise to a cross-section § of € given by §(tN) = y|,n. Applying [FD88a, Theorem I1.13.18], we
obtain that % is a Banach bundle and § € C,(€). The multiplication and involution on % defined
by (II.2.19) and (I.2.20) make & a Fell bundle over G/N; the continuity of these maps follows as in
[FD88b, §VIIL.6.4-5]. We call € the reduced partial cross-sectional Fell bundle.
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Let us consider the Hilbert Cy-module L?(%). For £,1 € C.(€), we have
€1mey = [ €N (sN)dpgyn(sN).
G/N

Let y, 2z € C,(%), with their corresponding elements §, Z € C,(€). The inner product (7 | Z)¢, is then
an element of C,(%By), given by

@1 e, (9) = /G TN N )iy (s)
N

:/ / y(sh)*z(shg)dpy(h)dpgn(sN)
G/NYN

- / y(s)*2(sg)dupn(h)dpg(s)
G
= (y"2)(9)

using (I[.2.21). Let v,¢ € C,(By) C L*(By); then yv and 2¢ are elements of C,(&) and
Hev|20Qp, = (v (¥ 2, n, = (Y 2)¢)(e) = (yv)*(2¢))(e) = (yv | 2() , -

Hence, the inner products on L?(®) ®cy L?(%By) and L%(B) agree on their common subset C,(%).
By definition, C,(9%) is dense in L?(%); by [FD88a, Theorem 11.14.6], C.(%) is dense in L?(¥). Hence
L?(®) ®c, L?(RBy) is isomorphic as a Hilbert B,-module to L?(%). Again using [FD88a, Theorem
I1.14.6], we thus obtain that the C*-algebras C(%) and C/(%) are isomorphic, both containing the
dense x-subalgebra C,(%); cf. [FD88b, Proposition VIIL.6.7].

Example I1.2.22. cf. [FD88b, Definition VIII.6.6] Let N be a closed normal subgroup of a locally
compact group G. Let 9% be the group bundle over G, of Example 11.2.12.1. The reduced partial

cross-sectional Fell bundle € over G/N is called the (reduced) group extension bundle. Its fibre at
N € G/Nis C*(N).

Proposition I1.2.23. c¢f. [FD88b, Proposition VIII.6.8] Let N be a closed normal subgroup of a locally
compact group G. Let B be a Fell bundle over G and € the reduced partial cross-sectional bundle over
G/N. If B is fissured, € and By are fissured and, if B is saturated, € and By are saturated.

Proof. Suppose that & is fissured. That is, with % the continuous field of C*-algebras over G with
fibre
B, =B, ®p B;:

at g € G, the C*-algebra of its continuous sections I},(%) is a complemented ideal of Cy(G, B,). Tt
is immediate that 3By is fissured, and saturated if & is saturated. Let & be the continuous field of
C*-algebras over G/ N with fibre

CsN = CsN ®C’N Csle

at sN € G/N. We have nondegenerate injective x-homomorphisms ¢, : Cy(G, B,) — M (G, (G, Cy))
and ¢, : Co(G/N,Cy) = M(Cy(G, Cy)). Because I}}(%) is a complemented ideal of G, (G, B,), there
is a projection p € M(C,(G, B,)) such that

Gy (G, B,) = Gy(G, B.)p = Po(gg?)-
At g € G, p is given by the projection p(g) € M(B,) for which

p(9)B, = B,p(g) = B,.
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Recall from the Proof of Theorem 1I.2.14 that

Bg ®Be Bg—l ®Be th = Bg ®Be Bh = th ®Be Bh—l ®Be Bh

One can check, then, that C,y = p(s)Cy = Cyp(s). Proceeding as in the Proof of Theorem 1I.2.14, we
obtain that

p1(0)p2(Co(G/N, Cy)) = p3(Co(G/N, Cy))1 (p) = ¢2(T (%))
which means that Ij,(€) is a complemented ideal of Cy(G/N,Cy). If & is saturated, p = 1; hence also

)
¢, (p) =1 and so Ij( ):C(G/N,CN). O
II.2.3 Two unbounded Kasparov modules from weights

For the proof of the following Theorem, we take from Lemma A.3.3 a basic fact about the norm on a
Hilbert module. For B a C*-algebra and E a Hilbert B-module, the norm of £ € F is equal to

el — sup sup 16071
i

where the supremum is over irreducible representations 7 of Band {®ne€ EQ®, H,.

Theorem I1.2.24. ¢f. [CNNR11, Proposition 2.9] Let B be a Fell bundle over a locally compact group
G. Let V be a finite-dimensional complex vector space and £ : G — End V be a self-adjoint, proper,
translation-bounded weight. If 9B is fissured,

(CH(RB), L*(B)®V, M,)

is an isometrically G-equivariant unbounded Kasparov CY(%B)-B,-module. The Kasparov module is
even if Vis Z/2Z-graded and odd otherwise.

We shall denote the class of (CF (&), L?(B)® V,M,) in KK (C*(%),B,) by [M,].

Proof. First, recall the formula (I.2.11) for the action of G on C*(%) and L?(%). The fact that
M, acts by multiplication on each fibre of & implies that it is isometrically equivariant. Next,
recall the integrated representation Q : C*(%) x G — End*(L?(%)). Since, by the properness of £,
(14 £*)71 € Cy(G) ® End V, for all a € C(AB),

a(l4+M2)™ € QC*H(B)xG)QEnd V.
By fissuration and Theorem 11.2.14,
Q(C*(B)xG) @ EndV = End®(L%(%))  End V = End®(L*(B) ® V),

meaning that M, has locally compact resolvent.
For an element f € C,.(%) and a vector £ € C,(B) @V C L?*(B)Q YV,

(M, 116)(h) = (M, f€)(R) — (FM,€)(h)
— o(h / £(5) (M) (s~ h)du(s)

) / F()&(s™ h)dp(s / F()e(s T R)E(s  h)du(s)
= [ ()~ (7 1) ()60~ W)dns).
G
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Let 7 : B, — B(H,_) be an irreducible representation of B, and let € H, so that £ ® n € (L*(B) ®
V)®, H,. First,

(M A€ © 0| M Al 0 1) = [ (o[, 70| (0 2190 0) ) i)
G

_ /G (14, 716)(8) @3] (1M, £16)() @ ) )

where ([M,, fl§)(h) ® n € V ® B, ®, H. Continuing,
(Mg, flE®@n | [My, f1E ®n)
= [ ] ] (lem—asm) st @] e — ) stre ) o)

xdp(s)dp(t)du(h)
) /G/c (/G H(g(h) — b ) S ) @ | (m) 1/2

9 1/2
" (/ [CORGNOEGEY du(h)) dpu(s)du(t)
G

2 1/2 2
:(/ (/ [COREE N FOEEIEY <h>) du(s))
G
(/”f (s ) (/||5(h)®77||2dﬂ(h)) sup Hg(h)_f(s’lh)nz
G heG,sesupp f

—le@nlPIfIZ, sup  ||e(h) —esh)|

heG,sesupp f

using the compact support of f and Lemma II.2.4. Hence

My, flE®n
004, 71| = sup sup 171
T nmeH_ ”77”
< sup sup 1€ ® | 1£ll 2 sup Hf(h) —Z(s—lh)H
m™ neH, " ” heG,sesupp f

= lgliflze sup - leh) —£(s7m)]

€G,sesupp f
meaning that [M,, f] is bounded. O

Suppose that we have a fissured Fell bundle % and a self-adjoint, proper, translation-bounded
weight ¢ : G — End V. The unbounded Kasparov module

(Cx(®B), L*(B) @V, M,)

has class in KK*G(C,T (%),B.). Let A= C*(B) %, G as a G-C*-algebra. By Remark I1.2.16, there is
an inclusion )
KKZ(CH(RB), B,) = KKZ(A,G(G, 4)) = KK (A, G(G, A))
given by A
x = J9(x) ®p, [L*(B)*] @pna®(12(s ) 1€

where Q : A — End®(L?(%)) is the integrated representatlon. The following Theorem gives a
representative of the image of

under this inclusion.
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Theorem I1.2.25. Let G be a locally compact group, A a C*-algebra with an action o of G, and
V a finite-dimensional complex vector space. Let £ : G — EndV be a self-adjoint, proper, and
translation-bounded weight. Then

(Aa CO (G7 A® V)CO(G,A) ’ X)

is a G-equivariant unbounded Kasparov A-Cy(G, A)-module. The Kasparov module is even if V is
Z,/27.-graded and odd otherwise.

Note that (A4,CGo(G,A® V), g,a)t) = 0a((C,G(G, V) i) £)). We shall write its class in
KK(A,Gy(G, A)) as o 4([€]).

Proof. First, for all a € A, a(1+¢%)"! € C,(G,A® End V) and [¢,a] = 0.
For the G-equivariance, observe that, for an implementer U, of the action and a vector § €
Cc(G’ A ® V) - CO(Ga A ® V)a

(UgtUg — £)E)(h) = (€(gh) — £(h))E(R).

So
HUQEUQ* —EH = sup ||€(gh) — £(h)|| < o0
heG

by the translation-boundedness of £. Furthermore, by Lemma 1I.2.4, g = U Uy — £ is an element of
C(G, G,(G,EndV)g) and so *-strongly continuous into Endg, (¢ 4)(Co(G, A® V) = G,(G, M(A)5 ®
EndV). O

Corollary II.2.26. Let G be a locally compact group and V be a finite-dimensional complex vector
space. Let £ : G — EndV be a self-adjoint, proper, and translation-bounded, continuous function. Let
M, be the densely defined operator on L*(G,V) given by multiplication by £. Then

(C:(G>7 L2(G7 V)a ME)
is an tsometrically @-equz”uam’ant spectral triple and

(€. (6 V) t)

is a G-equivariant unbounded Kasparov C-Cy(G)-module. Both Kasparov modules are even if V is
Z,/27.-graded and odd otherwise.

Remarks 11.2.27.

1. If G is discrete, so that C(G) is unital, and (14 ¢2)~'/2 € £7(G, End V), the spectral triple in
Corollary I1.2.26 is p-summable; cf. [Con89, Proposition 6], [Rub22, Proposition 6.8]. There is a
well-known obstruction to the building of finitely summable spectral triples for discrete groups
with Kazhdan’s property (T), due to Connes [Con89, Proposition 19].

However, for groups with property (T), it may nevertheless be possible to build finitely summable
Fredholm modules. In [Con89, Proposition 20| a finitely summable Fredholm module is given
for the C*-algebra of G a lattice in Sp(n, 1), which has property (T), acting on the symmetric
space Sp(n,1)/(Sp(n) x Sp(1)). We shall build an unbounded lift of this in Corollary II.3.10
and Example 1I.3.12. The apparent contradiction is resolved by the fact that to obtain a finitely
summable Fredholm module, instead of the usual bounded transform M, = F,; = M (M),
the phase M,|M,|~! must be used. This phenomenon is deserving of further study. A similar
situation arises for Cuntz—Krieger algebras; see [GM15].
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2. Corollary II.2.26 also applies to twisted group C*-algebras; see Example 11.2.12.4. Remark also
that

KKS(C*(G,0),C) = KKC(CG,0)x G, Cy(R)) = KKE(C, Cy(G))

because, by the saturation of the twisted group bundle and Theorem I1.2.14, C*(G, o) X G is
isomorphic to K(L?(G)) and so Morita equivalent to C.

3. Let £ : G — EndV be a self-adjoint, proper, translation-bounded weight. Fix s € G. The
weight ¢* : G — EndV given by ¢'(g) = £(gs) is still self-adjoint, proper, and translation-
bounded. However, the difference £ — ¢’ may not be bounded if G is not abelian. Further, the
classes [¢] and [¢'] need not be the same; they are related by the right action of an element of
KKZ(Gy(G),Gy(@)) = R(G) on KKE(C,Cy(Q)).

Example I1.2.28. Continuing Example II.2.6, let G be the compactly generated locally compact
abelian group R™ x Z" x K, for integers m, n, and a compact group K. As before, we let (v;)"1" be a
basis of R™*™, let V be an irreducible Clifford module for €¢ and define a weight £: G — End V'
by

m+n?

m+n

l(g) = z g;v;

where g; is a real or integer component of g. This gives rise to an isometrically G-equivariant spectral
triple
(C*(R™ x 2" x K), L*(R™ x Z" x K, V), M,).

By Pontryagin duality, this spectral triple is unitarily equivalent to the isometrically R™ x T™ x K-
equivariant spectral triple

(Co®™ x T" x K), L*(R™ x T" x K,V), D).

Here, D is the Fourier dual of M,, the differential operator

m+n

D= wv;io,
j=1

where 0; is the partial derivative on a real line factor or a circle factor. Its square is

m+n

D% = (v, | v;)9,0,

=1

so that D is the Atiyah-Singer Dirac operator and D? the Laplacian on R™ x T" x K with constant
(inverse) Riemannian metric g/ = (v; | v;). The manifold R™ x T™ x K may have infinitely many
connected components, depending on the factor K. The class of the spectral triple is therefore nontrivial
in KK, ., (Cy(R™ x T" x K),C).

m+n

Example I1.2.29. Let K be a compact group. Let £ be the zero weight on V := C & 0. We obtain the
even spectral triple

(C*(K), L*(K) ® 0, M, = 0),

which is simply the left regular representation. The class 1 € KK,(C,C) =~ KKX(C,C(K,C)) is
naturally represented by

(C,(C(K) ®0)¢(k), £ = 0)

corresponding, in some sense, to the action of K on a single point.
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Example I1.2.30. As in Example 1I.2.8, consider the multiplication group k* of a local field k with
absolute value |-| and define the weight £ : z  log |z| € C for k*. One can check that the odd spectral
triple

(C*(k*), L (k), M)

has nontrivial class in KK, (C*(k*), C).

Example II.2.31. Again, as in Example II.2.8, consider @, with the usual archimedean absolute value,
which is not locally compact. Equip @* with the discrete topology. Let £ : @* — C be given by
{(z) = log |x|. The triple

(CHQ@), 2(Q*), M,)
fails to be a spectral triple only because the resolvent fails to be compact. However, consider the
crossed product Cy(R*) x Q*, where Q* acts by dilation. There is a representation of Cy(R*) x Q*
on £2(Q*) given by

(fu8)(@) = f(@)¢(yz)  (f € GR),u, € C*(Q¥), £ € £2(QX)).

Because Q* is dense in R*, this is a faithful representation. Furthermore, Cy(R*) x Q* possesses a

trace 7, given by
* dx
()= [ neF

yeQ*
for positive Zye(@x fyuy, € Go(R*) x@Q*. Let N be the von Neumann enveloping algebra of the

representation of Cy(IR*) x Q> on £2(Q*). We remark that, by [Tak03, Theorem 1.7, Example of (iii)],
N is of type II . Since C*(Q*) C N and
oo d o0
(1 4+ MZ)™P/?) = / (14 (log \x!)2)_p/2ﬁ = 2/ (1 +v2)7P2dv < 0o

—00 z —00

for p > 1,
(C*(Q*), 2(Q), M)

is a semifinite spectral triple; see [CP98, Definition 2.1].

It is likely that a similar technique could be used more generally to obtain semifinite spectral triples
for group C*-algebras from weights which are self-adjoint and translation-bounded but not proper. We
leave this as a topic for future investigation. We mention here also [GRU19, §2.2.4], in which semifinite
spectral triples are built for group C*-algebras from an isometric action of the group on a Hilbert
space; in that case the semifiniteness arises from the infinite-dimensionality of the Hilbert space.

II.2.4 Restriction and induction of weights

We remark that, if £ is a self-adjoint, proper, or translation-bounded weight for G, its restriction to a
closed subgroup H is also. One can use the idea of induction to go the other way, at least when G/H
is compact. We refer to Definition A.2.4 for the idea of a cut-off function.

Proposition I1.2.32. Let ¢ : H — End V be a weight for H, a closed subgroup of a locally compact
group G. Let c € C,(G) be a cut-off function for the right action of H on G. The formula

ig) = / e(98)20(s™ ) dpize(s)
H

gives a weight? on G. If £ is self-adjoint, 0 is self-adjoint. Suppose that £ is translation-bounded. Then,
for every pair K, and Ky of compact subsets of G,

sup | (gku) — 0(ku)| < co.
9K, k€K, ucH
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In particular, if G/H is compact, ¢ is translation-bounded. Suppose further that ¢ is proper. Then, for
every compact subset K of G,

(142 0 gy € Co(KH,End V).
In particular, if G/H is compact, 0 is proper.

Proof. We first check that ¢: G — EndVis continuous. For g in a compact subset K C G, the
integrand c(gs)24(s™ 1) is zero for s ¢ H N K~ ! suppc, which is a compact set. Hence, restricted to any
compact subset, ?is equal to a convolution of compactly supported functions and so continuous. An
application of Lemma A.1.7 shows that ¢ is continuous on all of G. Further, because c is positive, if £
is self-adjoint, ?is self-adjoint.

Now suppose that £ is translation-bounded. With g,k € G and u € H, we have

Bgku) ~ k) = [ elghus)?6(s dup(s) — [ clbut)ee ) dug (o)
H H

= [ elgks e wdns) ~ [ ekt et u)dug (e
H H

So

| €(gku) — £(ku)| < sup (s~ u) —L(u)| +  sup  [l(u) —£(t )]
seHNk 1g~lsuppc teHNk 1suppc
<2 sup [€(s~u) — £(u)].
s€eHNk 1{g 1,e}suppc

By the support property of the cut-off function ¢, H N supp ¢ is compact. If K’ is a compact subset of
G, HN K’ suppc is a closed subset of the compact set (K’ U {e})(H Nsupp c¢) and so itself compact.
So, with K, and K, compact subsets of G,

swp [ Eghu) — W) < 2 sup Je(s™ ) — ()] < o0
ge K, ,ke Ky, ucH s€EHNK;1{K7!e}suppc,ucH

using the compactness of H N Ky *{K; !, e} suppc and Lemma I.2.4. If G/H is compact, we can find
a compact subset K, C G such that K;H = G. Then

sup [[€(gh) —€(h)] < o0
geK,,heG

and an application of Lemma 1I1.2.4 says that ? is translation-bounded.
Suppose now that £ is proper and translation-bounded. Let k € G and u € H. We have

Z(ku)*’f(ku):/ / c(kus)?e(kut)20(s ) 0t V) d g (s)dug(t)
HYH
_ / / e(ks)2e(kt)20(s— 1) (t=20) djuy () dpi ()
/ e(ks)? (s )" 6(s ) (5) (1.2.33)

l\Dlr—\

5 [ elhsele el ) — o6 ) (el ) — 60 ) diag s) (1)
HYH
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Let K be a compact subset of G. For the second term of (1I.2.33),

sup |3 /H /H elks)e(ht)? (E(s ) — £~ w)* (0(s ™) = £ )y (5) ()|

keK ucH
1
<- sup [€(s™ u) — £(t u)|?
2 s,te HNK~1 supp c,ue H
1 _ - 2
<3 sup (le(s ) — L(u) ]| + 16(u) — (" )] )
s,te HNK~! supp c,u€ H
< 00.

For the first term of (I1.2.33), write g = ku, so that

[ elhs s tls u)dg () = [ elos)?els) el ).
H

H

Remarking that T + |77~ gives the smallest eigenvalue of a positive invertible matrix T,

-1

H </H clgs)*6ls™ ) s () ) :

> H ( / c<gs>2duH<s>> ‘

= b s (s )

teHNg 1 suppc

_ ot ”(6(871)*6(871))71”71

seHNg !suppc

Fix M > 0. By the properness of £, the set Y of s € H such that |[(¢(s71)*¢(s71))7!|~! < M is compact.
Because H is a closed subgroup of G, Y'is compact in G. Because, furthermore, H acts properly on G
by right translation and H N K~ supp ¢ is compact,
—1
< M}

C{geKH|  inf (@)@ )7 < M}

teHNg ! suppc

{g € KH H ( /H c(k:s)2€(s_1u)*@(s_lu)d,uH(s)>_1

={ge KH|YNng lsuppc # 0}

={kue KH |Y Nu 'k 'suppc # 0}
C{kue KH|YNu 'K 'suppc # 0}
Cl{kue KH|YNu '(HN K 'suppec) # 0}

is compact. Hence (1 +7Z)_1]KH € Cy)(KH,EndV). If G/H is compact, we can find a compact

—

subset K C G such that KH = G and so £ is proper. O

Remark 11.2.34. Let £ : H — End V be a translation-bounded weight for H, a closed subgroup of a
locally compact group G. For a cut-off function ¢ € C,(Q) for the right action of H on G, define the
weight ¢ : G — End V by

i) = [ elos)?tls™)dians).
H
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Notice that,

sup [ 90) — 6] = sup | [ e(ho)2(es7) — )

heH

= sup / (57 1h) — £(h))dpugg (5)

heH

S/Hc(s)Qd,uH(s) sup (s~ h) — £(h)]

s€e HNsupp c,he H
= sup [e(s™ h) — £(h)]
s€e HNsupp ¢,he H
< oo

because H N supp c is compact and ¢ is translation-bounded. Suppose that G/H is compact. By
Proposition 1I.2.32, ? is translation-bounded. And, if ¢ is also self-adjoint and proper, giving a class
in KKH(A,Cy(H, A)) for some G-C*-algebra A, the corresponding class in KKE (A, Cy(G,A)) of
Corollary II.1.11 is given by /.

Remark 11.2.35. Let K be a compact group. Because the trivial subgroup is cocompact, there is
an isomorphism KKX(A C(K,A)) ~ KK,(A,A). Let £ : K — EndV be a self-adjoint, proper,
translation-bounded, even weight. The class of

(A, C(K,V®A) ok, a,t®1)

corresponds to ind(¢(e))1 € KK, (A, A), where ind(¢(e)) is the index of the odd matrix ¢(e) with
respect to the grading. Note also that, if G is a noncompact locally compact group and £ : G — End V
is a proper, even weight, ind(4(g)) =0 for all g € G.

II.3 Directed length functions from actions on CAT(0) spaces

The use of negatively curved manifolds in the operator-theoretic treatment of group representations
is generally credited to Mis¢enko [Mis74]. In a form more reminiscent of Kasparov’s y-element, this
project was pursued by Luke [Luk77]. Here, we will give a very general construction, which can be
specialised to manifolds, trees, and CAT(0) complexes.

Definition II.3.1. [BH99, Definitions 1.1.3] Let (X, d) be a metric space. A geodesic from z € X to
y€ Xisamapc:[0,]] C R — X such that

c0 =z )=y dlct),ct)=|t—t| (tt €[0,]).

A geodesic space is a metric space in which every two points are joined by a geodesic. A subspace C of
a metric space X is conver if, for every pair of points in C, there is a geodesic between them which is
contained in C.

Definition I1.3.2. [BH99, Definitions 1.1.10,12, I1.3.18] A geodesic triangle A in a metric space (X, d)
consists of a triple (z,y, z) of points in X and a triple (¢, c’,¢”) of geodesic segments joining them.

A comparison triangle in R? for a triple (z,y, z) of distinct points in X is a triangle in the Euclidean
plane with vertices (Z, 7, %) such that

d(z,y) =d(z,y)  dy,2) =d(@,z)  d(z,z)=d(z7).
é comparison triangle is unique up to isometry. The comparison angle between x and y at z, denoted
Z,(x,y), is the interior angle of the comparison triangle and z. The Alezandrov angle between two
geodesics ¢ and ¢’ in X with ¢(0) = ¢/(0) is
Lle,c') = limsup Z,, (e(0), c(t).

t,t'—
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The space of directions S,(X) at a point z € X is the set of geodesics emanating from z, modulo the
equivalence relation of zero Alexandrov angle. The Alexandrov angle thus becomes a metric on S, (X).

For many results and proofs following, for points « and y of a geodesic metric space X, we denote
by v(z,y) € S,(X) the direction of the geodesic from z to y as it reaches y.

Definition II.3.3. [BH99, Definition II.1.1, Proposition II.1.7] A geodesic space (X,d) is CAT(0) if
either of the following equivalent conditions apply:

o For every geodesic triangle A in X and a comparison triangle A in R?, d(p,q) < |p — g|| for all
p,q € A and their comparison points p,q € A.

o For every geodesic triangle (c,c’,¢”) in X with distinct vertices, a triangle in R? with two side
lengths d(c), d(¢’) and interior angle Z(c,¢’) has its third side no longer than d(c”).

Geodesics are uniquely determined by their endpoints in a CAT(0) space.
A locally compact group G is CAT(0) if it acts properly and cocompactly by isometries on a
CAT(0) space.

A complete Riemannian manifold is a CAT(0) space if and only if it is simply connected and its
sectional curvature is everywhere non-positive [BH99, Appendix to Chapter II.1]; such manifolds are
called Hadamard manifolds. The geometric realisation of a graph is CAT(0) if and only if that graph
is a tree [BH99, Example 11.1.15(4)]. Certain polyhedral complexes provide other important examples
of CAT(0) spaces although it is harder to formulate conditions ensuring that they are CAT(0); see
[BH99, Chapter IL5].

One can also define CAT (k) spaces for £ < 0 and k > 0 by using comparison triangles in the real
hyperbolic plane or sphere, respectively, but we shall not make use of this idea.

Proposition I1.3.4. Let G be a locally compact group acting isometrically on a CAT(0) space (X,d).
Suppose that at a point x, € X, the space of directions Swo (X) is isometric to a sphere S*! C R".
Let V be a Clifford module for the Clifford algebra €¢,,. Define the function ¢ : G — End V by

Ug)=d(g™" -z, zo)v(g - Ty, 7)

where v(g! -y, xy) € Sy, (X) = S C R™ C €7, acts by Clifford multiplication on V. Then { is
self-adjoint and translation bounded; indeed, for all g,h € G, |€(gh) —£(h)| < ||€(9)|. If G acts properly
on X, £ is proper.

We remark that the choice of isometry between S, (X) and S™~1 is not consequential except in
the matter of orientation. If ¢, ¢y : S, (X) — S™! are two isometries and 1; o ¢; ! € Iso(S™1) is
orientation preserving, the two resulting weights will be unitarily equivalent.

Proof. We have, where the norm is in End V,
||€(gh) _£<h)“ = ||d((9h)_1 -9, T9)v((gh) ! -z, 29) — d(h™ - g, zo)u(hT! ‘500,300)” =: L.

This is the length of the third side of a Euclidean triangle with the other side lengths d((gh)™! - 2, z,)
and d(h™! - z,,z,) and the opposite angle arccos{v((gh)™ - zo,z,),v(h™! - 1y, 7,)). We can compare
this to the triangle in X with vertices at x, (gh)™! -z, and h~!-z,. The CAT(0) property guarantees
that L will be less than the true distance between (gh)~! -z, and h™!-z,. Because G acts isometrically,

L<d(h g™t zg,h7t - zy) =d(g7" - zg,20) = [€(9)]

and so ||¢(gh) — £(h)| < |€(g)] for all h € G.
The final statement follows immediately from Proposition A.2.2. O
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Applying Theorems 11.2.24 and II.2.25, we obtain

Corollary I.3.5. Let G be a locally compact group acting isometrically on a CAT(0) space (X,d).
Let A be a G-C*-algebra. Suppose that a point x, € X, the space of directions SI0 (X) is isometric to
a sphere S"~1 C R™. With a Clifford module V for €¢,, and the function £ : G — End V of Proposition
1.3.4,

(Ax,.G L*(G,AQ V), M,)

is an isometrically G-equivariant unbounded Kasparov module with class [M,] and
(Av C'0 (G7 A® V)CO(G,A) ’ E)

is a G-equivariant unbounded Kasparov module with class o(£). These classes are related by [M,] =
T (0 ([€])) B¢, am,c [L7(G, A)] € KK (A%, G, A).

Note that, by Remark II.2.27.3, a change in basepoint from z, to sz, on its orbit may not give the
same class [¢]; however, they are related by the right action of an element of KK (C,(G), Cy(G)) =
R(G) on KK%(C,Cy(G)). The class rdvl([Me]) = j9([¢]) is, however, unchanged. We mention that it
appears that the group invariant dimg (K KS(CH@),C) ® r(G) Q) seems to reflect the structure of a
CAT(0) space on which G acts. We do not yet venture to make a precise conjecture.

Example II.3.6. Continuing Examples II.2.6 and 1I.2.28, let G be the compactly generated locally
compact abelian group R™ x Z™ x K, for integers m,n, and a compact group K. Let us equip R™"
with the Euclidean metric (in terms of the standard basis). As before, let (v;,)4™ be a basis of R™*™.
We shall define a proper action of G on R™*" by translation, with K acting trivially. We write this

action additively, as
m+n

gtr=xz+ Zgjvj
i=1

where g, is a real or integer component of g. The geodesic from —g + 0 to 0 is a straight line; we may

think of it as the vector
m+n

Z 95Y;
=1
m+n

in R™. Let Vbe a Clifford module for €¢,,,,, and, to simplify notation, write (v;)"}" for the images
of (v;)™1™ in €%,,.,. In accordance with Proposition II.3.4, then, we define the weight £ : G — End V/
by

m+n

j=1

recovering the weight of Example 1I.2.6.

Theorem I1.3.7. Let G be a locally compact group acting properly and isometrically on a CAT(0)
space (X,d). Let A be a G-C*-algebra. Suppose that there is a complete subspace Y of X such that

o cvery path component of Y is a conver subset of X;
o Y is isometric to a spin® Riemannian n-manifold; and

e Y contains a neighbourhood of a point x, € X.

Let z, € X be a point not in Y but with S, (X) isometric to a sphere Sm~1 CR™. LetV and V; be
Clifford modules for €¢,, and €7¢,, respectively, with V; irreducible. Define the weights

¢, : G — End¥ 6, :G—EndV,

g d(g ey, zo)v(g  zg, o) g d(gt -z, @)u(g !t @y, @),
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giving rise to a4 ([y]),04([61]) € KKE(A,Cy(G,A)), and [M,,], [M,] € KK?(A X, G, A) as in
Corollary I1.3.5.

For any closed subgroup H of G preserving Y, let ny : Co(Y, A) — A be the x-homomorphism given
by evaluating at x,, giving a class [ny] € KKy(Cy(Y,A)H, A). For A=C, [ny] € KKy(Cy(Y/H),C)
is nonzero if and only if H acts cocompactly on Y.

If there exists a closed subgroup H of G such that H preserves Y and acts by pin® automorphisms
and [ng) is nonzero then o 4([¢y]) € KKS (C,Cy(Q)) is nonzero and not equal to o 4([¢;]).

If G itself preserves Y, acts by spin® automorphisms, and [ng| is nonzero then révl([MgO]) €
KK, (Ax, G, A) is nonzero and not equal to T(j’l([Mel]).

We emphasise that Y may have infinitely many path components (which, since Y is a manifold, are
the same as the connected components). Theorem I1.3.7 will be a consequence of

Theorem I1.3.8. Let G be a locally compact group acting properly and isometrically on a CAT(0)
space (X,d). Let A be a G-C*-algebra. Suppose that there is a complete subspace Y of X such that

e every path component of Y is a convex subset of X;

e Y is isometric to a spin® Riemannian n-manifold;

e Y contains a neighbourhood of a point x, € X; and

e G preserves Y and acts by spin® automorphisms.

Let ©; € X be a point not in Y but with le(X) isometric to a sphere S™1 C R™. Let V, be the
Clifford module $$O for G¢,,, with $ the fundamental spinor bundle on Y. Let V; be a Clifford module
for €¢,,. Define the weights

¢, : G — EndV ¢, :G = EndV,

g d(gtag, zo)v(g 2o, ) g d(g™ -z, z)u(gTh @y, ),

giving rise to 0 4([€]), 74 ([¢1]) € KKE(A,Cy(G, A)) and (M, ], [M, ] € KKC(A X, G, A) as in Corol-
lary I1.8.5.

Let ay € KKS(Cy(Y),C) be the Atiyah-Singer Dirac class and let “Cy(Y, A) be the partial
imprimitivity Cy(Y, A)¢-Cy(Y, A) x G-bimodule of Theorem A.2.6. With ng : Coy(Y,A)¢ — A the
x-homomorphism given by evaluating at ),

[CC(Y, A)] ®cy (Y, A)%G 3¢ (0 4(ary)) ® Ax,G Té’l([MZO]) = [ngl € KKy (Gy(Y, A)%, A)

and

[CC,(Y, A)] QCy (Y, A)4G 3& (0 4(ary)) ® Ax,G TG’l([le]) =0€ KK, ,,(G(Y,A)% A).

We use here the idea of the Baum—Connes assembly map; see e.g. [Val02, §6.2]. Indeed, suppose
that A = C and Y /G is compact. Let A : C — C(Y/G) the inclusion given by the unit. Then

N ®civya) [CCo (V)] @cyvixa i€ (ay) € KK, (C,CH(G))

is the result of the Baum—Connes assembly map applied to ay-
We shall complete the Proof of Theorem 1I.3.8 in §11.3.4, on p. 79, but, for now, let us show how it
implies Theorem II.3.7.

Proof of Theorem II.3.7. First, we remark that, since Y is complete, it is closed. Further, since each
path component Z of Y is a convex subspace of a CAT(0) space, Z is also CAT(0). Since Z is
furthermore complete and (isometric to) a Riemannian manifold, it is a Hadamard manifold.
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Next, if H #* GG, we may use the injection ¢ : H < G, as in Corollary 1.1.11, to obtain classes

¢*1%(04([6])), ¢*r? (04 ([61])) € KKH(C, Cy(H)).

Of course, if ¢*r? (o 4([£,])) is nontrivial, o 4 ([¢,]) is nontrivial and, if ¢*r?(a 4 ([¢])) # ¢*r% (o 4([¢1])),
0 4([4]) # 04([¢;]). Since H still acts properly and isometrically on (X, d), we may assume without
loss of generality, for the rest of the proof, that G = H.

Second, suppose that G does not preserve the spin® structure on Y but only the pin® structure.
As discussed in §II.1.1, G has an index 2 subgroup G, which preserves the spin® structure. Let
t: G, — G be the inclusion map. As above, it will suffice to show that ¢*r*(c 4([¢,])) is nontrivial and
ri(oa([6p])) # ¢'r* (0 4([44])). Since G, still acts cocompactly, properly, and isometrically, we may
assume without loss of generality, that G, = G, that is, G acts by spin® automorphisms on Y.

Let us also assume that V; = $z0, with § the fundamental spinor bundle on Y; otherwise we

reverse the spin® structure on Y; see §II.1.1. We are now in the situation of Theorem II.3.8. If
[na] € KK, (Cy(Y, A)¢, A) is nonzero, TG’I([MZO]) is nonzero and not equal to rG’l([Mel]). O

We also obtain the following Corollary of Theorem II.3.8.

Corollary II.3.9. Let G be a locally compact group acting properly and isometrically on a CAT(0)
space (X,d). Let A be a G-C*-algebra. Suppose that there is a complete subspace Y of X such that

o cvery path component of Y is a conver subset of X;

e Y is isometric to a spin® Riemannian n-manifold;

e Y contains a neighbourhood of a point x, € X; and

e G preserves Y and acts by spin® automorphisms.
Let ay € KKG(Cy(Y), C) be the Atiyah-Singer Dirac class. Let Cy(Y, A) be the partial imprimitivity

Co(Y, A)G-Cy(Y, A) x G-bimodule of Theorem A.2.6. Let ng : Cy(Y,A)¢ — A the x-homomorphism
given by evaluating at x,, defining a class [ng] € KK, (Cy(Y,A)¢, A). If [ng] is nonzero then

[CG (Y, A)]® 57 (04(ay)) € KK, (G(Y,A)%, Ax, G)

18 nomnzero.
In particular, suppose that A= C and Y /G is compact, so that [ns] € KK,(C(Y/G),C) is nonzero.
With A : C — C(Y /G) the inclusion given by the unit, the result

A ®c(y/a) (G (V)] Qc, (Y)nG i (ay) € KK, (C,Cx(G))
of the Baum—Connes assembly map applied to o is nonzero.

Instead of proceeding immediately to prove Theorem II.3.8, we give a number of examples showing
its application, in §§11.3.1, I1.3.2, and 1I.3.3. In §I1.3.4, we give a number of Lemmas for the Proof of
Theorem II.3.8, which finally appears on p. 79.

II.3.1 Hadamard manifolds

Recall that a Hadamard manifold is a simply connected complete Riemannian manifold with non-
positive sectional curvature. Let us restate Theorem II.3.7 in the context of Hadamard manifolds. For
a Riemannian manifold X, we make the natural identification of the space of directions S, X at z € X
with the unit cotangent sphere at z € X, so that v(z,y) € Ty X.

We have the following Corollary of Theorem I1I.3.7.
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Corollary I1.3.10. Let G be a locally compact group acting isometrically on a spin® Hadamard
n-manifold X. Pick a point x, € X. Let V be an irreducible Clifford module for the Clifford algebra
?gf(T;DX) of the cotangent space at x,. Define the self-adjoint weight £ : G — End V by

Ug) =d(g -z, mo)v(g™" - Ty, 7).

Then £ is translation-bounded.
Suppose further that G acts properly on X. Let A be a G-C*-algebra. We obtain an isometrically
G-equivariant unbounded Kasparov module

(A Ay G7 Lz(Ga Ve A)Av MZ)
representing [M,] € KKS(A X, G, A) and a G-equivariant unbounded Kasparov module
(Aa CO(G7 A® V)CO(G,A) ) Z)

representing o 4([(]) € KKS (A, Cy(G, A)).

For any closed subgroup H of G, let ng : Cy(X, A) — A be the homomorphism given by evaluating
at Ty, giving a class [ny] € KK, (Cy(X, A), A). For A=C, [nyg] € KK,(Cy(X/H),C) is nonzero if
and only if H acts cocompactly on X.

If there ezists a closed subgroup H of G which acts by pin® automorphisms and such that [ny] is
nonzero then o 4([,]) € KKE(C, Cy(Q)) is nonzero.

If G itself acts by spin® automorphisms and [ng] is nonzero then ré’l([M[]) € KK, (Ax, G,A) is
nonzero.

Example II.3.11. Consider the semidirect product R X, R, where, for ¢ € R, ©(t) is the automorphism
z > etz of R. The group R X, R is of course isomorphic to the affine group of the real line. There
is an isometric action of IR X, R on the real hyperbolic plane RH?. In terms of Poincaré half-plane
model, this left action is given by

(z,8) - z=x+€°z (z€ C).

This is an action by Mobius transformations, which can be seen by the injection R x, R < SL(2,R)
given by
65/2 6_8/2.’17
(z,8) 0 sz | -

To define a weight on R X, R using Corollary II.3.10, it will actually be easier to view RH? in terms
of the Poincaré disc model. Let C' = (% f") € SL(2,R). The M6bius transform defined by C maps

1

the upper half-plane conformally to the unit disc. We compute that

‘ e S(—r+i)—i wT—i+ei x2+1— e+ 2zesi
C —S(__ — = =
(6 ( ZC+'L)) 678(—$+i)+i T —i—eSi ZE2+(1+65)2

and

s o VEPH (A —e)?) (@2 + (1+e)?) 22+ (1—e)?
’C(e (—x+2))| = $2+<1+es)2 = $2+(1—|—es)2'

The distance in the hyperbolic metric from 0 in the Poincaré disc to z is given by d(0, z) = 2 arctanh |z|.
Choosing the basepoint 0 in the Poincaré disc, one can use Corollary II.3.10 to produce the weight
?:SL(2,R) — €¢, = End C? given by

l(z,s) =
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Example I1.3.12. Let G be a reductive Lie group and K its maximal compact subgroup. We assume
that G/K admits a G-equivariant spin® structure. Let g = £ @ p be the Cartan decomposition, giving
a diffeomorphism 7o exp : p — G/K. The Killing form B on g restricts to a (positive definite) inner
product on p. By e.g. [Hel0l, Theorem IV.3.3(iii)], for any X € p, m o exp(tX) is a geodesic on
G/K passing through eK with speed |X| = B(X, X)"/2. With 2 = eK and g = kexp(X) € Kexp(p),
d(g'K,eK) = | X| and v(¢g7'K,eK) = X|X|~* € p C €Z(p, B). Hence, we can take £ to be given
by ¢(kexp(X)) = X.

For any G-C*-algebra A, we obtain that o 4([¢]) and ré’l([Me]) € KK, (Ax, G,A) are nonzero.
Let I" be a closed cocompact subgroup of G and £| the restriction of £ to I'. We similarly obtain that
o a([tlp]) and 771 ([My ]) € KK, (Ax, T, A) are nonzero,

The following Remark, as well as placing our construction of directed weights in context, will be
important for the proof of Theorem II.3.8.

Remark 11.3.13. Let G be a locally compact group acting by spin® isometries on a spin® Hadamard
n-manifold X. Fix z, € X and let p : X — [0,00) be given by p(x) = d(z(, z). Recall from §II.1.1 that
the dual Dirac element 3 € KK (C,Cy(X)) is represented by the uniformly G-equivariant unbounded
Kasparov module

(C’ FO(X’ $)CO(X)7 pdp)
where pdp € Q' X acts on I,(X, §) by Clifford multiplication. As a section of T*X, dp is given by
(dp)(z) = v(zy, z) € T X. Hence, also as a section of T*X, pdp is given by (pdp)(z) = d(xy, x)v(zy, T).
Suppose that G acts properly on X. Let w : Cy(X) — Cy(G) be the G-equivariant *-homomorphism
given by
w(f)(g) = flg- o),

i.e. evaluation on the orbit of z,. We extend w to a map I,(X, §) — C,(G, $zo) by

w(o)(g) =g " o(g- ).

Applied to pdp,

w(pdp)(g) = d(wo,g : m0)971 : U(l'o’g : xo) = d(gil : 1'07$0)U(971 : Ioa-’ﬂo)‘

That is, with V = $x0 and £ as in Corollary 11.3.10, w(pdp) = £. We thereby obtain that

B®c,x) lw] = [4],

where [w] € KK (Cy(X), Cy(Q)).

I.3.2 Trees

Given a tree I', we equip its geometric realisation |I'| with the standard metric, in which edge is
taken to be isometric to the unit interval [0, 1]. With this metric, |T'| is a CAT(0) space. For ease of
exposition, we shall conflate I" with its geometric realisation |I'|.

By the bi-infinite line, we mean the tree Circ,, with vertex set (Circ,,)? = Z and edge set
(Circy,)! = Z, with o(n) = n and t(n) = n + 1. In other words, Circ,, is the Cayley graph of Z with
the generator 1 € Z.

We have the following Corollary of Theorem II.3.7.

Corollary I1.3.14. Let G be a locally compact group acting on a tree I'. Choose a point x, € I' in the
interior of an edge. Identify the space of directions at x, with S° = {+1,—1}. Define the function
£:G—C by

bo(g) =d(g7" -z, zo)v(g " - Ty, 7).
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Then £ is translation bounded.

Suppose, further, that G acts properly on I' or, equivalently, that the stabiliser group of every vertex
is compact. Let A be a G-C*-algebra. We obtain an isometrically G-equivariant unbounded Kasparov
module

2
(Ax, G, L*(G, A) 4, My,)
representing [M, | € KKld (A, G, A) and a G-equivariant unbounded Kasparov module
(A7 CO(Ga A)CO(G,A) ) EO)

representing o 4([¢y]) € KKE (A, Cy(G, A)).

Let Y be a subgraph of I, containing z, and isomorphic to the disjoint union of copies of the
bi-infinite line. (Note that this could be anything from one copy to infinitely many copies.) Let z; € T
be a point in the interior of an edge not in Y and define £, analogously to £,.

For any closed subgroup H of G preserving Y, let ny : Co(Y, A)H — A be the x-homomorphism given
by evaluating at z,, giving a class [ny] € KKy(Cy(Y,A)2,A). For A=C, [ny] € KKy(C,(Y/H),C)
is nonzero if and only if H acts cocompactly on Y.

If there exists a closed subgroup H of G such that H preserves Y and [ng| is nonzero then
o 4([ty]) € KKE(C,Cy(G)) is monzero and not equal to o 4([¢;]).

If G itself preserves Y and preserves the orientation on'Y, and [ng] is nonzero, then r® H([My,) €
KK,(Ax, G,A) is nonzero and not equal to ré’l([Mel]).

Our construction bears a strong superficial resemblance to the element v € KK§ (C, C) built in
[JV84] for a locally compact group G acting on a tree. The dual Green—Julg map gives an element
UG (y) € KKE(C:(G),C). Let 7 be the quotient map C(G) — Cf(G). Then, with the class [{]
of Corollary 11.3.14, 7*([¢,]) is an element of KK (C(G),C). Of course, because the parities are
different, 7*([¢,]) is not equal to ¥ (y). But we can say more: if G is an infinite discrete group, by
Remark I1.1.17, the map

(T o7 0r%1 : KKC(CH(G),C) - KKS(C,C)

does not have v in its image. Hence, no spectral triple for the C*-algebra of G built using a weight as
in §11.2.3 could represent ¥ (v).

In a number of examples, we shall discuss the relationship of Corollary 1I.3.14 to the Pimsner
exact sequences of [Pim86|, which we outlined in §II.1.2. Let us first make contact with the extension
classes (II.1.5) and (II.1.7). Let G be a locally compact group acting on a tree I'. Denote by ¥ the
quotient graph I'/G. Recall from §II.1.2 that for edges y € £, the injections oy Gy, = Gy and
o, Ciy = Gy *have open image and give rise to homomorphisms oy : C'(G,) = C}(G,(,) and
O'y : C’r‘ (Gy) — C,,, (Gt(y)) Let
o* = Z (0, —0F)-

yexl!

If the action of G on the I is proper or, equivalently, all stabiliser groups are compact, the six-term
exact sequence for K-homology (II.1.8) becomes

0 — K%(CH@)) = @ peye K°(C3(Gp) T @5 K°(C1(G,) — KHCHG)) — 0,

(I1.3.15)

Pex0 ext

implying that K°(C*(G)) = ker o* and K'(C?(G)) = coker o*.
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Remark 11.3.16. Let G be a locally compact group acting on a tree X. Recall from §II.1.2 the six-term
exact sequence

KEg (G(X1),Cy(G)) +— KEg (G(X?),Cy(G)) «—— KK (C,G(G))

l [

KK{(C,C(G)) ——— KK{(Gy(X°), Go(G)) — KK (Go(X1),Cy(G))
and the associated extension class, given as a G-equivariant bounded Kasparov module by
(C, CO(XI)CO(Xl)a 2xp—1).
The multiplier 2xp — 1 is the function on X! with value +1 on X1 and —1 elsewhere. In other words,
2xp—D(y) = v(P,y).

Suppose that G acts properly on I'. Let w : Cy(T'!) — C,(G) be the G-equivariant *-homomorphism
given by
w(f)(g) = f(g- =),
i.e. evaluation on the orbit of z,. Applied to 2xp—1,
w(2xp—1)(9) = v(P,g- o) = v(g~" - P, ).

That is, with V = $% and ¢ as in Corollary 11.3.10, w(pdp) is equal to £|¢| up to a difference in
Cy(G,End V). We thereby obtain that

[€] = [(C, Co(X M) gy (x1), 2xp — 1)] ®c, (x) [w]

where [w] € KK (Cy(X),Cy(Q)).

ﬂgﬁfﬂ'&%@% ReET D s
T T o @i
T e e
%ﬁ% %H{%%ﬁ
K + N o :‘75—5‘, ;3733‘:
(a (b)

Figure II.1: The Cayley graph of F, and some points on it.
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(a) (b) (c)

Figure II.2: Subgraphs for F,
Example II.3.17. Consider the free group F,, on n generators. The Cayley graph of F, is a tree I', on
which every vertex has order n. The quotient graph consists of one vertex with n loops. For instance,

for F,, the Cayley graph is pictured in Figure II.1(a) (although not isometrically and only up to a
certain resolution). For G = F,, acting on its Cayley graph, the sequence (II.3.15) becomes

0—2Z—7Z-572Z"—7"—0.
The group C*-algebra of F,, has K-theory and K-homology
Ko(CHE,)) =Z=K°(CHE,)) K (C!(F,)) =2"=K'(C!(F,));

n
see [Cun83, §3(1)].

For simplicity, let us restrict the discussion to F;, generated by a and b. The graph I is pictured in
Figure II.1(a); we take a to move the central horizontal line one step rightward and b to move the
central vertical line one step upward. Let z,, z;, and z, be the points on I" shown in Figure II.1(b) and
define ¢, ¢,, and ¢, from each, as in Corollary II.3.14. The bi-infinite line in Figure II.2(a) is preserved
by the subgroup (a) = Z. The bi-infinite line in Figure II.2(b) is preserved by the subgroup (ab) = Z.
By taking Y to be, in turn, each of the bi-infinite lines in Figures II.2(a) and 1I.2(b), Corollary 11.3.14
implies that [¢y], [¢;], and [{;] are all nonzero and distinct. By considering the family of bi-infinite lines
in Figure II.2(c), preserved by F,, we obtain that rl“%?’l([Meo]) is nonzero and not equal to TF2’1([M£1]).
Indeed, TF2’1([MZO]) and T'F%l([Mel]) generate K°(C*(E,)) = Z2.

The construction of Corollary 1I.3.14 admits of an interpretation in term of words in the group. Any
element of the free group F, can be written as a unique shortest word. Let the weights ¢,,¢, : F,, = C
be given on a word w by

0. (w) +|w| w endsina 0, (w) +|w| w endsinb
w) = w) = .
¢ —|w| otherwise b —|w| otherwise

One can verify that £, = £, and ¢, = ¢;.

One could more generally interpret Corollary 11.3.14 in terms of words on a graph of groups [Ser80,
§1.4-5]. We do not pursue this here.

Example I1.3.18. Let m,n > 1. The free product Z/mZ * Z/nZ acts on the infinite biregular tree I'
of valencies m and n. The group acts transitively on the set of edges. For example, Z /47 x 7Z./3Z acts
on the tree pictured in Figure II.3(a). The generating subgroups Z/47Z and Z/3Z stabilise the points
thus marked in the Figure. For Z/mZ x Z /nZ, the sequence (I[.3.15) becomes

0—szmntle ygmazn' bV g0 _50.
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7./A7. 7./37.

°zy

(a) (b)
Figure I1.3: The tree associated with Z/4Z  Z, /37 and some points on it.

The group C*-algebra of Z/mZ x Z /nZ has K-theory and K-homology

Ky(CHZ/mZ +« Z)nZ)) = Z™ ™1 = KO(CHZ/mZ * Z./nZ))
K,(CHZ)mZ x Z/nZ)) = 0 = K} (CX(Z/mZ * Z/nZ));

see [Cun83, §3(2)].

For simplicity, let us restrict the discussion to Z /47 x Z./3Z, generated by a € Z/4Z and b € Z/37Z.
The tree I is pictured in Figure II.3(a); we take a to rotate anticlockwise around the point marked
Z /4Z and b to rotate anticlockwise around the point marked Z/3Z. Let z, x;, and z, be the points
on I' shown in Figure II.3(b) and define ¢,, ¢, and ¢, from each, as in Corollary II.3.14. The bi-infinite
line in Figure II.4(a) is preserved by the subgroup (ab) = Z. The bi-infinite line in Figure II.4(b) is
preserved by the subgroup (ab?) = Z. The bi-infinite line in Figure I.4(c) is preserved by the subgroup
(a®b) = 7. By taking Y to be, in turn, each of these bi-infinite lines, Corollary 1I.3.14 implies that [¢;],
[¢,], and [¢,] are all nonzero and distinct.

Because the action of Z/4Z * Z /37 on its tree is transitive on the edges, we cannot use Corollary

II.3.14 to detect the nontriviality of rZMm/?’Z’l([MZO]) € KK,(CXZ/AZ « Z/3Z), C). Indeed, since

(a) (b) (c)
Figure II.4: Subgraphs for Z /A7 + Z./37Z.
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KK, (CX(Z/AZ xZ/3Z),C) = 0, we conclude that

TZ/4Z*Z/3Z,1([M£0]) — TZ/4Z*Z/3Z’1([M41]) — rZ/4Z*Z/3Z,1([M£2]) —=0.
Example I1.3.19. Take Z/2Z to be the subgroup {41, —1} of the quaternion group Qg and consider
the amalgamated product Qg *z/07 Q5. The amalgamated product Qg *z/97 Qg acts on the tree in
Figure II.1(a). The quaternion group Qg has 5 irreducible complex representations: four of dimension
one and one of dimension two. Hence

C*(Qs) =CoCaCOCOM(C) K°(C*(Qs) =2°.

Further,
C*(z)2Z)=CeoC K°(C*(z)27)) = Z>.

All the one dimensional representations of ()¢ restrict to the trivial representation of Z/2Z. The two
dimensional representation of Qg restricts to two copies of the (only) nontrivial representation of Z /2Z.
Hence, with

J*(ml)w27x3aI4ax57ylay25y37y4)y5) = (Il + Zo + Is +.T4 — Y1 — Y2 —Ys— y4,21'5 - 2y5)a
we have the exact sequence

o

0 — Z8 — ZPQZ° T 72 —» 7./2Z —> 0

in K-homology. Because the action of Qg *z /97 Qs on the tree is transitive on the edges, we cannot

use Corollary 11.3.14 to detect the nontriviality of TQS*;;ZQS’l([MZO]) € KK, (C(Qg *7/2z Qs), C). By
Remark I1.3.16, it is in fact a torsion class, generating K (C(Qg %7000 Qg)) = Z[27Z.

I1.3.3 CAT(0) cell complexes

Another context in which the conditions of Proposition II.3.4 may be naturally satisfied is when X is a
CAT(0) cell complex. If we choose z, to be in an open n-cell then S, X is isometric to Sm—1 [BH99,
§7.14]. We shall consider two well-studied families of CAT(0) cell complexes: buildings and CAT(0)
cube complexes. Throughout this section, we assume every cell complex has a bound on the dimension
of its cells.

Apart from trees, the first family of CAT(0) complexes to be extensively studied were buildings.
These arise in the study of reductive Lie groups over nonarchimedean local fields, for which the
Bruhat-Tits building is the natural analogue of the symmetric space G/K for a connected Lie group
and its maximal compact subgroup K. For more details on buildings, we refer to [Bro89, Thol8].

Definition II.3.20. e.g. [Thol8, Definition 1.18] Let I be a finite set, of size n, and (m;); jcs a
symmetric matrix with values in N, U {oo} such that m,; = 1 if and only if i = j. The weighed graph
associated with (m,;); ;c; is a Cozeter diagram; conventionally one does not include the edges with
m,; € {1,2} as this is sufficient to recontruct (m;;); jc;- The Coxeter group of (m,;); ;e is the group
with presentation

W= <{Sz’}iel ‘ Vi, j €1, (s;5;)™i5 = 1>-

Here, if m,; = oo, we mean that no additional constraint is to be placed on s;s;. Denote by S = {s,},c;
the set of generators. The pair (W, S) is a Cozeter system.

A Coxeter system is an abstract generalisation of a group of reflections. Associated to a Coxeter
system (W, S) is its Coxeter complex, a connected simplicial complex of dimension n — 1 on which W
acts with fundamental domain a single top-dimensional simplex [Cas23, Corollary 4.0.7]. However, W
does not necessarily act properly on the Coxeter complex; when it does, (W, S) is called a simplicial
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Cozeter system [Cas23, Definition 3.2.11]. Lannér’s Theorem states that, when (W, S) is a simplicial
Coxeter system, its Coxeter complex is a tiling of S*1, R"!, or RH" ! and W acts by reflections
[Cas23, Theorem 3.2.12]. In each of these three cases, (W, .5) is called spherical, FEuclidean, or hyperbolic,
respectively. Spherical, Euclidean, and hyperbolic Coxeter systems have a well-known classification;
see e.g. [Cas23, §2.4, Tables 2.2-4].

Definition II1.3.21. [Bro89, §IV.1] [Thol8, Definition 6.1] A building of type (W, S) is a simplicial
complex A which is the union of apartments, subcomplexes isomorphic to the Coxeter complex of
(W,S), such that

e Any two cells of A lie in a common apartment; and

o For any two apartments A and B, there is an isomorphism between them fixing their intersection.

The maximal simplices of A are called chambers.

Suppose that (W, .S) is Euclidean or hyperbolic, so that the apartments are (tilings of) Euclidean
or hyperbolic space. The geometric realisation |A| of A can be equipped with a metric in which every
apartment is isometric to Euclidean or hyperbolic space, making |A| a CAT(0) space [Thol8, Theorem
7.14].

Euclidean buildings of dimension 1 are trees without valence-1 vertices, with the apartments the
bi-infinite lines [Thol8, Example 6.5]. Buildings of dimension higher than 1 are difficult to visualise
[JV87, Examples] but a gallant attempt is made in [BS22].

Groups acting on Euclidean buildings have been studied in the context of the Baum—Connes
conjecture in [JV87, Jul89, KS91].

For ease of exposition, we shall conflate A with its geometric realisation |A|. We have the following
Corollary of Theorem 1I.3.7.

Corollary I1.3.22. Let G be a locally compact group acting on a Euclidean or hyperbolic building A of
dimension n. Choose a point x, € A which lies in the interior of a chamber Cy, so that its space of
directions is isometric to S*"1. Let V be an irreducible Clifford module for €¢,,. Define the self-adjoint
weight £ : G — End V by

lo(g) = d(g™ - 2o, 20)v(g " - T, )
Then £ is translation-bounded.

Suppose further that G acts properly on A. Let A be a G-C*-algebra. We obtain an isometrically
G-equivariant unbounded Kasparov module

(A%, G, L*(G,V® A) 4, M,)

representing [M, | € KKS (Ax, G, A) and a G-equivariant unbounded Kasparov module
(A’ CO(G’ A® V)CO(G,A) ) ZO)

representing o 4([(y]) € KKSG (A, Cy(G, A)).

Let Y be a subcomplex of A, containing Cy and consisting of the union of a collection of mutually
disjoint apartments of A. Note that 'Y could be just a single apartment containing x.

Let x; be a point of A not in Y and define ¢, analogously to ¢.

For any closed subgroup H of G preserving Y, let ng : Cy(Y, A)H — A be the x-homomorphism given
by evaluating at x,, giving a class [ng] € KKy(Cy(Y,A)H, A). For A=C, [ny] € KKy(Cy(Y/H),C)
is nonzero if and only if H acts cocompactly on'Y.

If there exists a closed subgroup H of G such that H preserves Y and [ny| is nonzero then
o 4([ly)) € KKE(A,Cy(G, A)) is nonzero and not equal to o 4([(1]).

Choose an orientation on 'Y, that is, an orientation on each apartment in Y. If G itself preserves Y
and its orientation, and [ng| is nonzero, then rG’l([MZO]) € KK, (Ax, G, A) is nonzero and not equal

to r&1([M,,)).
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Example I1.3.23. Let G be a reductive Lie group over a nonarchimedean local field k; see e.g. [RTW15].
Choose a maximal k-split torus T' = (k*)™, where n is the k-rank. Associated with G is its Bruhat-"Tits
building A, a Euclidean building with n-dimensional apartments whose Coxeter system is determined
by the normaliser of T'in G. The group G acts properly and isometrically on its Bruhat—Tits building.
Further, the action is strongly transitive, meaning that G acts transitively on the set of apartments
and, for every apartment B, the stabiliser group Gy acts transitively on the chambers in B [Thol8,
Definition 9.5].

Let z; € A be a point in the interior of a chamber C,. Let B, be an apartment containing (.
By strong transitivity, Gg  acts cocompactly on B, and we thus obtain from Corollary II.3.22 that
(6] € KKS(C, C,(Q)) is nontrivial. If z, is a point in the interior of a chamber C; not in By, [£,] # [¢,]-
Because the action of G on A is strongly transitive, we cannot use Corollary II.3.22 to determine
whether 71 ([M, ¢,)) is nontrivial.

CAT(0) cube complexes are another important family of CAT(0) cell complexes; for further details
we refer to [NR9S|.

Definition II1.3.24. [NR98, §2.2] A cube complez is a metric cell complex A in which every cell is
isometric to a unit Euclidean cube and the glueing maps are isometries. We call a maximal cell of A a
maximal cube. A flat of a cube complex is an isometrically embedded copy of Euclidean space R™ for
some n.

The conditions making a cube complex CAT(0) are quite tractable; we refer to [NR98, §2.2]. Groups
acting on CAT(0) cube complexes have been studied in the context of the Baum—Connes conjecture in
[BGH19, BGHN20].

We have the following Corollary of Theorem 1I.3.7.

Corollary I1.3.25. Let G be a locally compact group acting on a CAT(0) cube complex A. Choose
a point x, € A which lies in the interior of a maxzimal cube Cy, of dimension n, so that its space of
directions is isometric to S*~1. Let V be an irreducible Clifford module for €¢,,. Define the self-adjoint

weight £ : G — End V by

bo(g) =d(g7" -z, zo)v(g - Ty, 7).

Then £, is translation-bounded.

Suppose further that G acts properly on A. Let A be a G-C*-algebra. We obtain an isometrically
G-equivariant unbounded Kasparov module

(A%, G, L*(G,V ® A) 4, M,)

representing [M, | € KKS (Ax, G, A) and a G-equivariant unbounded Kasparov module
(A7 CO(Ga A® V)C’O(G,A) ) 60)

representing o 4([(y]) € KKSG (A, Cy(G, A)).

Let Y be a subcomplex of A, containing Cy and consisting of the union of a collection of mutually
disjoint flats of A. Note that Y could be just a single flat containing C,. Let x, be a point of A not in
Y and define £, analogously to ¢.

For any closed subgroup H of G preserving Y, let ng : Cy(Y, A)H — A be the x-homomorphism given
by evaluating at x,, giving a class [ng] € KKy(Cy(Y,A)H, A). For A=C, [ny] € KKy(Cy(Y/H),C)
is nonzero if and only if H acts cocompactly on'Y.

If there exists a closed subgroup H of G such that H preserves Y and [ny| is nonzero then
o 4([ly)) € KKE(A,Cy(G, A)) is nonzero and not equal to o 4([(1]).

Choose an orientation on Y, that is, an orientation on each of the disjoint flats making up Y. If
G itself preserves Y and its orientation, and [ng] is nonzero, then rG’l([MZO]) € KK, (Ax, G, /A) is

nonzero and not equal to rd’l([Mel]).
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A well-studied family of CAT(0) groups are the right-angled Artin groups; for more details we refer
to [Cha07].

Definition II.3.26. [Cha07, §3.1,6] Let I be a finite graph without loops. The right-angled Artin group
Ap associated with T is the group with generators (s;);cro and relations s;s; = s;s; for (i,7) € T'.
The Salvetti complex Sy is the space constructed from tori T#° for each clique K C TI', glued
according to the partial order on the cliques. By construction, the fundamental group of Sy is Ar.
The universal cover S’F is a CAT(0) cube complex. The group Ar acts properly and cocompactly on

Sy (for properness, see e.g. [Munl4, Theorem 81.5]).

When the graph I' has no edges, Ar is the free group on the generators (s;);cro and S'F is its Cayley
graph. When the graph I' is complete, A is the free abelian group on the generators (s;);cro and Sp
is the cubical tiling of R#T°. For graphs of size up to three, we have the following classification.

] N L

Ap z VA E, VA ZxF Zx7® R

Fundamental i
domain for St -

Example I1.3.27. Let I' be a finite graph without loops and let A be the associated right-angled
Artin group. Let A = Sp. be the universal cover of the Salvetti complex. Let z, € Sp- be a point in the
interior of a maximal cube (,, which will be a cell corresponding to a maximal clique K of I'. Let
n = dim Cy = #K°. Define £, : G — End V as in Corollary 1I.3.25.

By [Cha07, §3.2], the clique K gives rise to a subgroup Ay < A isomorphic to Z™. There is a
subgroup conjugate to Ay = Z"™ which preserves the flat F' containing (j), which is isometric to R".
Applying Corollary I1.3.25, we see that [¢,] € KK (C,C,(G)) is nonzero.

Let Y be the orbit of the flat F' containing (j,. This is a collection of copies of R™ on which G acts

cocompactly and preserving the orientation. Applying Corollary II.3.25, Té’l([M o)) € KK, (CH(G),C)
is nonzero.

II.3.4 Pairing with a Dirac class

In this section, we prove Theorem II.3.8, on p. 79. The strategy is to use the constructive unbounded
Kasparov product, then to reduce to the case of a connected manifold, and finally to use Remark
I1.3.13 to complete the pairing.

Lemma I1.3.28. Let (X,d) be a CAT(0) space. Let z, € X be such that S, (X) is isometric to
Sm—1 Cc R™. Let V be a Clifford module for €¢,, and define /:X - EndV by

U:x s d(z, mo)v(x, 30).
We have, for z,y € X, . _
() = 2(y) | < d(z, ).

Hence ¢ is Lipschitz continuous from X to End V. Also, the absolute value ]17] is a Lipschitz continuous
function on X. If v4,...,7,, are the generators of €¢,,,

m

Uz) = (lz) | vi)nie

i=1

For every i € [1..m], the functions (£ | ~;) are also Lipschitz continuous.
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Of course, for any subset Y of X, equipped with the restricted metric, the restrictions of |(? | and
(€| 7;) to Y are Lipschitz continuous functions on Y.

Proof. First, [{(z)| = d(z,z,), so |£| is clearly Lipschitz continuous. Next, we have, where the norm is
in EndV,

HZ(J;) —Z(y)” = ||d(x,:v0)v(x,xo) —d(y, 3’50)71(3/,330)” :

This is the length of the third side of a Euclidean triangle with the other side lengths d(z, z,) and
d(y,z,) and the opposite angle arccos(v(z, zy),v(y, x,)). We can compare this to the triangle in X
with vertices at x,, z, and y. The CAT(0) property guarantees that

() — £w)|| = [|d(@, zo)v(z, 2) — d(y, zo)v(y, zo)|| < d(x,y).

Hence, / is a Lipschitz continuous function from X to End V. For each i € [1..n], the function
1
w = 5(“’%‘ +Y;w)

is Lipschitz continuous from End Vto C. So (£ | v,) = 1 (¢y; +v,¢) is Lipschitz continuous. O
Next, we have the following as a special case of Proposition A.2.9.

Proposition I1.3.29. Let G be a locally compact group acting properly, isometrically, and by spin®
automorphisms on a Riemannian n-manifold Y. Let A be a G-C*-algebra. Let

(CO(Y)’ LQ(Y7 $)7m)

be the Atiyah-Singer Dirac spectral triple representing the class « € KKS(Cy(Y),C). Let Cy(Y, A) be
the partial imprimitivity Cy(Y, A)%-Cy(Y, A) x,. G-bimodule of Corollary A.2.7. Define a right action
of C.(G,A) C Ax,. G onT,(Y,§® A) by

D@ = [ g (a7 Df () A6ls™) Pdule) (€ €LY, $04),f € C.(G,A)
G
and a C,(G, A)-valued inner product by

(61 | &)(9) = / (61@) | g-&(7'0)) . Aglg ) 2voly(x) (6,6 €LY, §® A)).
Y

FRA

The completion of T,(Y, $ ® A) is a Hilbert Ax, G-module T,(Y,$® A). The Kasparov product
[GCO<Y7 A)] ®CO(Y,A)><TG jg(O-A <a>> € KKn(CO(Y7 A)G7 A Ay G)

is represented by
where, by a slight abuse of notation, we denote by ID ® 1 its closure on T (Y, $® A).

Proposition I1.3.30. Let G be a locally compact group acting properly and isometrically on a CAT(0)
space (X,d). Let A be a G-C*-algebra. Suppose that there is a complete subspace Y of X such that

o cvery path component of Y is a convexr subset of X;

e Y is isometric to a spin® Riemannian n-manifold; and

o G preserves Y and acts by spin® automorphisms.
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Let zo € X be such that S, (X) is isometric to Sm1 Cc R™. Let V be a Clifford module for €¢,, and
define

(:G— EndV /: X > EndV
g d(gtag, zg)v(g 2o, ) T d(z, z0)v(z, 7).
Let [M,] € KK,%(A X, G, A) be the class of
(A Ay Ga L2<G7 Ve A)A7 MZ ® 1)

Let
(CO(Y)a LQ(Y’ $)7 w)
be the Atiyah-Singer Dirac spectral triple representing the class ay € KKS(Cy(Y),C). Let “Cy(Y, A)

be the partial imprimitivity Cy(Y, A)%-Cy(Y, A) x G-bimodule of Theorem A.2.6. Then the Kasparov
product

[CC(Y, A)] Qcy (v, A)xG Jr (o alay)) ®Ax,.G r&1([M,))
(Cy(Y, A)C, A) is represented by
(Co(Y, A LAY, RV R®A) 4, PR1®1+1QM;®1).
Proof. First, by Proposition 11.3.29, [¢C,(Y, A)] ®c, (v, 4G §% (0 4(ay)) is represented by

in KK,

m+n

GV, ACTYV.6®4), P8l

Let us begin by examining the internal tensor product Hilbert module I,(Y, # ® A)® ,,, o L*(G,V®A).
For ( € T(Y,$® A) and ¢ € C,(G,V ® A), by the balancing over C,(G, A), we may consider
(REET,(Y, R A) ®c.(c,4) Ce(G,V ® A) as an element of [(Y, $R®V ® A), given by

C®&(z) = / g-Clg7e) ® a,(E(g1)Ag(g™) 2 dulg).
G

Indeed, this shows that I‘C(Y,$®A)®CC(GA C.(GV®A) =T,(Y,$QV®A). For (;,{, e L(Y,5RA4),
recall from Proposition II.3.29 that their A %, G-valued inner product is given by

(G 1¢)(9) :/<Cl(w) [9-Gla0), Aclg ™) voly(a).

For £,,&, € C,(G,V ® A) C L?(G,V ® A), we have
(G ®& |1 G®E) = (4] (G | 6&)4)

:/ oy ({6400)] (6 1 )8)@) | )dnlo)
= [ [ en(tats cl\<2><h>ah<§1<h—lg>>>V®A)du<g>du<h>

-/ / Lo (@@l (a@ 1h-Gen), e&no),, )

a(h >1/2v01 < )du( du(h)

-/ / / oy (6] (0@ 1 gh- Golgh) ) ag @), )

x Ag((gh)” 1)I/Q‘fol (z)du(g)dp(h)

= [ | [era@l{aee or-aot) an@o),, )

x Ag((gh) ™) 2volg(x)du(g)dpu(h)
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- /G /G /Y o (@] oo ({57 Gl [ B G0 0) | e &), )
x Bg((gh)” >1/2volg<w> u(g)du(h)

/G /G /Y 0y &) (97 o) [ B G 2))  an&()
((gh)" >1/2 ol (2)du(9)dp(h)

.
- /G /G /Y ay&ne D] (oG (o0 | B Golh M) an(& (b)),
x Ag(gh)” >1/2volg<w> lg)du(h)
/G/G/ g Clg7'0) @ ay (&4 (g7 - (B 12) & oy (6 (h1))
x Ag((gh) ) 2voly(w)dpu(g)dia(h)
= /Y (6 ®£)(@)] (G & £)(2))voly (o).

SRVRA

SoL(Y,$® A) ®,, o L*(G,V ® A) is isomorphic to L2(Y, 5@V ® A).
We shall show that

(CO<Y7A)GaL2(Y7$®V®A)A’m® 1®1+1 ®Mz ® 1)
is the constructive unbounded Kasparov product for

(CO(Ya A)Gv Fc(Ya $® A) E ® 1) ®A><1,G (A Xy Gv Lz(G7 V) ® AA7M( ® 1)

Ax,.G’

To apply [LM19, Theorem 7.4], we need to check the connection condition, that 1® M; ® 1 has bounded
commutators, and that ) ®1® 1 and 1 ® M; ® 1 weakly anticommute.

First, 1 ® M; ® 1 commutes with the representation of Cy(Y, A)¢. Second, let ¢ € I(Y,# ® A)
and consider the operator T, € Hom*(L*(G,V ® A), L*(Y, 5§ ® V ® A)) given by

(T.6)(z) = (& &)() = / g Clg2) & ay(E(g™) A (g™ 2dp(g)
G
for £ € C,(G,V ® A). We have
((1& My @ V)T, — T,(M, ® 1) )€) (x) = / g+ Cloe) @ (E(x) — £g™)) o, (€571 Ag (g™ 2dp(g).
G

Let m: A — B(H,) be an irreducible representation of A and let n € H,, so that £ ® n € L*(G,V ®
A)®, H,. With& € C.(Y,$QV®A) CL*(Y,§®V ® A), we compute

(& ®n| (18 M @ )T, — T, (M, ®1) )¢ @ )|

Next, by Lemma 1I.3.28,

ci= sup |lglz)—Lg )| < sup  dgTtmgtxm) = sup d(z,z),

zesupp ¢,9€G zesupp ¢,9€G zesupp ¢
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which is finite by the compactness of supp . Furthermore, we note that, if for some g, h € G, we know
that g 'x, h 'z € supp (. In particular, z € g(supp ¢) N h(supp ¢) which implies that

g(supp ¢) N h(supp () # 0.

By the properness of the action of G on Y and the compactness of supp (, we obtain that ¢~ 'h is
guaranteed to be in some compact subset K of G, independent of x. We denote by x j the characteristic
function of K. Putting &, = ((1® M; ® 1)T; — T,(M, ® 1)), we estimate that

(&M @ V)T, — To(M, ®1))¢® nH2

/// 2z) — €)1 - €2 lan (ECA)) © ml A ()2

x [[é) — lgH)]|lg - Clo @) ey (E(g™1)) ® I Ag (g~1) 2 dpu(g)dpu(h)voly (x)

= /G/G (/X”Q Clg~ )R- C(h_lm)Hvolg(x))
X ’lag<£(g_1)) & 77” Hah (f(h_l)) ® n”XK(g_lh>AG(g_lh_1)1/2du(g)dﬂ<h)

X sup ”Z(:v) —E(g_l)H2
z€Y,geG|gtzesupp ¢

<é [ [ ([ 1ocaapom)”( [ cropoge)”

% lag(€(g™) @ nlllan(E(h™)) @ nlxx (g7 h) A (g h™") 2 du(g)du(h)

(/. ||c<x>||2volg<w>)

/ / la, (€)@ nllan(E(B) ® mlxxcla~ W) g (g~ h=) 2 du(g)du(h)
=<(/ ||c<x>||2volg<w>)

x / / o, (€0~ ® nlllagn (E(hg™1) ® nllxc (W) A (g™ A () 2dpu(g)dpu(h)
GYG

G
1/2 1/2

<c? Q1 2d a 1, (&Rt d
<t [ ([t @nlaut@) " ( [ eyt to) @nlduto))

XAt au ([ 16l
=c? 2 h)Ag(h™)2du( )[2volg(

el | xac -t 2 [ Ie@iFvoly(e))
<clgonl | w0 sp ac ) ( [ 1c@)Evoly (o))

G
= ¢ @ n|?
for 0 < ¢’ < oo independent of £ and 1. Now, by Lemma A.3.3,

H(l O M; @I, — T, (M, ® 1)” <c < 0.
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This gives us the condition [LM19, Theorem 7.4(i)].
We finally check that P®1®1 and 1 ® M; ® 1 weakly anticommute. If v, ..., 7,, are the generators
of €7¢,,,

m

Uz) = (lz) | 7vi)nie

i=1

The components (£ | ;) are Lipschitz continuous functions on Y by Lemma 1I.3.28. We may therefore
say that

He&1e)(1eM;e)+(18M;e)(Pe111) =§:12>M¢h [®7®1

=1
is bounded below, and we are done. O

We now make a basic observation about the fixed point algebra of a manifold with multiple path
components.

Lemma I1.3.31. Let G be a locally compact group acting properly on a manifold Y. Let A be
a G-C*-algebra. Let Z be a path component of Y and let G, be its stabiliser group. There is
an isomorphism between Cy(Z,A)%z and Cy(GZ,A)¢. Consequently, Cy(Y,A)C is isomorphic to
Co(Z,A)% @ Cy(Y \ GZ, A)C

Proof. First, the action of G takes path components of Y to path components. If for some g € G there
exist z,y € Z such that gr = y then g must be in the stabiliser group G, of Z. Hence (GZ)/G is the
same as Z/G,. Remark also that the orbit GZ and its complement in Y are manifolds.

Let f € Cy(Z,A)% C Cy(Z, A). By definition of the fixed point algebra, we have

f(s2) = ay(f(2))

for s € G, and z € Z. We first extend f to a function f € C,(GZ, A) by the formula

Flg2) = ay(f(2)

for g € G and z € Z. To see that this is well-defined, suppose that gz = hy for g,h € G and y, z € Z,
and note that

ay(f(2)) = ag(f((hg™)"'y)) = apg1(ay(f(y)) = an(f(y))-
Note also that, for any h € G,

F(hgz) = ay,y(f(2)) = an(f(g2)).

Recalling that (GZ)/G = Z/G, and that = — | f(x)| gives an element of Cy(Z/G,), we obtain that
feC,(Gz,AS,

On the other hand, if f € C,(GZ, A)¢ C C,(GZ, A), its restriction to Z gives an element f|, €
Co(Z,A)%. O

Proposition I1.3.32. Let G be a locally compact group acting properly and isometrically on a CAT(0)
space (X,d). Let A be a G-C*-algebra. Suppose that there is a complete subspace Y of X such that

e every path component of Y is a convex subset of X;

e Y is isometric to a spin® Riemannian n-manifold; and

o G preserves Y and acts by spin® automorphisms.
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Let zo € X be such that S, (X) is isometric to Sm1 Cc R™. Let V be a Clifford module for €¢,, and
define
£:G — EndV £: X —EndV
g d(g zg, 7o) v(g ™ 20, To) T = d(z, z0)v(z, )
The class of

in KK,, ,(Co(Y,A)% A) is equal to zero if zo ¢ Y and, if x, € Y, to the class of

m+n

K*YO((CO(}{)JA)GyovLQ(}{)J$|% ® V®A)A7m® I®1+1 ®M2|Y0®1))

for the connected component Y, of Y containing x,, where the homomorphism ky, : Cy(Y,A)C

CO(YE),A)GYO is given by restricting to Y;.

Proof. Suppose that =, € ;. We first notice that

(G(Y, A% LYV, 88V ®A),,PO®LIRL+1QM;®1)
= (G(Y, A% L (Y, OV ®A) 4, PRIR1+1Q M; ®1)
@(CO(YvA)GaL2(Y\}/Oa$®V®A)A7D®1®1+1®M2®1)

and, since the image of the representation of Cy(Y, A)¢ on L2(Yy, $® V ® A) is equal to Cy(¥,, A)¥

)

= 13, (Go(Yg, A) 0, L2 (Y, Bly, ®V @ A) 4, DRI D1+ 1@ My o).

Therefore, letting Y' =Y \Yj ifzy € Yy or Y’ =Yif z, ¢ Y, it will suffice to show that
(CO(Y>A)G)L2(Y,7$®V®A)Aaw®]-® 1+ 1®M2®1)

represents the zero class in KK, . (C,(Y,A4)%, A).
First, £y is a nonvanishing continuous function from Y’ to €7,,. Indeed, since Y'is closed in X,
|¢|y+| is bounded below by some ¢ > 0; cf. [BH99, Proposition 11.2.4]. The operator s = M, is

sgn f|y
self-adjoint and unitary and commutes with the left action of Cy(Y, A)¢ on L3(Y', §ly, ® V). Let
f:R — R be any Lipschitz continuous function which takes z - 271 for z > €. If 74, ...,7,, are the
generators of €7¢,,,

m

s=Y sy =D | v)v FUNE | i)y
=1

=1 =1 %

We see by Lemma I1.3.28 that each (s | ;) is a Lipschitz continuous function on Y’. Hence
(PO1+10My )(1®s)+(10s)(DO1+18 My )

=> D (s [N ®v +1&2My_
i=1

is semi-bounded below. Therefore
(Co(Y, A% LY, RV @A), PO1R®1+1& M;®1)

is positively degenerate, in the sense of Definition 1.1.12, and so represents 0 € KK,,.,.(Co(Y, A)%, A).
[
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Lemma I1.3.33. Let X be a locally compact Hausdorff space with a proper action of a locally compact
group G. Let A be a G-C*-algebra. Let Cy(X, A) be the partial imprimitivity Cy(X, A)-Cy(X, A)x, G-
bimodule of Corollary A.2.7. Fiz x5 € X and let w : Cy(X) — Cy(G) be the G-equivariant *-
homomorphism given by w(f)(g) = f(g-xy). Then

[GCO(X7 A)] ®CO(X,A)><ITG j?(O'A([W])) ® [LZ(G’ A)] € KKO<CO(X7 A)G7 A)
is equal to the class of the homomorphism n: Cy(X, A) — A given by evaluation at x.

Proof. Write
w:Cy(X,A) %, G — CGy(G,A) xG

for the homomorphism induced by w, given by
w(f)(h,g) = f(h,g-z0)  (f€C(GxX,A) CC(X,A)xG).
Composing & with the integrated representation of Cy(G, A) x G on L?(G, A) produces a representation
7 of Cy(X,A) x G on L?(G, A), given by
(m(£)E)(g) = / g1 (@(f)(h, 9))E(h " g)du(h) = / ag1(f(h,g-29))E(h " g)du(h)
G G

for f € C,(G x X, A) and ¢ € C.(G, A). The image of 7 is in End% (L?(G, A)) = Cy(G, A) x G, so
(CO(X7A) A G7 7r(L2(G7 A) D 0>A7 0)

is an even unbounded Kasparov Cy(X, A) % G-A-module, representing the class [7] = j& ([w]) ® ¢, (G, 4)uc
[L%(G, A)] € KK,(Cy(X,A)xG, A). Let us consider the induced left action of Cy(X, A)% C C, (X, A) C
M(Cy(X,A)xG) on L%(G, A). For f € Cy(X, A,

(m(£))(g) = ag1(f(g-20))E(g9) = f(x0)E(g)du(s).

Let ¢ be a cut-off function for the action of G on X. Define p, € M (Cy(X, A) %, G), as in (A.2.5),
by
pelg,7) = c(@)e(g ™ 2)Ag(g™)M?.
By Corollary A.2.7, “Cy(X, A) = p.(Cy(X, A) %, G). Following [EE11, Lemma 3.9], define the vector
¢z, € C(CLA) C L?(G, A) by ¢, J(g)=clg-z )A(g’l)l/z. For ¢ € C.(G, A), we have

(m(P)E)(9) = | pe(5,9-x)E(s g)du(s)

c(g-zo)e(s g 20) A(s™)2E(s 7 g)dp(s)

o\o\m\

c(g-@o)e(s™ - zo) A(s g 1) 2E(s ™ )dp(s)

|
o

= c.y0) [ cls-20) Al (s)dus).
G

In other words, 7(p,) projects L?(G, A) down to the right Hilbert A-submodule ¢;,A. Hence
GCO(X) A) ®ﬂ' L2(G7 A) = pc(CO(X’ A) Ay G) ®7r L2<G7 A) = W(pC)L2(G, A) = chA‘
The left action of Cy(X, A)¢ on ¢z, A is given by f(z), as required. O

Let us recall and finally prove
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Theorem I1.3.8. Let G be a locally compact group acting properly and isometrically on a CAT(0)
space (X,d). Let A be a G-C*-algebra. Suppose that there is a complete subspace Y of X such that

e every path component of Y is a convex subset of X;

e Y is isometric to a spin® Riemannian n-manifold;

e Y contains a neighbourhood of a point xy, € X; and

e G preserves Y and acts by spin® automorphisms.

Let z; € X be a point not in Y but with S, (X) isometric to a sphere Sm~1 C R™. Let V, be the
Clifford module $x0 for €¢,,, with § the fundamental spinor bundle on Y. Let V] be a Clifford module
for €¢,,. Define the weights

{y: G — EndVj {,:G — EndV]

g d(g ey, zo)v(g  zg, o) g d(g™t -z, @)v(g !t @y, @),

giving rise to 0 4([€]), 74 ([¢1]) € KKE(A,Cy(G, A)) and [M, ], [M, ] € KKC(A X, G, A) as in Corol-
lary II.3.5.

Let ay € KKS(Cy(Y),C) be the Atiyah-Singer Dirac class and let “Cy(Y, A) be the partial
imprimitivity Cy(Y, A)%-Cy(Y, A) x G-bimodule of Theorem A.2.6. With ng : Cy(Y,A)¢ — A the

x-homomorphism given by evaluating at z,

[CC(Y, A)] ®Cy (Y, A)%G 3¢ (0 4(ary)) ® Ax,.G TG’l([Mzo]) = [ng] € KKy(Gy(Y, A)%, A)

and

[CCo(Y, A ®c, v, apa 35 (T alay)) @y ¢ Té’l([le]) =0€ KK, ,(C(Y,A)°, A).

Proof. Let Y, be the path component of Y containing z, GYO its stabiliser group, and 74y, :
Cy(Yy, A)%% — A the s*-homomorphism given by evaluating at z,. Let ay € KKS(Cy(Y),C) be

the Atiyah-Singer Dirac class for Yand let ay, € K KS " (Cy(Yy), €) be the Atiyah-Singer Dirac class

for Y. We remark that ay, = t*(ay) for the inclusion ¢ : Y; & Y. Recall that, by Lemma II.3.31,

Cy(Y, A)€ is isomorphic to Cy (Y, A) % @ Cy (Y \GY,, A)C. Let Ky, : (Y, A)G = Cy(Y,, A)%¥ be the

*-homomorphism given by restricting to the first term of the direct sum. Remark that Na,y, © Ky, = Tg-
Proposition II.3.30 tells us that, for j € {0, 1},

(GG, (Y, A)] Q¢ (Y,A)xG 75 (0 4(ery)) R ax,.c [sz] € KK, ,(Cy(Y,A)%, A)
is represented by
(G(Y, A LAY, @V @A), PRLRL+1®M; ®1).
Proposition II.3.32 tells us that
(Co(Y, A LAY, BV RA) 4, POLI®1+1® M; ®1)

and
“%((Co(yz)a A)GYOaL2(YE)a $‘Yo RV ®A),, PR1®1+1® M[o\y0®1))

have the same class in KK,(C,(Y, A)%, A) and that

(Co(Y, A, LAY, $@V®A) 4, DR1®1+18 M; ®1)



80 Chapter II. Noncommutative-geometric group theory

has trivial class in KK, |,

[CC(Y, A)] ®c, (v, apa 32 (0 a(y)) ® as ¢ [My,]
= [Ky,] B¢, (¥,4)5%0 [“%0 Cy(Yp, A)] QCy (Y, A)%G jg(UA(O‘YO)) ® ax, ¢ [My,]-

(Cy(Y, A, A). That is,

and
[CCo(Y, A)] ®cy (v, apa I8 (T alay)) @y ¢ [My,] = 0.
Let w: Gy(Yy) — Gy (G) be the Gy, -equivariant *-homomorphism given by

w(f)(g) = f(g- ).
Since Y; is a spin® Hadamard manifold, with Gy, acting by spin® isometries, there is a dual Dirac
G
element By, € KK, (€, Cy(Yy)) for which, by definition,

Gy,

ay, ®¢ By, =1 € KK, °(CGy(Yy), Go(Yp))-

Further, by Remark 11.3.13, By, ®¢ (y,) [w] = [¢o]. By Lemma II.3.33,
[“Co(X, A)] ®c,x,ap,6 Ir (0a([w]) ®[LAG, A)] = [ng,y,] € KKy (Cy(X, A)C, A)

where, as above, 7¢ y. : Gy (Yy, A)GYo — A is the *-homomorphism given by evaluating at x,. Putting
all this together,

[50.Cy (Y5, A)] ®c,(v,amc I2 (0a(ay,)) ® a5 ¢ [My,]
= [$0Cy(Yp, A)] ®c, v, apmc I (Talay,)) ® 4 ¢ 58 (04 ([6o]) ®cy (G, a,c L2 (G, A)]
= [ Cy(Y;, A)] ®cy(v,A)xG Jr (UA(aYO ®¢ By, ®cyvy) [W]) ®cy (64w c [L (G, A)]
= [ Cy (Y, A)] ®c, (v, amG Je (@ 4([W]) ®c, (6,4, [L2(G7 A)]

= [nG,YO]
and so
[CC(Y, A)] ®c, (v, apc 35 (T a(ay)) ® ase ¢ [ My, ]
= [ky, ] B, (v,,4)%% [“%0 Cy(Yp, A)] ®cy (v, ama J2 (0 4(y,)) ® 4w q [My,]
= [ky,| ®, (¥, 4) %0 ey,
= [ng],
as required. O

II.4 The Kasparov product for group extensions

The understanding of group extensions in the framework of this Chapter is a microcosm of the more
general problem of the constructive unbounded Kasparov product. In particular, the constructive
product will often fail when approached naively, as we shall see in §§11.4.1 and II.4.2.

The external Kasparov product gives a map

KKH(C,Cy(H)) ® KKN(C,Cy(N)) - KK?T*N(C,Cy(H x N))

for a direct product H x N of groups. This map is constructive for unbounded Kasparov modules. Indeed,
if one has self-adjoint, proper, translation-bounded weights ¢, : N — End Vy and ¢ : H — End V
then

Cyun =T (l) @1+ 1@m5(Ly) : HX N = Vyyn = Vy @ Vy
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is a self-adjoint, proper, translation-bounded weight, where m; : H x N — H and 7, : H x N — N are
the projection homomorphisms.
More generally, let us consider short exact sequences

0 >N — G —— H > 0,

of locally compact groups, that is, ¢ is a homeomorphism onto ¢(N), a closed normal subgroup of G,
and H is isomorphic to G/¢(N) as a topological group; see [Wil07, §1.2.4] for more details.

Proposition I1.4.1. Let
0 »N— G ——> H > 0

be an ezact sequence of locally compact groups and let A be a G-C*-algebra. Suppos/ithat we have a
self-adjoint, proper, translation-bounded weight £5 : N — End V. Define the weight {5 : G — End Vyy

by
Tn(g) = / (9825 )dpun(s)

where ¢ € C,(G) 1is a cut-off function for the right action of N on G. Then

(CO(Ha A)a CO(G’ A ® VN)CO(G,A)’Z]\V)

is a uniformly G-equivariant unbounded Kasparov module.
More generally, if {5 : G — Vi is a self-adjoint weight such that

sup [Zx((n)) — £y (n)] < o0
neN
then

(CO(Hv A)7 CO(G? AQ® VN)Cb(G,A)?EV)

is a uniformly G-equivariant unbounded Kasparov module.

Proof. By Proposition 1I.2.32, Ev(g) is a self-adjoint weight. Further, the algebra C,(H, A) commutes
with the operator /.

For the G-equivariance, observe that, for an implementer U, of the action, an algebra element
feC.(H,A), and a vector £ € C,(G,A® Vy),

(UglUy — £)f€)(h) = (£(gh) — £(h)) f(m(h))E(h).

So
@t vs = Bos| <11 sup |[E(ohu) — Bl < oc

ku€esupp

by Proposition 1I.2.32. Furthermore, if we apply Lemma I1.2.4 to the function from G x G to

End Vy given by (g,h) = (¢(gh) — £(h))f(h), we obtain that g - (U U; — £)f is an element of

C(G,G,(G,End Vy)g) and so #-strongly continuous into End*(Cy(G, A®V)) = G, (G, M(A) s ®End Vy).
Again let f € C.(H, A). By Proposition 11.2.32,

~2
(1 + 4 >_1 ’w*l(supp(f)) € CO(T(_l (Supp(f))7 End VN) - CO(G7 End VN)

So, for all a € A, af(1+£%)7! € Cy(G, A ® End Vy). O
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Theorem I1.4.2. Let

0 sy N —— G —> H s 0

be an exact sequence of locally compact groups and let A be a G-C*-algebra. Suppose that we have
self-adjoint, proper, translation-bounded weights 5 : N — End Vyy and £y : H — End Vy;. Define the

weight E\v : G — End Vy by
Ix(0) = [ elos)tu(sdiun(s
where ¢ € C,(G) 1is a cut-off function for the right action of N on G. Then
lo=m"(l) R1+1®In:G = Vg =V, ®Vy
is a self-adjoint proper weight. Ifz; is translation-bounded, then so is {5 and
“(A,C(G,A®Vg) gy ,a) ba)
represents the Kasparov product
“ (A7 Co(H,A® VH)CO(H,A)veH) ®cy(m,4) (Co(H7 A), G(G,A® VN)CO(G,A)aE\V ) (IL.4.3)
More generally, suppose that we have a self-adjoint, translation-bounded weight ZTV : G — Vy such that

sup [€y(1(n)) — £y (n)] < oo.
neN

Then b :=m*(ly) @1+ 1&® 1’37\, : G — Vg is a self-adjoint, proper, translation-bounded weight and
¢ (A7 G(GA® VG)C’O(G,A)ng)
represents the Kasparov product (11.4.3).

Proof. It is immediate that £ is self-adjoint. Instead of proving the properness of ¢ directly we shall
make use of the constructive unbounded Kasparov product. First, for £ € C.(H,A ® V) and the
corresponding operator T, € Hom™(Cy(G, A ® Vy), Go(G, A® V),

Second, 7*(¢y) ® 1 and 1 & 7, anticommute on the common core C,(G, A ® V), which they also
preserve. Hence, by [LM19, Theorem 7.4],

a(1+ %) € End®(G,A® V) = C,(G,A®End 1)

for all a € A. By considering the case A = C, we obtain that /. is proper. Now, suppose that ZTV
is translation-bounded, making /, translation-bounded as well. We obtain an unbounded Kasparov
module

¢ (A, G(G,A® VG)CO(G,A)aEG)

which represents the Kasparov product. -
Now, instead, suppose we have a weight £, as in the statement. The self-adjointness of ¢/, :=
™) ®14+1® Ly : G — Vg is immediate. Next, for all g € G,
9 ~ . ~ 2
sup ¢ (9h) — Eo(h) | = sup | (¢a(n(ah) — Ex(x() & 1416 (T(ah) — In(h)

I

< sup |[£(r(g)s) — £ (5| + sup | Ex(gh) — Ty (h)
seH heG

< 0.
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Remark that

In(9) —Inl /H 9) — Ex(s™))dun(s)
- /H 9) — Tn(a(s™) + Tn(u(s™) — £y(s™) ) dpan(s)
and so
- Tl <3 _ o 0 -] gl - )

<sup sup  [[F(e) — Ew(els™))|| + sup [F(e(s™) — (s
geG se NNsupp ¢ seEN

< 00

by the compactness of N N suppc and the assumed bound. Hence, ZTV — 27\, € G(G,EndV). As
we have seen, () ®1+1® Z; is proper (without any assumption on E\V) and therefore so is
bo=T"lg)®1+1® @7\, The boundedness of the difference implies that the class in KK-theory is
the same. O

Remark 11.4.4. By Remark 1I.2.34, we can indeed take @7\, = ZTV in Theorem II.4.2, except that it may
not be translation-bounded. Implicit is the fact that, if any ¢, exists fulfilling all the conditions of

Theorem 11.4.2, then the collection of all such weights @7\, forms an affine space containing Z); This is

not surprising; indeed, such weights are connections for the constructive unbounded Kasparov product;
cf. [Mes12].

We now turn to the reduced partial cross-sectional Fell bundles of §11.2.2.2.

Proposition I1.4.5. Let
0 yN— G —— H > 0

be an exact sequence of locally compact groups. Let % be a fissured Fell bundle over G and € the
reduced partial-cross sectional Fell bundle over H = G/N. If £y : H — End V}; is a self-adjoint, proper,
translation-bounded weight then

(C’:(%), (L*(8) ® Viy) oy MZH)
is an isometrically é-equivam’ant unbounded Kasparov module.

Proof. By Proposition 11.2.23, € is fissured. Applying Theorem II.2.24,
(C2(®), (L2(®) ® Vig)os My,

is an isometrically H—equlvarlant unbounded Kasparov module. However, since C* (‘g) is isomorphic to
G (), it possesses a G-action. Further, since Cy = C}(By), it too possesses a G-action, pulled back
from the N-action. The formula (II.2.11) gives a G-action on L?(%), for the dense subset C,(%). It is
routine to check that these actions of G are compatible. The fact that M , acts by multiplication by
£y(m(g)) on each fibre B, of & implies that it is isometrically G-equivariant. O

Theorem I1.4.6. Let
0 s N—-G "> H > 0

be an exact sequence of locally compact groups. Let % be a fissured Fell bundle over G and € the
reduced partial-cross sectional Fell bundle over H = G/N.
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Let 0y : N — End Vy and {5 : H — End Vi be self-adjoint, _proper, translation-bounded weights.
Suppose that we have a self-adjoint, translation-bounded weight EN : G — Vi such that

sup [y (u(n)) — Ex(m)] < oo. (IT.4.7)

Let b =" (L) @1+ 1& Ly : G — V :=Vy; & Vi The unbounded Kasparov module
S(CB), (1%(B) ® Vi), My,
represents the Kasparov product
¢ (CT*(fg), (L*(€) ® Vi) MEH) QCx(By) ¢ (C:(‘%N)7 (L*(Bn) ® Vi), MeN)-

Recall that, by definition, Cy = C(%y) and that there is an isomorphism C(€) = C;} (%), so the
statement is sensible.

Proof. First, recall from §11.2.2.2 the isomorphism

L*(€) ®¢,, L*(By) = L*(B)
of Hilbert B,-modules. Second, 7*({g) ® 1 and 1 ® ZTV anticommute, so the positivity condition of
Theorem 1.4.3 is satisfied. We therefore need only to check the connection condition.

Let ¢ € C.(B)®Vy C L?(%) ® Vy; and consider the operator T, € Hom" (L?*(By) ® Vi, L*(B) Q@ V)
given by

(T:6)(g / C(gn) @ E(n~)dpuy(n)
for £ € C.(%By) ® Vi and g € G. We have
M, Tp = TeMyy, = (1@ Mp)Te = TM,. oy + TM gy g+ (Mo, ® DT

The final two terms are both bounded, by the assumption (II.4.7), so it will suffice for the connection
condition to show that the remainder is also bounded. Still with £ € C,(By) ® Vy, for g € G,

(1@ M), — TLM,. 1, / Clgn) & (Fulg) — In(n1))&(n ) dpy(n).

Let # : B, — B(H,) be an irreducible representation of B, and let n € H_, so that { ® n €
(L?(By) ® Vy) ®, H,. With &, € C.(B) ® V; C L?(B) ® V;, we compute

(& @n| (18 Me)T, — T M,. = )€ )|

/ / {&2(9) @ 1| ¢(gn) & (Tnlg) — En(n™1)) (™) @ n)|dpsy () dig ()

/ / I62(0) ® nl||Zn(9) — T (m ) |1 (gm (™) © nldpsn(m)dpic(s).

Next, we let

c=sup |ln(gn) —ixn)|,
gesupp (,neH
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which is finite by the compactness of supp ¢ and Lemma II.2.4. Putting &, = ((1& M- )TC TCML*(Z}))&
we estimate that

(1 & Mp)T, ~ T, L*(m)f@"‘f

< /G /N /N [2(9) — s 1)[|I¢(93) e (s™) @ ml

x [[En(g) — En(nH)|I¢(gn) 1€ () @ nlldpn(s)dpn (n)dpe (g)

< [ ] (] wcwsiciomiancto)

X "5(8_1) ® 77” ”f(n_l) ® nHX(supp ¢)~!(supp C)(S_ln)d/LN(s>dMN(n)

S~ ~ 2
X sup HKN(Q) - EN(”71)|
geG,neH|gnesupp ¢

[ [ ([ rwrancs)” ([ comraen)”

"f ®77””‘£( ®7IHX (supp¢)~t (supp()( )dMN( )d/“LN< )

/||C )Pdug(9) //A sTO2A L (n1)1/2

"§< 71) ® T’” ”g( ) ® n”X(suppC)*l(suppC)( )d/‘LN(S)d:u‘N(n)
/ / Ag(5 A 2E(s™) @ lIEM™5™) & X wuppe) 2 oupp c) ()i (1) (5)
NYN

<et( [ 1oraucto)

- / / 1€(s) ® nlIE(™5) ® M dpiny(5) X wuppc)-+ (supp) (M)A (1) 2dag (1)
NYN

( /G (@) Pdrclo)
[ (] Jew @ntaunto) B [ 19 @ () h

I/\

X X(supp ¢)~*(supp () (n)AG( 1/2d[1, / I<(g) |2d:u’G )
= Cz Hf ® 77H2 / X(supp ¢)~(supp¢) (n)AG( 1/2dﬂ‘ / HC ‘Qd/I‘G )
N
< 1€ @ nl*un((supp ¢)~ (supp () sup Ag(n‘1>1/2 / IIC(g)IIQduG(g))
né€(supp ¢)~* (supp ¢) G

=c?|¢@n|?

for 0 < ¢’ < oo independent of £ and 7. Now, taking the supremum over irreducible representations
m: B, — B(H,), Lemma A.3.3 yields

|18 Mz)Te = TeM,. 7, | < ¢ < o0
and we are done. -

Example II.4.8. The universal cover of SL(2,R) fits into the exact sequence

0 — Z — SL(2,R) — SL(2,R) — 0 .



86 Chapter II. Noncommutative-geometric group theory

As this is a central extension, we may represent elements of :9’\5(2, R) as pairs in SL(2,R) x Z, with
the multiplication law

(91,71)(g2,n2) = (919211 + 1y + W(gy, 2))

for some 2-cocycle W. A remarkably simple explicit form for W is given in [Asa70, Theorem 2]. If we
define sgn : SL(2,R) — {—1,0,+1} by

we may let
+1 +1 =sgn(g;) = sgn(gy) = —sgn(g,9s)
W(g1,92) = ¢ —1 —1=sgn(g;) =sgn(g,) = —sgn(g,9,) -
0 otherwise

To produce a weight 2; , we cannot simply take (g,n) > n as this is not continuous. To remedy the
situation, we appeal to the Iwasawa decomposition of SL(2,R). Following [Asa70, §1-1], any element
of SL(2,Z) can be uniquely decomposed as

(1 =z y'/? cos§ —sinf) 5 (zsinf+ycosd zcosh—ysing
9= 1 y /2 sin@ cos® ) 7 sin 6 cos

where x + iy is a point in the upper-half plane and 6 € [—7, 7). We have

#) 6¢€(—m0)U (0,
ald) 0€(CROUO (L
sgn(g) = < +1 0=0 = :
-1 6€[-m0)
-1 0=—m
By [Asa70, §1-2], the function £, : :9\5(2, R) — C given by
~ 6
ZZ(ga n) =5-+tn
2m
is continuous. By [Asa70, (5)], with arg: C\ {0} — [—7,7),
~ 0 1 , .
tz((91,m1)(g2,m2)) = ﬁ Tyt oo arg((zy + 1y,) sin by + cosby) +ny

and so 1
l7((91,m1) (g2, M2)) — £z(g2, 1) = o arg((wy + iy,) sin 6y + cos ;) +ny

is bounded by |n,|+ % (This latter is just a consequence of the boundedness of the cocycle W.) For
the open neighbourhood

U= {(ga 0) ’ ZAS (—77',71')}
of the identity (e, 0) € :9’\5(2, R),

N | =

sup HEZ((glﬂnl)<927n2>) _€Z<g27n2)H <
(91,m1)€U,(g2,m2)€SL(2,R)

Hence 2; is translation bounded. Also, for e the identity in SL(2,R),

sup [0z (e,n) — £ (n)] = 0,
nez

so we may apply Theorems 11.4.2 and II.4.6.
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Remark 11.4.9. In low dimensions, real and complex Lie algebras and groups can be classified up to
isomorphism. For 3-dimensional real Lie groups, this is the Bianchi classification. Unless otherwise
specified, we use the notation of [OV94, §§7.1.1-2]. In [TB16], the sectional curvatures of Riemannian
metrics of a Lie group for each Lie algebra in the Bianchi classification are computed. The following
table summarises the details relevant to us.

Lie group G Lie algebra g G/K CAT(-) dimG/K Type
R3 3 0 3
R? x T R? 0 2
R3 abelian
R x T? R 0 1
T3 {pt} — 0
H H + 3
° hs(R) ?; nilpotent
Hs/Z(H3(Z)) R 0 2
SL(2,R SL(2, R + 3
2 R) sl(2,R) 2,R) semisimple
SLy/5(2,R) (keN) RH? - 2
SU(2) @ (ot} 0 N
su — semisimple
SO(3) P P
R, t3(R) R, — 3 solvable
Rj, t31(R) RH®
R5 5\ (2e(0,+1))
’ t5 A (R) Rj \ 3
R ) (xe[-1,0)) solvable
Ry xR RH? x R 0
HL(R)SR )
R, x T RH - 2
Rj \ (AeRr\{0}) 5\ RH?3 — \
E(2) R3 0 solvable
e(2)
EL(2) (keN) R2 0 2

All the CAT(0) (and a fortoiri CAT(—1)) entries fall under the aegis of Proposition II.3.4. Only three
entries in the table fail to be CAT(0): the Heisenberg group, the universal cover of SL(2,IR), and the
l-parameter family R; , for A € [-1,0). We have just seen that SL(2,IR) can be readily dealt with.
In the next section, we will build spectral triples for semidirect products R™ x R, of which R; ,, and
indeed several other entries in the table, are a special case. In §11.4.2, we will build a spectral triple for
the Heisenberg group.

I.4.1 A family of semidirect products

Fix X € gl(n,R) and define a homomorphism ¢ : R — GL(n,R) by ¢(t) = exp(tX). The semidirect
product R™ x, R consists of elements of the Cartesian product R" x R with the product law

(@, 5)(y, 1) = (x + p(s)y, s +1).

There is an exact sequence

0 >R —— R"x, R — R —— 0.
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Let (v;)I; be a basis of R™. To simplify notation, we will also write (v;)_; for their images in €7,,.
Let V. be a Clifford module for €7,, and define a weight /. : R™ — End V. by

lyn(z) = Z@ | 6j>”j

Jj=1

for z € R"™, where (e;)7_; is the standard basis of R". A possible candidate for 2&; R X, R — Vg
would be given by ~
lgn(z,5) = lgn(x).

Indeed, N
sup |G- () — by ()] = 0. (I1.4.10)

reR™
However, when we come to check the translation-boundedness of a&: , we find that

n

U ((2,8) (Y, 1)) — b (y, ) = > (2 + ((s) — D)y | ¢;)v;

Jj=1

which will not be bounded in (y,t) € R" X, R unless X = 0. Thinking more carefully (or taking the
crossed product on the left), we could define

Uy (x, 5) = Lo (9(—5)2).

As in (I1.4.10), we still have
sup [ (¢(2)) — fpn (z)] = 0,

zeR™

but now
U (2,8) (4,) — Lgn (9, 1) = D (p(—5 — )z | €;)0;.

Hence

2 n

1T ((,8) %, 8) — T (0, )| * = D (=5 — )z | &) {p(—s — t)z | e;)(v; | v;)

= > (ol=s — 1)z | evi | v)le; | (s — 1))
= |Te(—s —t)z|?

<ITPle (=01l (=)=

where T' : R™ — R™ is the linear map taking e; - v;. Now |¢o(—t)| = | exp(—tX)|. If X € o(n,R),
sup, g le(—t)| = 1 and % is translation bounded; otherwise sup,_p [¢(—t)| = oo and % is not
translation bounded. Indeed, since the C*-algebra of a semidirect product can be written as a crossed
product C*-algebra, this is just Definition IV.3.12 applied to this example.

To deal with this latter case, we will ‘logarithmically dampen’ the weight /., for which we need
the following Lemma. This is inspired by [GMR19]; we shall give a fuller account in §III.1.4.

Lemma I1.4.11. Let L : R™ — R™ be given by

SR (e )
1y sdn 1_1’_”1,”

(Tq, ey 2p)-
For z,y € R™ and a > 0,

|L(z + ay) — L(y)| < 2(a+1+a (1 +[z])*.
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The estimate is by no means optimal; the important thing is that it is independent of y and
continuous in z and a.

Proof. First,

H r + oy B H _ oflac—ky _ H
L+z+ay] 1+]yl al+latz+y|  1+]y|
o'z L+ fyl =o' = otz +y]) ”
= )
al+ ||0F1w +yl (et + \Ia‘lﬂﬁ +ylD @+ [y])
< 1+||y||—a — a7z + 9
ot + ||a 1x + 9 a4 |alz + y|
a”z|

1+ |yl B ’
al+letz+y| o+ etz +y|
oMz + 1+ Jyl — ot — a7tz + g |
ol + otz +y|
20z + 1 —a”|
al+ otz +y|

Using this, we have

log(1 + |z + ayl)
1+ |z + ay|

|IL(z + ay) — L(y)| = (z +ay) —

log(1 + Jul) H
B
|z + ayl
< |log(1 + |z + ayl) — log(1 + Hyll)\m
T+ ay H
L+ |z+ay] 1+]y]
al+atz+y|
1+ |yl
207 z| + |1 —a |
a4+ a7tz 4y
ot + o z| + |yl
1+ [yl
20 z| + |1 —a |
al+ e iz +y

T log(1+ ||y||>‘

< |log(a) + log

+ ]

, log

1 -1 -1
< |loga| + max {1og +a ] + Ja x+y||}

al+ etz +y|

+ (e tz +yl + o7 z])

< [log @ + max {0, log(a™ + a~'[z]), log(a + IIHJII)}

+ max{L, 2|z +|a — 1|} + o~z (2]2] + |a — 1])
< 2[loga| +log(1 + [z]) + 22| + & + 1+ 227 z|? + 2] + o~ [2|
<20+2+at+ 4+ a |z + 2272
<2(a+1+at)(1+|z])?

as required. O

We now define a new weight ¢, : R™ — End V. by

O (z) = L(bga(2)) = L (Z<x | ej>vj>
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where by a slight abuse of notation we consider each v; as an element of R" and {y.(x) as an
element of €7,,. The self-adjointness, properness, and translation-boundedness of ¢, follow from the
corresponding properties of f., Lemma I1.4.11, and the fact that |L(z)| — oo as ||z| — co. Now let

U : R™ %, R — V.. be given by

ln (2,8) = o ([ (—3) [ p(—s)a) = L (||<P(—5)||1 > (e(=s)z | ej)“j) : (I.4.12)

J=1

Our dividing by the norm of ¢(—s) can be compared to [KK20, Definition 4.6]. Again, as in (1I.4.10),

sup [f ((2)) — e ()] = 0.

zeR™

Applying Lemma II.4.11 and recalling that ¢(t) = exp(tX),

T (2.5) 0, 6) ~ G (0,1

_ HL (M—s SIS (s )+ p( 1y ej>vj) I (H«p(—t)H‘l S oty ej>vj) H

J=1 J=1

le(=1)] lo(—s — )| TN
<2 ( lo(—s — )] +1+ el ) (T4 Jleo( O T e( t)z|)

<2(le()l + 1+ le(—=)) (1 + [T ]]z])?
< 2(1 4 2e5XN (1 4 T |=)2,

where T : R™ — R™ is again the linear map taking e; — v,. Hence

sup | (5) 0, 0) — T ()| < o0
(y,t)ER™ %, R

for all (z,s) € R™ x, R. For the neighbourhood U = {(z,s) € R" x, R | |z| < 1,|s| < 1} of the

identity (0,0),

sup Hgﬁ;((x, s)(y,t)) — Z]’;Z(y,t)H <2(1+2¢XD (1 +|T))? < oo.
(z,8)€U,(y,t)eR™ >, R

Hence Zg: is translation-bounded and we can apply Theorems II.4.2 and II.4.6.

This construction is, of course, quite ugly. It may well be the case, for a particular ¢, that R™ <, R
admits a left invariant Riemannian metric of nonpositive sectional curvature, in which case we can
build a directed length function as in §II.3.

Example I1.4.13. Let us consider the special case n = 1, making the arbitrary choice X = 1 so that
©(t) = e'. Define the weight ¢ : R — C by z + z. Combining the weight (II.4.12) with 7 x ({p)
produces the self-adjoint, proper, translation-bounded weight ¢’ : R X, R — €7, = End C, given by

T
U(z,8) = sv9 + ——— log(1 + |z|)v;.

However, already in Example I.3.11, we constructed a weight £: R x, R — €7, = End C,, given by

22 4 (1 — e5)2
Uz, s) = NPTV
VA2 + (22 + 1 — e25)? z? + (1+¢€%)
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from the action of R %, R on RH?. One can check that £(0,s) = sy, and

0(z,0) = 2sgn(z)y; — |z]7

V4 + x2

In particular, ¢ and ¢’ agree for z = 0 and both have a ‘logarithmic’ behaviour in the z direction.
However, the difference £ — ¢’ is not bounded and, furthermore, the difference sgn(¢) — sgn(¢’) does

log(1 + 32?).

not vanish at infinity, so it is not clear that they will give the same class in K KéR (e, Co(R x, R)).
However, one can also check that, for any ¢ € [0, 1], t/ + (1 —t)¢ is a self-adjoint, proper, translation-
bounded weight. Hence, (Cy(R x, R),Cy(R %, R,C?),£) and (Cy(R », R), Cy(R <, R, C?),£) are
homotopic and indeed do have the same class.

Even though, by the homotopy, we know (Cy(R %, R), Cy(IR x,, R, C?),£) represents the Kasparov
product

(C, Co(B)my, ) ®cym) (ColR), Go(R 3, R)), ), (IL.4.14)

it does not satisfy the Kucerovsky conditions. The positivity condition of Theorem I1.4.3 fails, in
particular, because

. —(x2 +1— 628)
\/41'2625 + ($2 +1— 625)2
is not bounded below. However, we can factorise (Cy (IR 1, R), Gy (R x, R, C?), £) as
(C, Go(R) ¢y my, L(LR)) ®c,m) (Co(R), CGo(R 3, R)), 7 (Lg ).

Here, the left-hand Kasparov module is for the normal subgroup R of R X, R, rather than the quotient
R = (R x, R)/R as in II.4.14. We remark that one cannot write the left hand module as

((Ca CO(R)CO(]R) ) E]Ri)’

as one would expect, because it is not R X, R-equivariant. The explanation of this requires the idea of
conformal equivariance; see §1Il[.2 and, in particular, Example IIl.2.1. Now the conditions of Theorem
[.4.3 admit almost of a visual demonstration. For the positivity condition,

2ze® 224 (1—e®)2
0(z,s)L(lg(z))v, + L(lg (z))v,4(z,s) = 2L(x) N e 628)22arctanh \/ % > 0.

This is just the statement that geodesics in the Poincaré half-plane model from e *(—xz + 1) to i always
travel from left to right. On the other hand, the connection condition follows from the fact that

[£(2, 8) — L (s)72] = [€((2,0)(0,s)) — £(0, s)| < [£(x,0)]

is uniformly bounded in s for  in any compact subset of R.

II.4.2 The Heisenberg group

Let H; be the 3-dimensional Heisenberg group. In the 3 x 3-matrix presentation, we can write

1
Hy=4qg9€M;R):g= 10
0

O = Q
= S0

The group Hj is a central extension of R? by R, fitting into the exact sequence

0 » R —— Hy; —— R? > 0.
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Define the Euclidean weights

ER'R%(C eRZ'RZ%%KQZEnd(C2
cHc (a,b) & a7y, + by,

Let us naively define a weight EIE :Hy — C by ZI;(Q) = c¢. First,

sup | Zg (1(c)) — Lg ()] = 0.
celR

Alas, with
1 a c 1 a ¢ 1 a+a c+c +ab
g = 10 h = 1 v gh = 1 b+ b
1 1 1

one can see that

Uy (gh) — g (h) = c + ab/

is not bounded in h. This cannot be remedied by a procedure similar to the one in §11.4.1. Indeed,
there we had a semidirect product and here we have a central extension, presenting two very different
behaviours.

However, consider the weight £ : H; — End C? given by

1 a ¢
by, : 1 b | (ay; +byy)(a® +b2)Y2 + ¢y,
1
When ¢ =0,
1 a O
by, 1 b | = (ay; +byy)(a? 4+ %)% = lga|lys|.
1

For this reason, we may consider BHS to be a ‘2nd order’ weight. The development of a framework
to handle such higher order weights will have to wait until §IV.3.1. Although ¢, is self-adjoint and
proper, indeed
’2 72\2 ’2 1/2
(L+ Y2 = (14 (@ + 022+ )
it is not translation-bounded. We can, however, compute that

tgh) —£(h) = ((a+a')n + b+ b)) ((a+a)? + (b+b)2)"

—(a'7; + b ) (@ + b)V2 4 iy
= (@' + b 72) (((a+a)? + (b+b)2)V2 — (' +b/%)1/2)
+(am +by)((a+a’)? + (b + b)) + (c + ab')ys.

+(c+c +ab)

Hence (£(gh) — £(h)) (1+£(h)?)~1/* is uniformly bounded in h € G. A slight generalisation of Theorem
11.2.24 then shows that, for f € C,(H;), the operator [M,, f](14+M?)~Y/* = [M,, f]{(M,)~*/? is bounded
where M, is multiplication by ¢. We arrive at the order-2 spectral triple

(C*(H3)7 L2(H37 Cz)? MZ)?

which one can check has nontrivial class in K K;(C*(H3), C).

In Example II.2.10 we shall examine the conformal geometry of this order-2 spectral triple. In
Example IV.1.13 we shall place it in context and in §IV.3.1 make a similar construction, with nontrivial
class in KK-theory, for all simply connected nilpotent Lie groups and their cocompact closed subgroups
which, in particular, include all finitely generated, torsion-free, nilpotent groups.
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In this Chapter, we extend unbounded KK-theory to encompass conformal group and quantum
group equivariance. This new framework allows us to treat conformal actions on both manifolds and
noncommutative spaces. As examples, we present unbounded representatives of Kasparov’s y-element
for the real and complex Lorentz groups and display the conformal SL,(2)-equivariance of the standard
spectral triple of the Podle$ sphere. In pursuing descent for conformally equivariant cycles, we are
led to a new framework for representing Kasparov classes. Our new representatives are unbounded,
possess a dynamical quality, and also include known twisted spectral triples. We define an equivalence
relation on these new representatives whose classes form an abelian group surjecting onto KK-theory.
The technical innovation which underpins these results is a novel multiplicative perturbation theory.

III.1 Conformal transformations from a multiplicative perturbation
theory

We begin by recalling a few facts about ternary rings of operators. Ring- or algebra-like objects with

ternary product operations are known also as triple systems, and come in Lie, Jordan, and associative

varieties, the latter in two kinds. In the context of abstract operator algebras there are C*- and
W*-ternary rings, due to [Zet83].

93
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Definition II.1.1. A ternary ring of operators on a Hilbert B-module FE is a collection & C End*(FE)
which is closed under the operation
(z,y,2) = zy*z.

We will not by default assume that a ternary ring of operators is norm-closed.

In the sense of [RW98, Lemma 2.16|, a ternary ring of operators 2 is a right pre-Hilbert span(2™*Z)-
module. Its completion & is then a right Hilbert span(2*Z)-module. By similar considerations on
the left, & is a Morita equivalence span (X 2*)-span(2*Z)-bimodule. We remark that, for instance,
5pan( X)) =X

In particular, every norm-closed ternary ring of operators is a Morita equivalence bimodule in a
natural way. By [Zet83, Theorem 2.6], any Hilbert C*-module can be represented as a norm-closed
ternary ring of operators on some Hilbert space H.

The implicit presence of ternary rings of operators will be a feature of many of our definitions.
This occurs because, just as the Leibniz rule makes the domain of a commutator with a self-adjoint
operator D a %-algebra, the domain of a mixed commutator a — D;a — aD, is naturally closed under
the ternary product. Indeed, if, for a,b,c € End*(E),

D,a —aD, D;b—0bD, D,c—cD,

are bounded, then [D,,ab*], [D,,a*b], and D;ab*c — ab*cD, (and all other like permutations) are
bounded. This can also be seen by writing D; and D, as diagonal entries of a two-by-two matrix and
placing a, b, ¢ in the upper-right corner.

We will formulate our definition of conformal transformation for higher order cycles.

Definition II.1.2. A conformal transformation (U, u) from one order—ﬁ cycle, (A, Eg, Dy), to
another, (A, E%, D,), is a unitary map U : E — E’, intertwining the representations of A, and an
(even) invertible operator u € End*(E) which is even if the module is graded, satisfying the following.
We require that A C Span(A.Z) Nspan(#A), where M is the set of a € End*(E) such that the
operators

(U*DyUa — apDyp*)p=(Dy)~*  (Dy)"*U(U*DyUa — apDy )

are bounded and a, ap, ap™"* € Lip (D).

Remarks II.1.3.

1. The easiest way for the closure condition to be satisfied is if 1 € /; for nonunital A an approximate
unit might be found to lie in /.

2. We have MM* M C M and so A is a ternary ring of operators, in general not norm-closed.

3. Conformal transformations are generally neither reversible nor composable. This latter occurs
very easily for two noncommuting conformal factors 1 and v. We ultimately address this issue
with the conformisms of §III.4.2.

In §11.1.3, on p. 106, we will prove the following Theorem.

Theorem II.1.4. Let (U, u) be a conformal transformation from the order--— cycle (A, Eg, D;)
to the order-y= cycle (A, Ef, D,). Then the bounded transforms (A, Eg, Fp) and (A, Eg, Fp)) are
unitarily equivalent up to locally compact perturbation via the unitary U. That is

(U*Fp,U — Fp,)a € End’(E)

for all a € A. Hence [(A, Eg,Fp )] = [(A, Ep, Fp,)] € KK(A,B) (and also [(A,Eg, D;)] =
(A, E, Dy)])-
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III.1.1 Motivating examples

Example II.1.5. cf. [Dun20, Lemma 2.8] The simplest nontrivial example of a conformal transforma-
tion between unbounded cycles can be contructed from an unbounded cycle (A, E5, D) and a positive
number . The pair (id, x!/2) is a conformal transformation from (A, Eg, D) to (A, Eg, kD).

On a geodesically complete Riemannian manifold X, there are two standard spectral triples. One
relies on a spin® structure and takes the form (C,(X), L?(X, $), D), where § is a spinor bundle and
I is the Atiyah-Singer Dirac operator. The other depends on only the orientation and Riemannian
metric, taking the form (Cy(X), L%(2*X),d + &) where d is the exterior derivative on differential forms
Q* X and ¢ is its adjoint, the codifferential, their sum being the Hodge-de Rham Dirac operator. We
consider the effect of a conformal change of metric on both these spectral triples.

Example III.1.6. The behaviour of the Atiyah—Singer Dirac operator under conformal transformations
was first recorded in [Hit74, Proof of Proposition 1.3]. In the context of noncommutative geometry, see
also [Bar07, Proof of Theorem 3.1]. Let (X, g) and (X, h) be Riemannian spin® manifolds such that
h = k%g. Let $g and $h be their associated spinor bundles. There is a canonical fibrewise isometry

b, = B,

Let ng : F°°($g) — F°°($g) and P, : T>°($,) — I'™(8, ) be the corresponding Dirac operators. Then,
by e.g. [Hij86, Proposition 4.3.1],

wh — k(—n—l)/2 o w o wg o w—l o k(n—l)/2'

Although 1 is a fibrewise isometry, the induced map V : L?(X, $g) — L*(X, $h) is not unitary, as
the volume form changes. With the relation vol,, = k"vol,, we find that V* = k"V~1. The polar
decomposition is

U=V{V*V) Y2 =2y

and we find that
wh — k_1/2UngU*k_1/2

or, in other words,

U*th — k_l/Zngk'_l/2.

In terms of Definition II.1.2; if (X,g) is complete and the conformal factor k£ and its inverse are
bounded (which is automatic if X is compact), then (U, %k '/2) is a conformal transformation from
(Co(X), L3(X, $g), ng) to (Co(X),L*(X, $,),D,). (Note that there is need for the derivative of the

conformal factor to be globally bounded.)

Example III.1.7. Next, we consider the Hodge—de Rham Dirac operator. As before, let (X, g) and
(X,h) be Riemannian manifolds such that h = k?g. Consider the two inner products on Q*X given by
g and h, which we will label (-,-), and (-,-),,. We will call the resulting Hilbert spaces L*(Q*X,g)
and L2(Q*X,h). There is an obvious map

V:L2(Q°X,g) — L2(Q* X, h)

given by the identity on Q*X, in other words, for w € Q*X C L?(Q*X,g), V : w = w. Its adjoint is
given on homogenous forms w by V* : w i k" 2ly. Observe that if n is even the restriction of V to
the middle degree forms is unitary. We make the (rather trivial) observation that

VV* rws kP29 VAV s w s kel (T.1.8)
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The unitary in the polar decomposition U = V(V*V)~Y/2 = (VV*)~1/2V is given by
U:wis k22, U* :w s k(n—2leD/2y,

The exterior derivative d does not depend on the metric, but its adjoint the codifferential does, so
we use the notation d, and ¢, to distinguish the two codifferentials acting on 2*X. The invariance
of the exterior derivative means that dV = Vd. With care over which inner product is being used,
(Vd)* = 6,V* and (dV)* = V*6,,. So, 6,V* = V*4;, and we obtain the relations

V(d+d,)V* =d(VV*) + (VV*)é,
and
U(d+8g)U* = (VV*) 2V (d + 6V (VV*) T2 = (V) T2d(VV)Y2 4 (VV)Y26, (V) L2,
On a differential form w of degree |w|,

U(d + 8,)Urw = k= 2(H0)/2q (fn—2)/2gp) 4 fln—2(l-0)/25, (—(n=2le/2,)
— o (22 =20el)/205) 4 ln=2lel)/ 25, (~(n-20el)/2))

For any function f € C*°(X),

frldfw+ fopflw=(d+dp)w+ fd, flw+ [f,0p]f T
= (d + 6h)w + fﬁl[da f]w - [6h) f]fﬁlw
= (d+ 6,)w+ fHd — &, flw-

Hence

(U(d+65)U" — kV2(d + 6,)kY/?) w
= (k(d + 8y) + k~(21=2/2[d — 6, kn=2D/2] — k1/2(d + 5,,)kY/?) w
_ (—k1/2[d + 6y, k1/2] + k~(n2lw|-2)/2 [d— 6, k(n—mw\)/z]) w.

In terms of Definition II.1.2; if (X,g) is complete and the conformal factor k£ and its inverse are
bounded (which is automatic if X is compact), the data (U, k~'/?) define a conformal transformation
from (CO(X)’ L2(Q*X7 g)a d+ 5g) to (CO(X)’ L2(Q*X7 h)7 d+ 5h>

Remark 1.1.9. The extension of the Hodge-de Rham spectral triple to a spectral triple for the
Z,-graded Clifford algebra bundle is important for Poincaré duality [Kas88, §4]. In the case of a
manifold, where the functions and conformal factors are in the centre of the Clifford algebra, it is not
difficult to show that our definition of conformal transformation can be modified to handle the graded
commutators. We leave a discussion of the general Z,-graded case to another place.

In the framework of the spectral action principle, Chamseddine and Connes [CCO06] calculate the
effect of rescaling the Spectral Standard Model Dirac operator D ~» e~#/2De~%/2 where the dilaton ¢
is interpreted as a scalar field. Apart from the Higgs mass term, the entire Lagrangian of the Standard
Model of particle physics is conformally invariant, which was a motivation for the work in Chapter III.

Example III.1.10. Suppose that we have the data of a continuous family of compact Riemannian
spin® manifolds (M, g, ),cx parameterised by a locally compact Hausdorff space X, as in the families
index theorem [LM89, §III.15]. Integration over the fibres of the total space M — X along with the
Dirac operators D, on the fibre spinor bundles $x yields an unbounded Kasparov module

(G20, 22068, 8) ¢, x): D.) - (I1.1.11)
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Let k: M — [0,00) be a family of conformal factors parameterised by X. The commutation of the
conformal factors with the algebra means we obtain a new unbounded Kasparov module

(Go(0), 1200, 8, K. ¢ ), KDk 2.

We observe that the integration over the fibres changes, but the compactness of the fibres means we
get equivalent measures. That we obtain a new unbounded Kasparov module is straightforward but of
more consequence is that the classes defined by F, and Fj,-1/2pg-1/2 in KK(Cy(M),Cy(X)) coincide.

Suppose that we have another family of metrics h,, for the same family of manifolds, giving an
unbounded Kasparov module

(Go(20), L2045, ho) ), . ) - (I1.1.12)

Suppose that h, = k2g for a (pointwise) continuous family k, € C°°(M,) of smooth functions and
that sup__ {1k, ]loo; %7 o} < 00. Then (id, k._l/2) is a conformal transformation from (III.1.11) to

(I.1.12).

The first appearance of conformal transformations in noncommutative geometry was with the
preprint [CC92] on the noncommutative torus, followed up by the same authors in [CT11]; see also
[CM14]. The next example is not, however, to be confused with the twisted spectral triples of [CMO08§],
which will be examined in §1II.4.

Example II.1.13. Fix a real number a. Let C(T?) be the universal C*-algebra generated by unitaries
U and V subject to the relation
VU = e2>™eUV.

There are two self-adjoint (unbounded) derivations §; and &, on C(T?), given on generators by

When a = 0, these are the derivatives —id, and —idp, on the classical torus. There is a trace on
C(T?) given by
(P(Umvn) = 5m,05n,0'

The completion of C(T?) in the inner product given by ¢ is L?(T?). Fix a complex number 7 with

J(r) > 0. Then
0y + 76
2\ 122 2 . 1 2
(C(’]I‘a),L (T2) ® C2, D = (51+?<52 ))

is a spectral triple. Now choose a positive invertible element k& € C(T2) in the domains of §; and J,.
Let k° € B(L?(T?)) be the operator of right multiplication. Then

02
(c(qri),L?(Ti)@@?,Dkz = (Qlﬁ%)(koy &) (51”52)))

is still a spectral triple. We have that
o o __ —k° [51 + 7—62, ko]
D> — k°Dk° = <[51 76, k7 k°

is bounded. Hence 1 €  and (id,k°) is a conformal transformation from the spectral triple
(C(T2), L3(T2) ® C2, D) to (C(T2), L3(T2) ® C2, D;2).

Let ® : C(T2) — C(T) be the expectation coming from averaging over the circle action U  zU,
z € T. Then (C(T%2), L2(C(T?), ®) (1), 02) is an unbounded Kasparov module by [BCR15, Proposition
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2.9]. Now choose a positive invertible element k € C(T?2) in the domain of §,. Then (id, k°) is a
conformal transformation from (C(T%), L*(C(T%), ®)c(r), 92) to the spectral triple

(C(Ti)7 LQ(C(Ti)a (I))C(’]I‘)’ k052ko) :

Example IIT.1.13 can be generalised along the lines of [Sit15], using a real spectral triple satisfying
the order zero condition. Theorem III.1.4 gives a refinement of [Sit15, Lemma 14] which shows that
the class in KK-theory of the conformally perturbed spectral triple is unchanged.

II.1.2 Technical preliminaries

Throughout this section we fix a countably generated right Hilbert B-module E for some C*-algebra
B. The chief subtlety in using the integral formula (I1.0.5) to study the bounded transform for an
unbounded Kasparov module (A, Eg, D) is the commutator (A + 1+ D?)"ta —a(A + 1+ D?)7! for
a € A, [CP98, Lemma 2.3]. For us, the analogous computation is still the heart of the matter, see
Lemma III.1.22, but our techniques are different and described next.

Lemma III.1.14. Let A and B be regular operators on E. If B is a symmetric operator, then so is
ABA*, provided that the domain

dom(ABA*) = {z € dom A* | A*z € dom B, BA*z € dom A}

is dense. If A is bounded and invertible then ABA* is reqular. If moreover B is self-adjoint then ABA*
is self-adjoint.

Proof. Given z,y € dom(ABA*), z,y € dom(A*) and A*y € dom(B), the symmetry of B gives
(ABA*x | y) = (BA*w | A'y) = (A*z | BA™y) = (z | ABA™y)

so ABA* is symmetric. If A is bounded and invertible, [Wor91, §2, Example 2] shows that AB is
regular and, by [Wor91, §2, Example 3|, ABA* is regular. Applying the definition of the domain of
the adjoint, one readily sees that dom((ABA*)*) = dom(ABA*) = A~* dom(B). O

In the second statement of Lemma III.1.14, the invertibility of A can be relaxed given additional
assumptions [Kaal7, §6]. We will consider perturbations of the form D ~» puDp* for a self-adjoint
regular operator D and an invertible, adjointable operator u. The following bound is the result of a
relation between the domains of fractional powers of (D) and (uDp*), using Theorem A.3.4 of §A.3.

Lemma II.1.15. Let D be a self-adjoint reqular operator and p an invertible adjointable operator.
For all 0 < a <1 we have

dom(p(D)*p*) = dom((u(D)p*)*) = dom(uDp*)*
and the inequalities
(D) (D)= || < e 1=l || (DY) = (D)= || < el =

Proof. The domain statement follows from Theorem A.3.4. For the first inequality, in the context of
Theorem A.3.4, let A= (D) and B = u(D)u* so that u* dom B = dom A. We have

D) u* (DY)~ || = |A*w*B=|| < [Ap* B=H|*|p*] '~

= Dy (D) ) 7| e
= e
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For the second, in the context of Theorem A.3.4, let A = u({D)u* and B = (D), so that y~* dom B =
dom A. We obtain that

(D))= (D)= | = |A*p=* B~ < [Ap=* B u e

= [ (D))= (D) e
= |l

as required. O
We recall tools ensuring convergence of regular self-adjoint operators on a Hilbert module Ej.

Theorem II.1.16. [WN92, §1] Let T be a normal regular operator on E and f € Cy(o(T)). Let
(fr)nen C Cy(o(T)) be a sequence of functions with common bound which converge to f uniformly on
compact subsets. Then f, (T) converges to f(T) as n — oo in the strict topology on M(End®(E)), and
hence in the x-strong topology on End*(E).

For the final statement, recall that the strict topology on M (End®(E)) = End*(E) agrees with the
x-strong topology on norm-bounded subsets [RW98, Proposition C.7].
The proofs of the following two Theorems are essentially unchanged from the Hilbert space case.

Theorem II.1.17. c¢f. [RS80, Theorem VIII.25(a)], [Oli09, Proposition 10.1.18] Let € C E be a core
for a self-adjoint reqular operator T on E. Let (T,,),cn be a sequence of self-adjoint regular operators
such that, for alln € N, € C domT,, and, for all £ € €, T,£ converges to T, as n — oco. Then T,
converges to T in the strong resolvent sense as n — 0.

Theorem II.1.18. c¢f. [RS80, Theorem VIII.20(b)], [Oli09, Proposition 10.1.9] A sequence (T,,),en Of

self-adjoint reqular operators on E converges to a self-adjoint reqular operator T in the strong resolvent
sense if and only if, for all f € C,(R), f(T,,) converges strongly to f(T') as n — oo.

Let (¢,,)nen C C.(R) be a sequence of positive functions, bounded by 1 and converging uniformly
on compact subsets to the constant function 1. Let D be a self-adjoint regular operator. By Theorem
II.1.16, the bounded operators (¢,,(D)),,cy converge x-strongly to 1. We will consider the bounded
operators d,, = D, (D). On an element £ € dom D,

d,& = Dy, (D)¢ = ¢, (D)(DE) — DE.

In particular, by Theorem Il.1.17, d,, — D in the strong resolvent sense. By Theorem II.1.18, F;
converges strongly to Fp as n — oo.

Proposition IIl.1.19. Let D be a self-adjoint reqular operator and p an invertible adjointable operator.
Then pd, u* converges to uDu* in the strong resolvent sense as n — oco. Furthermore, p(d,)u*
converges to u(D)u* in the strong resolvent sense.

Let a be a bounded operator such that adom D C dom D. With a,, = ¢, (D)ay, (D), we find

that d,,a,,(d,)~! converges strongly to Da{D)~! as n — co. In consequence, [d,,,a,]{(d,)~" converges
strongly to [D,a](D)~1.

Proof. First, apply Theorem III.1.17 to the self-adjoint regular operator pDp* and the sequence
(pud, %) pen Of bounded operators. Noting that dom(uDp*) = p~'* dom D, on an element p~1*¢ €
dom(uDu*),

(pd, pw*)p= € = pd, & — pDE

as n — oo. Hence, ud,, u* converges to uDu* in the strong resolvent sense. On an element ¢ € dom D,

(d,)€ = (1+ (Dp,(D))*)'?€ = (1 + (Dy,,(D))*)/*(D) " ((D)¢).
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The function

(4 ()2 (1_ 1—son<w>2)” :
(1+ 22)1/2 14272

is bounded above by 1 and below by ¢, and so converges to 1 on compact subsets. Applying Theorem
Im.1.16,

(d,) = (1+ (Dp,,(D))*)/*(D)~ ((D)€) — (D)€

and we proceed as before. For the second statement we have

d,a,(d,)™" = D¢, (D)*ap,(D)(De, (D))" = ¢,(D)* (Da(D)™") (D), (D)(Dep,, (D)) .

The function

(1+ (2, (2)))172 1+ a2, (x)

is bounded above by 1 and below by ¢, and so converges to 1 on compact subsets. Applying Theorem
Im.1.16,

(1 +a2)20, () (1_ 1~ (0’ )”2

d,a,(d,) " = ¢,(D)? (Da(D) ') (D), (D)(De, (D))" = Da(D)~!

strongly, as n — oo. For the second part,
[dn7 n](dn>_l = dna‘n<dn>_1 - anF;ln - D(l(D)_l - aFD
strongly, as required. O
As an application, we prove an operator inequality needed for applications involving summability.

Proposition II.1.20. Let D be a self-adjoint reqular operator on a Hilbert B-module E and p an
invertible adjointable operator on E. Then

Clu ™1+ D) '™t < A+ (uDp*)?) ' < Cp (1 + D)t

where C' = max{|u|?, |n~*[?}.

Hence if J is a hereditary ideal of End*(B), not necessarily closed, then (1 + (uDu*)?)~t € J if
and only if (1+ D?)~! € J. In particular, this applies if B = C, so that E is a Hilbert space and J is
any two-sided ideal of B(E), not necessarily closed [Bla06, §I1.5.2], such as Schatten ideals.

Proof. If u*udom D C dom D, we could proceed more straightforwardly. As we do not assume this,
we will use the (bounded) operators d,, = Dyg,,(D) and Proposition II.1.19 to write

1+ (pdpp*)? = 1+ pd, p pd,p* < 1+ |plPpdypt = p(p= o= + uldl )
< p(le™ P+ DelPdR) s = Tl plel 212 + do)we
< el max{1, ] =2 2 (1 + d7) = max{]|uf?, |2 el + d2)p
Hence, (1+ (pd,u*))™t > Clp*(1 +d2) 1pt and by Theorem III.1.18 and Proposition III.1.19,
(14 (pd,,11*)?)~! converges strongly to (1+ (pDu ) )~! and (1+d2)~! converges strongly to (1+D?)~!

as n — oo. Thus,
CTip ™ (1+ D)7t < (14 (uDp?)?) ™,
and similarly,
1+ (ud,p*)? > min{ |l ~2, o~ 2 u(1 + d5)p*

and
(14 (uDp*)?) ™ < Cp (1 + D) 'u?

as required. O
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We use the notation ¥, ,(z) = ax — xb for a,b,z € End"(E). The following inequality controlling
T, () is based on Stampfli [Sta70, Theorem 8]; see also Archbold [Arc78].

Lemma III.1.21. Let a and b be elements of a C*-algebra A. Define the bounded linear operator
T A=A x = ax — zb.
If a and b are positive, then
|0 pll < max{]la] — 67, b — o= 71}

71”71

where |a is considered to be zero if a is not invertible, and likewise for b.

Proof. Firstly, [T, [ < [la| + [b]. For any A € C, T, x =Ty, 50 [Tapll < lla— A +[b — A For
any A\, Ay € C,
[Za sl < lla = A 416 = A + [Ar = Ag-

To obtain the required bound, let
1 1
A= glal+ a7 de = Sl +1o7H17)

so that, because a and b are positive,

1 1
la =Ml = 5(al =l 17 o= Aol = (1] = [677).
Then
1 —1y—-1 1 —1y—-1 1 —1y-1 1 —1y—-1
[Fa,0l < 5 lal = o™ 75) + S (ol = 1677 + ’5("@” a7 = S el + 16 )
1
=3 ((Ilall — 67471 + (ol — a7 + [lall — 16~ — (1b) - ||a’1||’1)\)
= max{fa] — 67|74, o] — Ja=H 71}
as required. ]

It is proved in [Sta70, Theorem 8, Corollary 2] that, if A has a faithful irreducible representation,
then there is an equality

IS0l = inf (la— Al + [ = Al

for any a,b € A.

OI.1.3 A multiplicative perturbation theory

The technical tool which allows us to extend the definitions of conformality and equivariance to
unbounded Kasparov cycles is a multiplicative perturbation theory. This perturbation theory allows
us to relate properties of an unbounded self-adjoint regular operator D and its bounded transform
Fp := D(1+4 D?)"'/2 = D(D)~! to conformally rescaled versions D, = uDy* and Fp, .

Lemma MI.1.22. Let D be a self-adjoint reqular operator and p an invertible adjointable operator on
E. Let a be an adjointable operator such that ap=* dom D C p~'*dom D. Then, with D; = uDyu* and
D, = p(D)p*, and for all A >0

—(A+(D)*)ta+aA+DF) 7 = (A4 (D)) anT e 1 e, (D) T Dy(A + D3) 7
+ Dy (A +(Dy)*) ! ([Dlv al Dyt — = [Fp, H*aﬂ]ﬂfl) Dy(A\+D3)7!
+ A+ (D)) (MFDM_l[Dla a] Dy + p[Fp, M_I(W]FDN_I) Di(A+D3)~!

as everywhere-defined operators.
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Proof. If p*ppdom D C dom D, we could proceed more straightforwardly. As we do not make this
assumption, we use the approximation arguments of §II.1.2. Let (¢,,),eny € C.(R) be a sequence
of positive functions, bounded by 1 and converging uniformly on compact subsets to the constant
function 1. Let d,, = Dy,, (D) and set

= o, (D)prap~*p, (D) p*.

Note for future reference that we may use the bounded transform F; = d,{d,)"! to write

[ud, p*,a,](p{d, ) )~
= pd,p, (D)p*ap= ¢, (D)(d,) " u~" — p ¢, (D)prap ¢, (D) nFy p*
= pld,,, @, (D)p*ap= ", (D)(d,) " w4+ pe, (D)p*ap "¢, (D)Fy p!
— e, (D)ptap™ ¢, (D) pFy pt

so that we will be in a position to apply Proposition II.1.19 to the first term, while the other two are
uniformly bounded in n. Because d,, is bounded, we may write

— A+ (ud, 1)) tay, +a, (A + (pld,)p)?) 7!
= (A + (pd, 1*)?) 7 (—a, (A + (u(dy) 1)) + A+ (ud, 1) ?a,, ) (A + (u(d,,)p*)?) 7
= (A (ud 1)) (=, (u(d,) ") + (pd, 1) 2a, ) A+ (u(d,,) ")) " (II.1.23)

Expanding the middle factor and using the identity F; d, —(d,) = —(d,,)”" yields

(ud )2 a, — a, (1(d, ) pu*)?
= a,, + pdp p pdy pra, — app(dy )t p(dy ) 1t
= a, + pd, 1 [ud, 1", ay) +udnu iy, 1 — @ gy ) " () 11
nl = wdp[Fy  ptan pl(dp) p* + pdy By p*ag, pid, ) p*

*

a
= a, + pd,p*pd, 1", a
— app{dy) pw* p{dy, )
= a, + pd i [pd 1ty a,) — pd,, [Fy s pragpl{dy ) + pFy p= pdpta, p(d,) p*
— ap p{dp, )" pldy, )
a

= a, + pd, 1 [pd, p1*, a,) — pd, [Fy , pra,pl(d,)w* + pFy gt pd, w*, a,u(d, ) p
+ uFy ptagpd, ptpuld,) pt — agpld,) ptpdd,) pt

= a, + pd, 1 [pd, ¥, a,) — pd, [Fy , pra,pl(d,)w* + pFy gt pd, w*, a,u(d, ) p
+ plFy  panpld, pt pld, ) 1t + an u(Fy d, —(d,,)p*pld,,) p*

= a, + pd, 1 lpd, 1", a,) — pd, [Fy , pra,pl(d,)w* + pFy gt pd, w*, a,u(d,)p
+ plFy e pld, pt pdd, ) it — anpdd,) "t p(d,,) pt

2l E ey e (D) ™D (0l ) 1)

+ (udy i) ([ud i, 0, ) (pddy) )™ — (B g apli) (u(d, ) i)

+ (nFy M pd, i, a,) () w) ™ + plFy  n an u] By pb) (u(d,,) )2

*

*

=a
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since T 1,10 e, ((d) 1) = w7 (d,,) ™t — (d,,) "' ¥ p. Substituting into (II1.1.23) yields

— A+ (pd, 1)) tay, + a, (A4 (u{d,)p*)?) !
= A+ (pd, 1)) T 1T 1 e () ™D ({d ) ) (A 4 (1(d, ) 7)) 7
+ () X+ (ud 1)) ™ ([ud i, 0] (pddy ) ) ™ — By, pa,plu?)
(it A+ (el ))?)
+ A+ (pd, p*)?) 7t (nFy p [ i*, ) (4d, Yt ) ™ + plBy i a pl By o)
(a2 (el a®)2) . (1 1.24)

By Proposition I.1.19, the right-hand side of (II.1.24) converges strongly to
A+ (uDp*)?)  apT e e (D)~ (DY) (A + (u(D)p*)?)
+ (D) (A + (D))~ ([uDp*, a](u{D)p*) " — = [Fp, p*aplu™")
X ({D)p*) (A + ((Dyp*)?)~
+ A+ (uDp*)?) ! (nFpu (uDp*, al (w(DYyp*) ™! + ulFp, p~ ap] Fpp™?)
X (u{D)p*)* (A + (u{D)p*)*)~"

and we obtain the required equality of everywhere-defined operators. ]

Lemma III.1.25. Let D be a self-adjoint reqular operator and p an invertible,adjointable operator on
E. Let a be an adjointable operator such that ap='* dom D C p~'* dom D. Suppose further that, for
some 0 < a<1,

[Fp, p*ap] (D)= [Fp,p~tap)(D)'~*  [uDp*,alu="*(D)~®
are bounded. Then, with D; = uDyp* and Dy = p(D)p*, for A >0 and f <1 —a
|01 (A + (D)2 a— a(A+ D)) w(DY? | < ey (A + o) 1H(e+9)2
where cq = min{1, |u~t|*} and ¢; > 0 is independent of .
Proof. First, by Lemma IL1.15, | Dy *u(D)?| = |(D)?u* Dy ®| < %] *~* so
|01 (3 + (D)2 ta — a(r+ D3)71) w(D)" |
<[ o (A + (D)2 ta—a(r+ D3)7) DY | w1l =7,
By Lemma IL.1.21, [T, ey | < max{lu™ 2 — a2, |l — |1} ~2}. We compute that
|0 (3 + (D)?) e —a(r+ D3)7) Df |
< [ D+ (D)) AT 1 e (DY M D (0 + DF)Y
+ [ D2+ (D)) (1D, (D)2 — B, ap] (D))
x (D) Dy D5 P (A + DF) Y|
+ [ Do+ (D)) (B Dy, @l (D)2 + [ Fp, i ap)(D) - FR)

x (D)o Dy Dy P (A + D3)7|
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< {12y + (D)) sl [ s oo D>*1>H I || D3O+ D3)

+ [D2x+ (D)) (|21, el (D) = | [Fp, wanl (D))
x ||<D>“u*D2‘“|| HD3+B<A+D§>- |

+ [ D+ 02| (Il 1Dy, @l (D)~= | + sl [ 1P, sl (DY)
x [[(Dyw D 2| [ D3+ (A + D)
< O+ )72l mascf a2 — 2, Ll = [l =2 i O+ )2
+ (1o, alu D)2 || = 1 | [, wanl (D))
o I T R O P e Ll
+ O+ )72 (Jull ) 1Dy, alu (D)2 + Jul | [, 1 el (DY)

o e O e e I
< Ci(/\+co)_1+(a+ﬂ)/2

where ¢, = min{1, ||~} and ¢] > 0 is a constant independent of \. Hence,
|01 (A + (D)2 a = a(A+ D)) w(DY? | < ey(A + o) 1H(e+)2

for ¢; = cf [t |7 ul*~7. [

Lemma II.1.26. Let D be a self-adjoint reqular operator and u an invertible adjointable operator on
E. Let a be an adjointable operator such that ap~'* dom D C p~'* dom D. Suppose further that, for
some 0 < a<1,

[Fp, prap)(D)' = [Fp,p~tap)(D)'™*  [uDp*,alu="* (D)~
are bounded. Then, with D; = uDyp* and Dy = p(D)p*,
D, (<D1>_1a - aDz_l) w(D)P
is bounded for f <1 — a.

Proof. Using the integral formula (I1.0.5),

D, (<D1>_1a—aD2_1),u<D>B:%/oo)\_l/QDl (A +(D)?) " a—a(A+ D3)™) u(D)PdA.
0

By Proposition III.1.25, the integrand is bounded and the integral is norm convergent when
/ )\—1/2(}\ 4 CO)—1+(a+5)/2dA
0

is convergent, that is, when 8 < 1 — a. O

Theorem III.1.27. Let D, be a self-adjoint regular operator and jv an invertible adjointable operator
on E. Let a be an adjointable operator such that ap=* dom Dy C p~1* dom D,. Suppose further that,
for some 0 < a <1,

[Fpys w*apl(Do) ™ [Fpy, p~tap(Do)' ™ [Fp,apl(Do)* ™ [uDop*, alu™"*(Dp) ™

are bounded. Then, with D, = pDyu*, the operator

(FD1 - FDO)a:U'<DO>ﬁ

is bounded for B <1 — a.
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Proof. We have
(FD1 - FDO)GH = Fp ap —apkp — [FDOa ap]
= Fp ap— aDyp~*(Dy) ! — [Fp, > ap]
= Fp ap— Dyap™ (Do)~ + [Dy, alp= (Do)~ — [Fp, , ap]
=D, (<D1>_1a - G(N<D0>M*)_1) p+ [Dy,alp (Do)~ — [Fp,, apl.

Multiplying on the right by (D)B , the first term remains bounded by Lemma II[.1.26. The remaining
two terms are bounded owing to the last two of our displayed assumptions. O

Theorem III.1.28. Let D be a self-adjoint reqular operator and p an invertible adjointable operator
on E. Let a be an adjointable operator such that {p*au, u tap,ap, p*ap='*} dom D C p~** dom D.
Suppose further that, for some 0 < a < 1,

D, w'aul(D)"  [D,p~taul(D)  [D,au)(D)"  [uDy*,alu* (D)
are bounded. Then, with D; = uDy*,
(FD1 - FD)QM<D>B

is bounded for f < 1 — a. Ifb is an adjointable operator such that b*pu~'*dom D C dom D, then
(Fp, — Fp)ab(D)? is bounded. If c is a bounded operator such that (1 + D?)~'c is compact, then
(Fp, — Fp)abe is compact.

Proof. Applying Theorem 1.0.6, we find that
[Fp, wrapl(D)'=  [Fp, p~'ap|(D)'™"  [Fp,,apl(D)'™

are bounded for v > a. Then, by Theorem II.1.27, (Fp — Fp)ap(D)? is bounded for all 3 < 1 — 1,
and so for all # < 1 — «. The remaining statements follow immediately. O

Remark TM.1.29. In Theorem II.1.28, that [uDp*, alu~1*(D)~“ is bounded is equivalent to

Dp~up*, alu™ (D)~ = D(p*ap™* — p~tap) (D)~
= pu uDp*, alu (D)~ — [D, p~tap(D)~*

—x

being bounded, using the assumption that [D, u~tau](D)~* is bounded. In other words, that puu* and

a almost commute.

Corollary HI.1.30. Let D be a self-adjoint regular operator and p an invertible adjointable operator
on E. Suppose that, for some 0 < a < 1,

[Fp, ul(D)'=  [Fp, p*ul(D)' ™
are bounded. Then, with D; = pDu*,
(FD1 - FD)N<D>B
is bounded for f <1—a. If p*dom D C dom D, then (Fp, — Fp)(D)? is bounded.

Corollary HI.1.31. Let D be a self-adjoint regular operator and p an invertible adjointable operator
on E. Suppose that pdom D C dom D and, for some 0 < a <1,

[D, u(D)™*  (D)"“[D, ]
are bounded. Then, with D; = pDu*, the operator
(Fp, — Fp)(D)?

is bounded for B <1 — a.
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Corollary III.1.32. Let D, and D, be self-adjoint regular operators and p an invertible adjointable
operator on E. Suppose that pdom Dy C dom D, and, for some 0 < a < 1,

(W "Dy — Dy){(Dy)~* [Do, u](Dg) ™ (Do)~ *[Do, 1]
are bounded. Then the operator
(Fp, — Fp,){Dy)”
is bounded for B <1 — a.

Theorem II.1.33. Let D be a self-adjoint reqular operator and p an invertible adjointable operator on
E. Let a and b be adjointable operators such that {u*a, p ta,a, by, by=*} dom D C dom D. Suppose
further that, for some 0 < a < 1,

(D)"*[D,ap]  (D)~*[D,aup~"] (D) *[D,a]  [D,bu[(D)"*  [uDp*,a*bJu"*(D)~*
are bounded. Then, with D; = pDu*, the operator
(FD1 - FD)a*bH<D>B

is bounded for B < 1 — . If ¢ is an adjointable operator such that cpu~** dom D C dom D, then
(Fp, — Fp)a*bc” (D)? is bounded. If d is an adjointable operator such that (1 + D?)~'d is compact,
then (Fp — Fp)a*bc*d is compact.

Proof. This follows from Theorem III.1.28, using [GM15, Proposition A.5] for the appropriate Leibniz
rule to relate the differing commutator conditions. O

Now, returning to the concept of conformal transformation, we have:

Proof of Theorem III.1.4. Let (U, p) be a conformal transformation from (A, Egz, D;) to (A, Eg, D,).
By Proposition I.1.1 and Lemma III.1.15,

(U*Fp,Ua — aF,p - )pu{Dy)”
is bounded for a € 4. Let b,c € M and consider the operators

) 0 o)

on E® E’. By assumption and using Lemma III.1.15,
[D, B|(D)~® = (0 (U*DyUb — buDy p*){(pDyp*) ™ ) and [D,C|(D)~

are bounded. By [GM15, Proposition A.5],

* —a __ 0
(D, BrOID = ( [uDlu*,b*C]<uD1u*>°“)

extends to an adjointable operator. Again using Lemma II.1.15, [uD; p*, b*c]u=*(D;)~® is bounded
and we may apply Theorem III.1.33 to obtain that
(FLDW* - FD1 )b*CM<D1>B
is bounded for 8 < 1 — a. Then
(U Fp,U — Fp )ab*c = (U Fp,Ua — aF,p ,.)b*c — [Fp ,alb*c + a(F,p ,» — Fp )b*c
so that (U*Fp U — FDl)ab*cu(D())B is bounded. For d € / and e € A we find
(U Fo,U — Fp, Jab*ed*e = (U* Fp, U — By, a*bepn(Dy)? (Dy)#pu~d" (D)) (Dy) e

is compact. By the inclusion A C span((.#*4#)*A), we are done. O
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II.1.3.1 A partial converse

A partial converse result is possible, in the sense that these kinds of estimates on bounded transforms
always arise from an additive and a multiplicative perturbation of the unbounded operator. This is not
quite precise due to differences in the differentiability assumptions. The following is nearly a converse
to Corollary III.1.30.

Theorem III.1.34. Let D; and D, be self-adjoint reqular operators with equal domains such that, for
some 0 < a<1,

(Fp, — Fp,){(Dy)*

is bounded on dom(D,)“. Then there exist a bounded invertible operator p and a self-adjoint reqular
operator T such that
Dy = pDyp* +T

and both
(Dy)~YPT(Dy) /24 ([FDl,ﬂ] - T<D2>71> (D)

are bounded. Furthermore, if 1/2 < a,
T(D)~'* [Fp, s 1](Dy)
are bounded.
Proof. Let p = (Dy)'/?(D;)™/2 and T = (D,)'/?(Fp, — Fp, )(Dy)/?, defined on dom Dy, so that
uDyp* + T = (Dy)/2(D,) /2Dy (Dy)~/2(Dy) /2 + <D2>1/2(FD2 - FD1)<D2>1/2
= (Dy)'/? (FD1 + (Fp, — FDI)) (Dy)/?
= D2.
We have
[Fp,, p] = (FD1 (Dy)*? — <D2>1/2FD1) (D,)~*/?
= (<D2>1/2(FD2 —Fp )+ (Fp, — FD1)<D2>1/2> (Dy)~12
= (T(D,)™'/* + <D2>71/2T) (D,)~'/?
=T(Dy)~" + (Fp, — Fp,)-

Because the domains of D, and D, are equal, (Fp, — Fp )(D,)® is bounded and the statement follows
from the boundedness of

(Dy) 12T (D)2 = (Fp, — Fp (Do) ([FDlaH] - T<D2>71) (Do) = (Fp, — Fp ){Dy)*.
Suppose that 1/2 < «. It is sufficient to prove that
T(D,) "+ = (Dy)'/?(Fp, — Fp, )(Dy)~*/>*°

is bounded. If « =1/2,
T(Dy) /2 = (Dy) '3 (Fp, — Fp,)

and we are done. If 1/2 < o <1, both 1/2 and —1/2 + « are positive, and we can interpolate between
(Fp, — Fp,)(Dy)* and  (Dy)*(Fp, — Fp,)

as in [Les05, Proposition A.1], adjusted for Hilbert modules in [LM19, Lemma 7.7] (see also §A.3). O
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III.1.4 The logarithmic transform: multiplicative to additive

Conformal transformations of unbounded Kasparov modules are not preserved by the exterior product.
This is exemplified by the fact that the Cartesian product of two conformally perturbed Riemannian
manifolds (X, k?g;) and (X,, k3g,) is not a conformal perturbation of the Cartesian product (X; x
X,,8,DP8,), unless ky () = ko(y) for all z € X, and y € X,, i.e. k; =k, is a constant. The logarithmic
dampening of [GMR19] provides a way of turning conformal transformations into locally bounded
perturbations, at the expense of much of the geometrical information encoded by the Dirac operator.

Proposition II.1.35. Let D be a self-adjoint reqular operator on a right Hilbert B-module E and let
a € Endi(F) preserve dom D. Suppose also that [Fp, a]log(D) is bounded. Then, with

Lp = Fplog(D) = Dlog((1+ D?)'/?)(1+ D?)7'/2,
the commutator [L,,a] is bounded.

Proof. By [GMR19, Lemma 1.15], the condition adom D C dom D implies that adomlog(D) C
domlog(D) and that [log(D), a] is bounded. Using also the condition on [F}), a],

[Lp,a] = Fplog(D), a] + [Fp, a] log(D)
is bounded. O

Corollary II.1.36. Let Dy and D, be self-adjoint regular operators on right Hilbert B-modules E, and
E,. Suppose that there is an operator a € Homp(E,, E,) such that adom Dy C dom D, and

(FDI‘I - aFD()) log(Dy)
extends to an adjointable operator. Then Lp a —aLp is bounded.

Theorem MI.1.37. Let (U, ) be a conformal transformation from the order-= cycle (A, Ep, Dy) to
the order-r— cycle (A, Ely, D,). Then the logarithmic transforms (A,Eg,Lp,) and (A, Eg, Lp,) are
related by the unitary U, up to locally bounded perturbation; in particular, A is contained in the closure
of the set of a € End*(FE) such that

(U*Lp,U — Lp )a [LDl,a] [LDz,UaU*]
are bounded.
Proof. Let a,b,c € M so that (U*Fp U — FDl)ab*c,u(DO>5
(U*Lp,U — Lp )ab*cp =U*Lp Uab*cp — ab*cuLp —[Lp ,ab*cy]
= U"Fp, U(U* log(D,)Uab*cp — ab*cplog(D;))
+ (U*Fp,U — Fp, )ab*cplog(D;) — Fp, [log(D; ), ab*cp]
is bounded, by the proof of Theorem II.1.4. Let d € Lip? (D) and multiply on the right by s ~'d. Then
(U*Lp,U — Lp, )a*bed is bounded and, by the inclusions A C span(#A) C span(MM* 4 Lip, (D)),
we are done. O
II.1.5 The singular case

Conformal factors on noncompact manifolds need not be bounded nor have bounded inverse. In
that setting, we can take a suitable open cover and assemble local estimates. This idea motivates
the next definition. In the following we stress that span means the norm completion of finite linear
combinations.
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Definition II.1.38. A singular conformal transformation (U, (u;);c;) from one order-yi= cycle,
(A, Eg, D), to another, (A, E%, D,), is a unitary map U : E — E’, intertwining the representations of

A, and a family (p;);c; € End*(E) of (even) invertible operators such that
A C span,_ A; Nspan,_,M;A
where J; is the set of a € End*(E) such that
(U*DyUa — ap; Dy ) *(Dy )~ (Dy)"*U(U*DyUa — ap; Dy i)
are bounded, a, ap;, ap; * € Lip*a(Dl), and UaU* € Lip*a(Dz).

Remark III.1.39. As in the non-singular case, /; is a ternary ring of operators, generally not closed.
In particular, span(/;, 4} M;) = M,;.

(2

Theorem II.1.40. Let (U, (u,,),en) be a singular conformal transformation from (A, Eg,D;) to
(A, E, Dy). Then the bounded transforms (A, Eg, Fp ) and (A, Eg, Fp) are related by the unitary U,
up to locally compact perturbation, i.e.

(U*Fp,U — Fp, )a € End’ (E)
for all a € A.

Proof. As in the Proof of Theorem II.1.4, (U*Fp U — FDl)ab*Cui<D0>B is bounded for all a,b,c € ;.
For d,e € M; and f € A we find

(U*Fp,U — Fp, )ab*cd*ef = (U*Fp,U — Fp, Ja*bep;(Dy)* ((Dy) = p; ' d*e(Dy)?)(Dy) P f
is compact. The inclusion of A C span,_,(#;A) = span,_,((/4; W} )2U; A) proves the statement. [

Example III.1.41. Let us reprise Example 1II.1.6, in which we considered Riemannian spin® manifolds
(X,g) and (X, h) such that h = k2g. Suppose that (X,g) is geodesically complete, so that ﬁg is

self-adjoint. It may or may not be the case that (X, h) is complete and IZ)h is self-adjoint, depending
on the properties of k, although that is guaranteed if k is bounded with bounded inverse. Let (O;),c;
be an open cover of X such that k is bounded and invertible when restricted to any O;. (This can be
ensured by choosing a relatively compact cover.) Choose a family (k;),c; of positive smooth functions
which are bounded and invertible and agree with &k on the corresponding O;. Let f € C°(0;), so that

U*@th - fki—l/2$gki—1/2 = k—l/zlpgk—yzf - fki_l/Zlbgki_l/z
— .—1/2 —-1/2
_-1/2 -1/2

is bounded. Then (U, (k;l/ 2)i€ ;) is a singular conformal transformation from the spectral triple

(Go(X), L*(X, S,), ng) to (Cy(X), L*(X, Sy), I,,), provided that (X, h) is complete so that the latter is

a spectral triple. In the context of Example II.1.7, (U, (k;l/ %) ;c1) is a singular conformal transformation

from (Cy(X), L2(*X,g),d + dg) to (Co(X), L?(Q*X,h),d +6,).

If either or both of (X,g) and (X,h) fails to be complete, the failure of self-adjointness of the
Dirac operator(s) means that one requires the technology of half-closed chains and relative spectral
triples. We do not pursue this here; for more details, see [Hill0, DGM18, FGMR19].

An abstract treatment of open covers, for the purposes of unbounded KK-theory, can be found in
[Dun22]; see, in particular, [Dun22, Lemma 4.3].

In the following example, inspired by the modular cycles of [Kaa21], one should think of A_Ajrl as
the conformal factor, which can be both unbounded and noninvertible. Later, in Proposition 1I1.4.7,
we directly generalise the results of [Kaa21].
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Proposition 1I.1.42. Let (A, Eg, D) and (A, Eg, D,) be unbounded Kasparov modules. Let A, and
A_ be commuting positive adjointable operators such that

e Forallac A, (a(A, +A_) (A, +A_+ L)71)2, converges in operator norm to a.
e A, A_€Lip] (D;); and

e A Cspan(As)Nspan(A A), where N is the set of a € Lip, (D;)NLip’ (D,) such that adom D; C
dom D,, a*dom D, C dom D;, and

(DyaA, —aDA_)(Dy)™ (Dy)"*(DyaA, —aD A )
extend to adjointable operators.

Let (hy)nen., € G°(RY) be any sequence of positive functions with bounded reciprocals which agree

with the function x - z7'/% on the interval [, n]. Then (1, (hn(A+)hn(A,)*l)n€N>l) is a singular
conformal transformation from (A, Eg, D;) to (A,Eg, D). )

For the proof, we shall make use of the smooth functional calculus of §A.4.2.

Lemma I1.1.43. Let A be a C*-algebra represented by m on a Hilbert module E. Let h € C C End*(FE)
be a strictly positive element of a C*-algebra C such that, for a dense subset of a € A, the sequence

(m(a)h(h+1/n)~1)32,
converges to m(a). Then w(A) is contained in the closure of w(A)C.

Proof. First, note that (h(h+1/n)71)2°, is an approximate unit for C. For every a € A such that the

n=1

sequence (m(a)h(h +1/n)71)%, C 7(a)C converges in norm to 7(a), m(a) € 7(a)C. O

Proof of Proposition IlI.1.42. First, the smooth functional calculus of Theorem A.4.18 shows that the
ho (AL ), (A_)™" € Lip! (D) is bounded. Second, let fi, f, € C>((%,n)) and a € #, and define
b € End*(E) to be the product

afy (D) fo(AL) € HCo((,m))(AL)CH((5,m))(AL).
Then bh,, (A, )h,(A_)! = bAT/2AL2. Again using the smooth functional calculus,
(Db = bl (A )y (AL) T Dk (A )y (AZ)7H) (R (A )y (A) ) 7HDy) ™
= (DyaAy —aDy A )(Dy)™ (<D1>QA11/2A:1/2J01(A+)f2(A7)<D1>_a)
+a Dy, AVEA F (A Fa(A )] (D)
and

(Dy)~(Dyb — bhy, (A )hyy (A_) ' Dyhy, (A, )Ry, (AL)7Y)
= (D) (D0l —aD A )AL (AL fo(AD)

+ ((Dy)2a" (D)) (D)= [Dy, AL2AL2F (8) fo(A )] B (B, )R, (ALY

n —

extend to adjointable operators. Hence b € ,. The closure of Cy((=,n))(A)Co((£,n))(A_) is
C*(A,,A_). By Lemma III.1.43, we have A C AC*(A_,A_) and

span,_,A; Nspan,_ ;A D span(ANC*(A,,A_)) Nspan(H#C* (AL, A_)A) D A,

as required. O
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III.2 Conformal group equivariance

It is not clear that Definition 1.2.7 is the correct generalisation of equivariance to unbounded KK-theory.
Definition 1.2.7 is natural in the sense that the exterior product and descent map are well-defined and
Kucerovsky’s conditions [Kuc97, Theorem 13] for the Kasparov product still suffice [Kuc94, Theorem
8.12]. On the other hand, let us examine ‘patient zero’ of noncommutative geometry: a complete
Riemannian spin® manifold (X, g) with spinor bundle S and Dirac operator IJ, forming the spectral
triple (C (X),L*(X,8), E) The largest group for which this is uniformly equivariant, in the sense of
Definition 1.2.7, is the isometry group Iso(X,g). What is the largest group for which the Fredholm
module
(C(X),L*(X,S), Fp)

given by the bounded transform is equivariant, and can a geometric interpretation be put upon it?

The answer to this question is that the Fredholm module above is equivariant under the conformal
group Conf(X,g) of X. That this is maximal is confirmed by [B&r07, Theorem 3.1].

Example III.2.1. The simplest example exhibiting this discrepancy is the real line and its Dirac
spectral triple (Cy(R), L?(R),0,,). We will compare two group actions on R: translations by R and
dilation by R, i.e. addition and multiplication, respectively. The affine group R xR acts on R by
Plap) * T ax+ b, for (a,b) € R xRY. Let V[, be the pullback by ‘10611,1)) = Q(a-1,—a-1p) O0 L*(R).
For ¢, € L2(R), we have

OoV z)n(x)dr = - al(z—0>b z)dx = = a b)ad
/O Von® @) / Ea @ D)) / Ey)n(ay + b)ady

SO V(Z,b) = aVE; };) = aV(afl’_afl b)- The unitary part of the polar decomposition of VEa’b) is, therefore,
U(a,b) = a*1/2yga,b). By the chain rule, for £ € C°(R),

(Uta,0y0:Ups 1) €) () = a=2(0,Uf, 1 €) (@™ (z — b)) = a (U}, €)' (a7 (z — b)) = ™€/ ()

so that Uy, 4)i0,Uf, ;) = a=1id,. For the subgroup R (a = 1), the spectral triple (C,(R), L*>(R), 0, )
is isometrically equivariant in the sense of Definition 1.2.7. On the other hand, when a # 1, for
f e R),

Uv(a,b)iaz(](tz,b)f - fzaz = (a’_l - 1)Zawf + [Zam’ f]

is as unbounded as %0,, so condition 4 of Definition I.2.7 is not satisfied. On the other hand,
UayFio, Uty — Fio, ) f = (Fymri0, — Fp ) f = i0, ((a® + (i0,)?)7Y/2 — (1 + (i0,)*)7/2) f

is compact, as y > y ((a2 +y?) V2 —(1+ y2)_1/2) is in Co(IR). Hence (Gy(R), L*(R), Fjy_) is equivari-
ant for all of R < IR. In this section, we will make a definition of equivariance in unbounded KK-theory
which can cope with this and similar examples. (We remark that multiplication by —1, although an
isometry, is not orientation-preserving and has the effect of multiplying by —1 in KK, (Cy(R),C),
rather than preserving the class.)

Definition III.2.2. An order—ﬁ A-B-cycle (A, Eg, D) is conformally equivariant if F is a G-equivariant
A-B-correspondence and there exists a *-strongly continuous family (1,),cc € End*(E) of (even)
invertible operators satisfying the following. We require that A C span(A@) Nspan(QA), where @ is
the set of a € Lip} (E) such that for all g € G we have {ap,, ap,"*} dom D C dom D N U, dom D, and
the maps

9+ (UyDUga — ap,Dpg) g * (D)~ g+ [D,ap (D)~ g+ [D,ap; (D)~

g U,/(D)*U,(U,DUya — ap,Dpuy) g = (D)~ “[D,apu,] g+ (D) D, ap,™]

are *-strongly continuous from G into bounded operators (but need not be globally bounded). We call
p = (ity)4ec the conformal factor.
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Remarks I1.2.3.

1. When p, =1 for all g € G, this Definition reduces to Definition 1.2.7 of uniformly equivariant
G-cycles.

2. Also, if u, = 1, for elements a € End*(E) satisfying that
[D, apg (D)~

is bounded, a is automatically in Lip] (D).

3. Note also that it is sufficient that 1 € @ for the closure conditions to be satisfied; in the nonunital
case, an approximate unit might be used.

Theorem II.2.4. Let (A, Eg, D) be a conformally G-equivariant order-ﬁ cycle. Then (A, Eg, Fp)
is a G-equivariant bounded Kasparov module.

Proof. The only difference from the non-equivariant case is the need to show that, for every a € A,
g = (Fp — U, FpUy)a is norm-continuous as a map from G into End’(E).
By definition, for every a € @, the maps f, : g — ,u;l and

fi.a 9= (U,DUa — ap,Dpt)ps (D)~ fa.a 1 g (D)~ U, (U,DU;a — ap, D)
f3,a 9 [D,ap (D)~ faa 9 (D) D, ap,]
f5,a g I:D7aH;1*j|<D>7a f67a g <D>7a [D7a.u’;1*]

are *-strongly continuous as a map from G into End*(FE). By Lemma A.1.12, this is equivalent to
fi.ali residing in End*(C(K, E)) for every compact subset K C G.

Fix a compact subset K C G and let EE = C(K, E). Define D to be the self-adjoint regular operator
on F given by D at each point of K. Let U denote the C-linear map from F to itself given by g — U,

Let i € End"(E) be given by g > p,. For every a € End"(E), let a be given by a at each point of G.
Then, for every a € @,

(UDU*a — apDp*)p~** (D)=  (D)=*U*(UDU;a— apDpi*)

[D,ap(D)~*  (D)=*[D,apl  [D,ap~"[(D)~*  (D)*[D,ap "]  [D,d]

are adjointable endomorphisms of E. Let a,b,c,d € @. As in the Proof of Theorem 1I.1.4,
[aDp*, b*é)p= (D)~
is bounded. We apply Theorem 1III.1.33 to obtain that (F,sz* — Fp)b*éd* (D)? is bounded for 8 < 1—a.
Furthermore, as ) . )
(UDU* — aDpi*)i *(D)~*

is bounded, Proposition I.1.1, shows that

(UFpU*a — aF,p.)iu(D)P
is too. Taking care because U is only C-linear, we have
(UFpU* — Fp)ab*éd* = U[Fp, U*|ab*éd* = U[Fp, U*ab*é|d* — [Fp, ab*éd*
= U(FpU*a — U*aF; p;. )b*ed" + a(F, pp.b"éd* — b*éFp) — [Fp, ab*éld”
=U(FpU*a—U*aF,p;.)b"¢d* + a(Fyp,e — Fp)b*éd* — [Fip, alb*éd”
so that (UFpU* — Fp)ab*éd*(D)? is bounded. Letting e € A we have

(UFpU* — Fp)ab*éd*é (T.2.5)
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is in End’(E) = End°(C(K, E)).

Define the map f’ : g = (Fp — U, FpU;)ab*cd*e from G into bounded operators on E. By Lemma
A.1.8, the norm-continuity of f” is equivalent to the condition that f’|, be in End’(C(K, E)) for every
compact subset K C (G. By the inclusion of A C @@*Q@@* A, we are done. O

Example I1.2.6. Let (X,g) be a complete Riemannian spin® manifold with spinor bundle $ and
Atiyah-Singer Dirac operator I). Let G be a locally compact group with a spin®-preserving conformal
action ¢ on X, so that ¢%(g) = k2g for g € G. If the conformal factors (k). are each bounded and
invertible (for instance, if X is compact), then (C,(X), L?(X, $g), D) is a conformally G-equivariant

spectral triple with conformal factors (k;,ll/ %) 9eG-

Example III.2.7. Let (X,g) be a complete oriented Riemannian manifold with Hodge-de Rham
operator d +J. Let G be a locally compact group with a conformal action ¢ on X, so that goZ(g) = kgg
for g € G. If the conformal factors (k,),cc are each bounded and invertible (for instance, if X is
compact), then (Cy(X), L?(Q*X),d + §) is a conformally G-equivariant spectral triple with conformal

factors (kg_,ll/ %) 9eG-

Example III.2.8. Let P be a principal circle bundle over a compact Hausdorff space X. Let @ :
C(P) — C(X) be the conditional expectation given by averaging over the circle action. By [CNNR11,
Proposition 2.9],

(C(P),L3(P, ®)c(x), N = —i0y) (IT.2.9)

is an unbounded Kasparov module, where N is the number operator on the spectral subspaces,
equivalent to the vertical Dirac operator —i0d, acting on each fibre. Let G be a group acting on P
and X, compatibly with the surjection P — X. Suppose that ¢ acts differentiably between the fibres.
Since the circle is one-dimensional, ¢} (d6®) = k2d6* for a family of functions (k,),cq € C(P). We

obtain that (II[.2.9) is conformally G-equivariant with conformal factors (k;,ll/ %) 9eG-

In the following Example, we give a truly noncommutative example of conformal equivariance,
showing that the order-2 spectral triple for the C*-algebra of the Heisenberg group built in §1I.4.2 is
conformally equivariant.

Example III.2.10. Recall the order-2 spectral triple
(C*(H3)7 L2(H3’ 62)) Mﬁ)

of §II.4.2, where ¢ : H; — €75 is the weight given by
1

a
l: 1 b | (ayy +by)(@® +0°)% e

= o0

There is an action of R} on H; by automorphisms, given for t € R} by

1 a ¢ 1 ta t3c
1 b+ 1 b
1 1

Let V, € B(L?(H3)) be given by the pullback
Vié(a,b,c) = £(t a,t1b,¢72)

on £ € L?(H;). Then

(Vi€ | n) = / £t 1, t71b,t2c)n(a, b, c)dadbdc = / &(x,y, 2)n(tz, ty, t*2)t dedydz = t*(€ | V;am)
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so that V;* = t4V,_,. The unitary in the polar decomposition is given by U, = t2V,. Noting that
{(ta,tb,t’c) = t*4(a, b, c)
we see that the operator M, transforms as

(UM, UF€) (b, c) = t2(M,UFE) (¢ a, t71b, ¢ %)
=t24(t La,t bt 2c)(UrE)(t La, t=1b,t2c)
=t"24(a,b,c)é(a,b,c)
= t72(M,€)(a,b,c)

on a vector £ € L%(H;,C?). In summary, the data (C*(H;), L?(H;, C?), M,), together with the
action (U,);c of the group RX and conformal factors given by u, = t~!, constitute a conformally
IR} -equivariant 2nd-order spectral triple.

The C*-algebra of the Heisenberg group can be identified with a continuous field of Moyal planes
(with one classical plane) over R [ENN93, §4]. In this picture, the group action is dilation on R and a
corresponding scaling of the parameters of the Moyal planes.

We generalise Example 11.2.10 to all Carnot groups and their dilation actions in §IV.3.1.

One limitation of conformal equivariance is that the exterior product becomes ill-defined. This is
exemplified by the fact that the conformal group of the Cartesian product of Riemannian manifolds
is generically smaller than the product of the conformal groups. However, at the bounded level of
KK-theory, the exterior product is known to exist by Kasparov’s Technical Theorem. The logarithmic
transform of §1II.1.4 will provide a way of turning conformal equivariance into uniform equivariance,
making the exterior product constructive, at the expense of much of the geometric information encoded
by the Dirac operator. In a similar way, descent and the dual Green—Julg map are not well-defined for
conformally equivariant cycles. One way of resolving this is by the logarithmic transform; another will
be given in §IIT.4.1.

Theorem III.2.11. Let (A, Eg, D) be a conformally G-equivariant order—ﬁ cycle with conformal
factor p. Then (A, Eg, Lp) is a uniformly G-equivariant unbounded Kasparov module.

Proof. The only difference from the non-equivariant case is the need to show that A is contained
in the closure of the set of a € End*(E) such that [Lp,a] extends to an adjointable operator and
g+ (Lp —U,LpUy)a is x-strongly continuous as a map from G into End"(E).

Fix a compact subset K C G and let E = C(K, E). As in the Proof of Theorem TI.2.4, define D
to be the self-adjoint regular operator on E given by D at each point of K. Let U denote the C-linear
map from E to itself given by g U,. Let ji € End” (E) be given by g pg- For every a € End*(E),
let @ be given by a at each point of G. Let a,b, c € @; then as in (1II.2.5)

(UFpU* — Fp)ab*éu(D)P
is bounded for 8 < 1 — «. Hence,
(ULpU* — Lp)ab*éi = ULpU*ab*éfi — a*bjiLp — [L p, ab*éfi
= UFpU*(Ulog(D)U*ab*éji — ab*éfilog(D))
+ (UFpU* — Fp)ab*éjilog(D) — Fp[log(D), ab*éji]
is bounded. By the invertibility of fi, (ULpU* — L)ab*é € End*(C (K, E)).
Let d € A and define the map f' : g = (Lp — U,LpU;)ab*cd* from G into bounded operators
on E. By Lemma A.1.12, the x-strong-continuity of f’ is equivalent to the condition that f’|, be in

End*(C(K, E)) for every compact subset K C G, which it is. By the inclusion of A € span(@@*GQA),
we are done. O
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Remark T.2.12. Let A be a unital C*-algebra and & a dense unital *-subalgebra of A. Let (o, H, D)
be a conformally G-equivariant p-summable order-m spectral triple. Because (U, FpUy —Fp)(1 + D?)8/2
is bounded for 8 < m™!, the G-equivariant Fredholm module (A, H, F},) is ¢-summable over & for any
q > mp (see Definition 1.2.6).

We note in particular that there are obstructions to finite summability which persist also in
the setting above. Connes’ obstruction [Con89] (see also [GRU19]) shows that there are no finitely
summable G-equivariant higher order spectral triples over A if A x G is purely infinite. Puschnigg’s
generalization [Pusll] of the rigidity results of Bader-Furman—Gelander-Monod [BFGMO7] goes
even further when G is a higher rank lattice and implies essentially that there are no conformally
G-equivariant finitely summable higher order spectral triples over a unital A.

III.2.1 The y-element for the real and complex Lorentz groups

In this section, we lift to unbounded KK-theory the y-elements constructed for SO(2n+1,1), SO(2n, 1),
and SU(n,1) by Kasparov [Kas84], Chen [Che96], and Julg and Kasparov [JK95], respectively. We
have opted to present them with notation close to the original sources. For a unified treatment, see
[AJV19, §5.3].

In each case, the Bernstein-Gelfand-Gelfand (BGG) complex [CSOQ] for a sphere, considered as a
symmetric space, is cleft in twain. For the real Lorentz groups, the BGG complex is the de Rham
complex and, for the complex Lorentz groups, it is the Rumin complex [Rum94]. In the case of
SO(2n + 1,1), the symmetric space is S". The sphere being even dimensional, the middle-degree
forms are split into the two eigenspaces of the Hodge star operator, which division is conformally
invariant and, indeed, appears in the BGG complex. In the cases of SO(2n,1) and SU(n,1), the
symmetric space is S?”~!. The sphere being odd-dimensional necessitates the addition of the L?
harmonic forms on a real or complex hyperbolic space to be added to the half-complex, along with
an operator related to the Poisson transform. The sphere S?"~! is considered as the boundary of
RH?" = SO(2n,1)/S(0(n) x O(1)) or CH" = SU(n,1)/S(U(n) x U(1)).

It is possible that the framework of conformally equivariant unbounded KK-theory could be used to
treat the other rank-one groups, Sp(n, 1) and the real form F}(_90), lifting the construction in [Jul19];
however, there, the resulting complex contains differential operators of different orders. In rank two,
there is a construction by Yuncken [Yunll] of the y-element in bounded KK-theory of SL(3,C), using
the BGG complex of the flag manifold. A similar construction is proposed for the other rank-two
complex semisimple groups [Yunl8]. The BGG complex, in full generality, has been put on a sound
analytical footing in [DH22] and subsequently fitted into bounded KK-theory in [Gof24], although
with limitations on equivariance. The lifting of these constructions to the unbounded picture remains
a difficult task, likely to require a substantial renovation of the axioms of an unbounded Kasparov
module, beyond what is done here. A step in this direction is the treatment of ‘mixed-order’ situations
in noncommutative geometry in Chapter IV.

IT.2.1.1 The case of SO(2n +1,1)

Following [Kas84, §4], we begin with the sphere S?" on which SO(2n + 1,1) acts conformally and its
Hodge-de Rham Dirac operator. As we have seen, we can build a conformally SO(2n+ 1, 1)-equivariant
spectral triple

(C(S27), L2(Q*S™), d + ).

In order to obtain the KK-class of the ~-element, we split the complexified exterior algebra into two
subspaces, each preserved by the Dirac operator. On a 2n-dimensional manifold, the codifferential is
equal to § = d* = —*d and the Hodge star satisfies that

2

*2:a s (—1)a * ok (D) %o
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for homogeneous a € 2*S™. The Hodge star and Hodge-de Rham operator are related by
(d+6)xa = (dx—(—1) xd)a = %((—1)**F xd*x —(—1)*ld)a = (—1)/**1 x(d — §)a.
Define the map € : a - il@l(lel+)=nq — (—1)lellel+1)/2j=2q 5o that

(x€)2a = ilellaltl)=n 4 e o = jlel(al+l)=n;@n—la))(@n—la)+1)—n(_1)laly = o
and
(k€)*a = (—1)@nlal@nolal+1)/2in(_1)lel x o = (—1)lel(e+D/2j=n 4 o = s eq,
meaning that e is a self-adjoint unitary. We have
(d + ) xea = ilellal+)=n (g 4 §) x o = 2lel+2Hel(el+1)=n 4 (g — §)q
and

cdoy — i2lol+2+al(lal+)-n gy, So = —i2lal+2+lal(al+1)-ng,,

Hence x e commutes with d + § and we can decompose the exterior algebra into
*Q2 * * . 1 3 1
QS = Qf & Q) :=im 5(1+*e) @ im 5(1—*6) .

We thus have a spectral triple
(C(8*"), L*(Q7),d +9)

which is still conformally SO(2n + 1, 1)-equivariant and isometrically SO(2n + 1)-equivariant. By
forgetting the action of the algebra, we obtain a representative (C,L?(Q%),d + J) of a class v €
KKS0@+1L1) (¢, C). The only harmonic forms on S?" are scalar multiples of 1 € Q°S?" and the
volume form vol € 22"S?". One can check that

1
*€l =i "vol *evol =41 5(1 +%¢€)(1+i"vol) =1+ i "vol.

Hence the only harmonic forms in 3 are scalar multiples of (1 + ¢ "vol). The form (1 + i "vol)
being SO(2n + 1)-invariant, the restriction r0(27+1,1),502n+1)(~) represents 1 € K K502+ (¢, ©).
By [AJV19, Proposition 5.9], because v is the image of an element of K K°92n+1.1)(C(S2") C) and
restricts to 1 € KKS92n+1(C, C), v is really the y-element of SO(2n + 1,1).

IT.2.1.2 The case of SO(2n,1)

Following [Che96, §3.1], we begin with the sphere S>"~!, on which SO(2n, 1) acts conformally, and its
Hodge—de Rham operator. As in the even-dimensional case, we can build a conformally SO(2n,1)-
equivariant spectral triple

(C(S?1), L2(Q*S?~ 1) d + §).

To obtain the correct class in K KOS O@n.1) (C,C) for the y-element, we will cut the differential forms in

two, as we did for SO(2n + 1,1), and add an additional operator.

Let D?” be the open unit ball with Euclidean metric. The Poincaré disc model is a conformal
identification of the hyperbolic space RH?" with D?". As we saw in Example II.1.7 (in particular
(II.1.8)) the pullback map L?(Q"RH?*") — L?(Q"D?") is automatically unitary because the forms are
of middle degree. Let I : dom(I) C L?(Q"RH?") — L2(2"S?"~1) be the restriction to the boundary
S2n=1 of the ball. Let & C L?(Q"RRH?") be the L? harmonic forms on the real hyperbolic 2n-space
and let Z., C # be those forms in the domain of I. We have a complex

0 > Koo I, qrg2n—1 4y qntigan—1 _d . . _d . o2n-1g2n-1 0
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which is invariant under the pullback by the action ¢ of SO(2n,1). When we complete the spaces of
the complex to Hilbert spaces, pullback by the action of SO(2n,1) is not unitary. On L?(Q"S?"1)
the unitaries (U,) e implementing the group action ¢ act by
—(—(2n—1)+2n)/2 —1/2 4
e R e A (R e (3}
As in Example III.1.7,
. —1/2 ;,-1/2
U,dU; — kg,l dkg,l

is bounded. However, on the hyperbolic space RH?", the group SO(2n, 1) acts by isometries. Because
the map I commutes with pullback by the group action, U IU; = k;,ll/ 2[, which is not the same

behaviour as the rest of the complex displays, the overall exponent of the conformal factor being —1/2
rather than —1. On all of L?(2*S?"~!) the Laplacian A = dd + dd transforms so that

1/477% —1/2 A 1/4
U,AVAUy — k AV

is of order —1/2. We will replace the operator I in the complex with AY*], in the hope of obtaining
the right conformal scaling.

We need also an operator on # to act as the conformal factor, because neither functions on
noron D" are represented naturally on #. By [Che96, Proposition 3.2], there is a polar decomposition
I = AY*B, where B : % — L?*(Q"S?" 1) is an isometry with range Q"S?"~! Nkerd. The operator

B*k;,ll/ ’Bis positive and invertible on # because

Sanl

Bk *B > B*|kM?| 1B = |k/?|t1,.
g g g
We compute that both
AVAI(Bk Y B) — kP AVAL = [AV2 P, . k1B
and
U, AV IU; — k2 AVAI(BE 2 B)

= (g, am; — K Pave) K PAVE B — B PA AR, k| B
g g g g
are bounded. With D = AY4T + [*AY* 4+ d + 6, the Hodge decomposition theorem Q7S2"~1 =
ker(A) @ Im(d) ® Im/(8) shows that D?| . = B*d0B has at most a finite dimensional kernel, while
D?|gngon = AYV2P, 4AY? 4 6d = dd + 6d = A. On the rest of the complex, D? agrees with A and
so D has compact resolvent. Therefore,

(C,# ® L*(Q="S?"), AVAT + T* AV + d + 6)

is a conformally SO(2n, 1)-equivariant spectral triple with conformal factors u, = B*k;,ll/ Bo k;,ll/ 2,
Its bounded transform (more exactly its phase) is the y-element constructed by Chen [Che96, §3.1].

To show that we have obtained the y-element, independent of the bounded transform, we would

need a representation of C (D2n) so as to apply [AJV19, Proposition 5.10]. For this purpose, Chen
shows that the phase of the larger complex

0 > %oo I N QnSZn—l # i> Q2n—182n—1 —30
@ o @ &

0 — Q'RH?" -4 .. L O'RH> /%, -5 QWRH? % .. —4y QZPRH? — 0
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gives a Fredholm module for C (ﬁgn). Unfortunately, at the level of unbounded Kasparov modules,
the construction cannot be carried through because the Hodge-de Rham operator on RH?" does not
have compact resolvent. Although we do not pursue it here, this defect can be remedied by appealing
to the framework of relative spectral triples [FGMR19, Fri25]. The larger complex can be assembled
into a relative spectral triple for Cy(RH?") < C (52n) in the sense of [Fri25, Definition 2.8] cf. [Fri25,

Example 2.15]. We can show that the K-homology class of the relative spectral triple extends to a

class for C (ﬁ%) by showing that the boundary map applied to the class of the relative spectral triple
is zero. To compute the boundary map as in [HR00, §8.5], one uses the phase rather than the bounded

transform. Since the phase already gives a Fredholm module for all of C (ﬁzn) the boundary map is

zero and we conclude that we do obtain a K-homology class for C (ﬁ2n).

II.2.1.3 The case of SU(n,1)

Following [JK95], we consider the sphere S?"~!, on which SU(n,1) acts by CR-automorphisms. This
is not a conformal group action. We replace the de Rham complex with the Rumin complex [Rum94],
a refinement depending on a contact structure. A treatment of the Rumin complex in the context of
spectral noncommutative geometry and unbounded KK-theory can be found in §IV.2.4. The analytical
underpinnings of the Rumin complex, and the much more general class of Rockland complexes, have
recently been examined in [DH22]. For the time being, we limit ourselves to outlining those points
which we require.

Let X be a (2n — 1)-dimensional contact manifold with contact structure H C TX. By this,
it is meant that there exists a one-form 6 such that H = ker and df|y is nondegenerate. The
nondegeneracy of df| is equivalent to 8 A (d9)"~! being a volume form. Such a one-form 6 is a contact
form and is not unique. However, if 7is another contact form, then the equality ker 7 = ker 6 implies
that 7 = f6 for a nonvanishing smooth function f on X. Conversely, f6 will be a contact form for any
nonvanishing smooth function f on X.

The Rumin complezr associated to a contact manifold X is a refinement of the de Rham complex
of X, depending only on the contact structure (and not on the choice of contact form). For the
construction of the Rumin complex on X, we do require a choice of 8, to define two differential ideals
of O*X,

e J, the ideal generated by 6 and df, and
e J, the ideal of forms w € 2*X such that § A w and df A w are zero.

The Rumin complex is built by combining the quotient complex Q*X/J7* and the subcomplex J*.
These complexes are spliced together using a map Dy : Q"1 X /7"t — g7 The Rumin differential
Dy; is given by w — dw where @ is the unique lift of w such that § A do = 0. Surprisingly, Dy is
well-defined, is a second-order differential operator, and completes the Rumin complex

dy

0 — QOX 1y Qlx g 4y . Gy gnoix gne1 Doy e dny s gon 0.

whose cohomology coincides with the de Rham cohomology. Here, we have denoted the exterior
differential on the quotient complex and subcomplex by d;;. The mixture of first- and second-order
operators means that the construction of a spectral triple from the Rumin complex requires careful
thought; see §IV.2.4. For the construction of the y-element of SU(n, 1), however, this issue will not
arise, as we shall see.

Let us fix a contact form 6 and choose a Riemannian metric g on X. We require that these be
compatible, in the sense that H is orthogonal to the Reeb field, the (unique) vector field Z such that
0(Z) =1 and 14(df) = 0. Using the metric on Q*X induced by g, we obtain a version

- QkX/jk N g2n—1—l~c *pp gk N Q2n—1—kX/j2n—1—k
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of the Hodge star operator by the relation @ A xg8 = (a, 8)8 A (df)"~!. We thereby obtain formal
adjoints of the operators in the Rumin complex, viz. d¥ = (—1)* x5 dyxy and D* = (—1)" xg Dy p-
We also obtain the Rumin Laplacian, given by

(n—1—k)dydiy + (n—k)didy on Q*X/T* 0<k<n-—2
(dydsy)? + DDy on Q*1x /771

Dy Dy + (diyddy)? on "

(n—k)dydy +(n—1—k)dydy ond*n+1<k<2n—1

AH:

The Rumin Laplacian is hypoelliptic, fourth-order on Q"1 X/J7"~! and J™ and second-order elsewhere.

The contact form 6 determines a symplectic form df on H. A CR-structure on X is the additional
datum of a complex structure J on H such that d§(X,JY) = g(X,Y) for all X,Y € H. A CR-
automorphism of X is a diffeomorphism ¢ such that the Jacobian ¢’ preserves and acts complex-linearly
on H C TX. Because the Rumin complex depends only on the contact structure, the operators dg
and Dy are unchanged. Again, because the contact structure is preserved, the pullback ¢*(0) of the
contact form must be f6 for some nonvanishing smooth function on X. Hence

¢"(8)(X,Y) = (fdb + df NO)(X,JY) = fdf(X,JY) = fg(X,Y)

for all X,Y € H. On the other hand, the induced metric on T X /H is multiplied by f?. One can check
that the induced metric on the Rumin complex is multiplied by f=* on Q*X /7% and f~*! on *. In
this sense, CR-automorphisms behave in a similar way to conformal diffeomorphisms.

To construct the y-element for SU(n, 1), following [JK95, §6(b)], we begin with the Rumin complex
on the contact sphere S2*~! with the round metric, on which the group acts by CR-automorphisms. To
obtain the correct class in KKV (C, C) for the y-element, we will cut the Rumin complex in two, as
we did for SO(2n + 1,1) and SO(2n,1), and add an additional operator, as we did for the latter. The
extra map is the Szegd map S constructed in [JK95, Theorem 2.12] from Q7~1S2n~1/77=1 {0 the L2
harmonic n-forms Z" C Q"CH?" on the complex hyperbolic space. The sphere S>*~! can be attached
to CH?" as its boundary, forming the closed disc D", The Szegd map takes w € Q18201 /gn—1
lifts it uniquely to @ such that 6 A dw = 0 (as in the construction of Dy ), extends & to n € Q1D
so that dn € L2(Q"CH?"), and then projects n down to Sw € #Z™. It turns out that such a process
gives a well-defined map S, whose kernel is ker Dy, invariant under pullback by the action of SU(n,1).
We dissect the Rumin complex and graft in the Szegd map S, obtaining

0 y Q0g2n—1 dH; Q1§21 /g1 dH; dH; Qr-1g2n-1/gn-1 S, gpn S 0

where Z is the image of S, dense in #Z™. This new complex is still invariant under pullback by the
action ¢ of SU(n,1). When we complete the spaces of the complex to Hilbert spaces, pullback by the
action of SU(n,1) is not unitary. The unitary action is, for w € L%(2*/J%) and ¢ € #™,

n—k
Ugw = fg—21 SOZ-NU Ugg = 80;—165

where (f,),csu(n,1) 15 @ family of nonvanishing, positive, smooth functions on S$**~'. By similar
computations to those for Example II[.1.7, for the unitary implementors U, we have that

n—(k+1)

=(
UydyUjw = £,

n—(k+1)

_n-k _1 n=(k+1) _n-k
dyfya? w=f3dgo+ [0 [dg 27 |w
so that U, dyUy — f__11/4dHfg__11/4 is bounded. On the hyperbolic space CH", the group SU(n, 1) acts

g
by isometries. Because the map S commutes with pullback by the group action, U, SU; = S f;l/ 2,

Unlike in the case of SO(2n, 1), there is no discrepancy between the conformal behaviours of dj and
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S. It remains to construct a conformal factor on #". By [JK95, Proof of Theorem 6.6(ii)], there is a
polar decomposition S = @(S)A}LIM, where ®(9) : L2(Qn~182n~1/n=1) 5 %™ is a coisometry with
kernel ker Dy;. The operator ®(S5) f;,ll/ “®(S)* is positive and invertible on #™ because

®(9)f, Y 0(S) > e(S)IfL I e(S) = |£,5]7
We compute that both

SE A (2(9)f, 0 (8)) = 8(5) [(1  ker D)AZ, £V1]

gt g

and

(]gS[]_(;< - (‘I)(S)f;ll/4q)(5)*> Sf;11/4 — (I)(S) [(1 — ker D)A_1/4 —1/4] f_1/4

are bounded. The operator dy + d}; + S + S* has compact resolvent by an argument very similar to
the case of SO(2n, 1), using this time the compactness of the resolvent of the Rumin Laplacian [JK95,
Corollary 5.20]. For example, on Q718271 /77~1 one can check that

(dy + iy + S+ )| guosgen-t g = Ay (1 —ker D)AY" + dydy
= (Dy;Dy)Y? + dydy
1/2
=AY

and the other cases are similar. In summary, we have constructed a conformally SU(n, 1)-equivariant
spectral triple

(C, L2181/ 7<) @ X" dy + dyy + S + 5%)

with conformal factors p, = 1/ ‘o (S ) —/ 4<I>(S )*. The phase of this spectral triple is exactly the

Fredholm module of [JK95, Corollary 6.10] Whose class is v € KKSU™D(C, C).
To show that we have obtained the y-element without directly using the result of Julg and
Kasparov, it would be necessary, as in the case of SO(2n, 1) to expand the complex to accommodate a

—2
representation of D " However, as before, the resolvent would not be compact. Furthermore, it is
unclear whether sufficient analytical tools are available to obtain bounded commutators.

1.3 Conformal quantum group equivariance

Conformal group actions of a nontrivial kind are already rare in the classical setup of Riemannian
manifolds, as the Ferrand-Obata theorem [Fer96, Theorem A] shows. The conformal group of a
Riemannian metric must be the isometry group of a conformally equivalent metric, unless the manifold
is conformally equivalent to a round sphere S™ or Euclidean space R™. It seems that the rarity of large
conformal groups carries over to the noncommutative setting. A possible example of a noncommutative
geometry with interesting conformal group is the Podle$ sphere. As we shall see in §1II.3.1, this hope
is realised; however the conformal geometry of the Podles sphere is not governed by a group but rather
by a quantum group.

To generalise Definition 1.3.8 to conformal (co)actions, we will consider a conformal factor p which
is an unbounded operator on E ® S, where E is a Hilbert B-module and S is a C*-bialgebra. It
is necessary to allow p to be unbounded in the ‘S direction’, as can be seen from classical group
equivariance. To apply the multiplicative perturbation theory of §I1.1.3, we will require u to be
S-matched, in the sense of §A.1.2, meaning roughly that u is locally bounded in the S-direction. We
denote by Kg the Pedersen ideal of S.
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Definition I.3.1. Let A and B be C*-algebras equipped with coactions of a C*-bialgebra S.
An order—ﬁ A-B-cycle (A,Eg,D) is conformally S-equivariant if E is an S-equivariant A-B-
correspondence and there exists an (even) S-matched operator p on (E ® S)pgg whose inverse
is also S-matched, satisfying the following. For a € Lip’ (D), let &, be the set of s € M(S) such that

{(a®s)p, (a®s)p™*}dom(D @ 1)(1® Kg) € dom(D ® 1) N Vg dom(D ®;_ 1)

and
(Va(D®s, )Vi(a®s) — (a® s)u(D® 1)p* )p*(D @ 1)~
V(D ®5,1) Vi (Vig(D ®;, 1)V (a® s) — (a® s)u(D @ 1)p*),

[D®1,(a®s
Del)™@D®1,(a®s

(D@ 1) D& 1, (a@s)u |D@1) ™
), and (D®1) D@1, (a®s)u ]
extend to S-matched operators. Let @ be the set of a € Lip? (D) such that S C span(Ss,) Nspan(s,S).
Then we require that A C span(A@) Nspan(QA).

If A and B are C*-algebras with G-actions, an order—ﬁ cycle (A, Eg, D) is conformally G-
equivariant if it is conformally CJ (G)-equivariant.
Remarks 1I1.3.2.

1. When p = 1, Definition III.3.1 reduces to Definition I.3.8 of uniformly S-equivariant cycles.

2. For a discrete quantum group G, when C,(G) is isomorphic as an algebra to the C*-algebraic

direct sum
P M, (€
YN

of finite-dimensional matrix algebras, the Pedersen ideal K¢ () is the algebraic direct sum. In
this case, the conformal factor and the admissible unitary would be labelled by the index set
A € A, so that

Vi € Homp(E®;, (B®C™),E®C™)  p* € Endz(E®C™)
and the equivariance conditions on a € @ become that

(V2 (D®s, )V (a®s) — (a® s)p*(D @ )p) (p!) (D@ 1)~

V(D ®;, 1)V (V2 (D ®;, )V (a® ) — (a®@ s)p*(D® 1
[D®1,(a®s)p*{D®1)7, [D®1,(a®

(DR1)™[D®1,(a® s)u’], and (DR 1) ¥[D®1,(a® s)(p)"1]

~—  ~—

be bounded for all A € A.

Theorem III.3.3. A conformally S-equivariant order—ﬁ cycle (A, Eg, D), with conformal factor p,
gives rise to an S-equivariant bounded Kasparov module (A, Eg, Fp).

Proof. The only point of difference from the non-equivariant case is the need to prove that, for every
a € Aand s € S, (Fp ® 1 — Vg(Fp ®;,1)Vg)a ® s is compact. Let ¢ be a positive element of Kg,
so that, by Proposition A.1.20, the restriction of p to the B ® span(ScS)-module E ® span(ScS) is
bounded. For the time being, we work on the module E ® span(ScS). Let a,,a,,a3,a, € @ and
51,82, 83,84 € 84, S,,, Su,» Sa, - As in the Proof of Theorem III.1.4,

ag?

(D ® )", ajag ® syslu* (D)=
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is bounded. We apply Theorem III.1.33 to obtain that
(Fupeiy — Fp ® 1ajaga; (D)’ @ shsss)
is bounded for S < 1 — a. Furthermore,
(D ®;5,D)Ve(a; ® s1) = Vi(a; ® s1)u(D @ L)p*)p™ (D) * @ 1)
is bounded and, by Proposition I.1.1,
(Fp ®s,1) V(a1 ® s1) — Vi(ay ® 81)(Fupyr ® D))p((D)P ©1)
is too. Now we have
(Ve(Fp ®;,1)VE — Fp ® 1)ajaaza) ® s185535]
= Ve((Fp ®531)V5 — Vg (Fp ®1))a,a5a3a; @ s155535)
=V ((FD ®5,1) Ve (aga5a3 ® s185s3) — Vg (aa3a3 ® s153535)(Fp ® 1)) (a] ® s})
— [Fp, aya3a3]a; ® 153535}
= Vi (Fp ®5,1)Vii(ay ® 51) — V(a3 ® 51) Fypgnye ) (a5azal ® s s555)
+(a; ® 31) ( (Do) (@303 ® 5353) — (ajas ® s353)(Fp ® 1)) (a} ® s3)
— [Fp, aja3asla) ® s185s35)
Fp ®s, 1)Vi(ay ® 1) — Vii(a; ® Sl)F,u(D®1);¢*) (a5aza) ® s3538))
a; ® s1) ( wpe) — Fp ® 1) (a3asa} ® s3535})

*
— [Fp,a;]asaza) ® s15535)

:VE<

(
+(

so that (Vg(fp ®s, 1)Vg — Fp ® 1)a,abaza}(D)? ® s,s5s5s% is bounded. Let a; € A and note that
c € span(ScS) 9 S. Then

(Ve(Fp ®5, 1)V — Fp ® 1)a,a3aza5a5 ® $1558385¢ (II.3.4)
is an element of End’(E) ® span(ScS). As the compacts on E ® span(ScS) pgspan(scs) are

span(EE* ® ScSScS) = End’(E) ® span(ScS) <End’(E) ® S = End’(E® S)

for each ¢ € Kg, we see that (II[.3.4) defines a compact endomorphism on E ® S. Because S C
Sa,Sa, 50,50, Kgand A C Q*QQ*QA,

ay ~ag

(Ve(Fp ®; ,D)VE —Fp®1)a®s
is compact for all a € A and s € S. O

Theorem IMI.3.5. A conformally S-equivariant order—ﬁ cycle (A, Eg, D) gives rise to a uniformly
S-equivariant order-r— cycle (A, Eg, L) via the logarithmic transform.

Proof. By the Proof of Theorem 1II.3.3, (Vg(Fp ®;,1)V — Fp ®1)a,a5a3a;(D)P @ s, s3s355¢ is bounded
on E® S for ay,ay,a3,a, € @, $1,82,83,84 €S,.,8,,,5,,,S,,, ¢ € Kg, and § <1— . Then

. B
Ve(Fp ®5,1)Vi

Ve(Fp ®;,1)VE a105030) ® $155535,C
Fr,®1)7\0
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is bounded and

a105030) ® 51555354C dom Ve(D ®;5,1)Vg C dom Ve(D ®;5,1)Vg
0 D®1) — D®1)"

Applying Proposition III.1.35,

Ve(Lp ®;,1)VE a1a3a30; ® $185835,¢C
L,®1)’\0

is bounded and therefore so is (Vz(Lp ®;,1)Vg — Lp ® 1)a;a3a3a; ® s;s3838;5¢. For any aj € A,

(Ve(Lp ®s,1)VEg — Lp ® 1)ayajazajas @ sy555385cC

is bounded. We have S C §, & &, Sy Kgand A C @*QQ*@QA, as required. O]

ay®as

Proposition II.3.6. Let G be a locally compact group. An order—ﬁ cycle is conformally Cy(G)-
equivariant if and only if it is conformally G-equivariant.

Proof. Use Proposition A.1.24. Because Cy(G) is abelian, for a € @, &, will always contain the
Pedersen ideal K¢, (o) = C.(G). O
II.3.1 The Podles sphere

The compact quantum group SU,(2) has polynomial algebra O(SU,(2)) generated by a, b, ¢, d subject
to the relations

ab = gba ac = qca bd = qdb cd = qdc bc = cb ad =1+ qgbc da =1+ q tbc

and with adjoints a* = d, b* = —qc c* —q_lb d* = a. The polynomial algebra O(SU,(2)) is spanned
by the Peter—Weyl elements t Wlth le N and i,j € {—I,—l+1,...,1—1,1}. The generators form
the fundamental representatlon l= 2, that is

o
ISR o
<~
(5 | nole
SIS
[N
| 7
[N
N
o~
Sk e
[NENNES
N|=
N

In terms of this basis, the coproduct and counit are
= Zté,k ® tgc,j E(té,j) =0,
k

and the adjoint is related to the antipode by té,j* = S(téz)
Dual to SU,(2) is the discrete quantum group SU,(2) [VYZO §4.2.3], whose function algebra

CO(Sm)) = C*(SU,(2)) is the closed span of matrix elements 7' with [ € 3N and i,j € {—,—I +
1,...,1—1,1}, subject to

l l _ 1l
T”TZ, J = =0, 0 /7, ] Tii =Tii-
In particular, as C*-algebras,
Co(SU,(2)) = C*(SU,(2 @ M,,(C
leiN

We may choose 7/; so that the pairing between C*(SU,(2)) and C(SU,(2)) is given by

(7' t//)—5ll/5 /(5

YRR i,i"Y4,5
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and the multiplicative unitary W € M(C(SU,(2)) ® C*(SU,(2))) is W = ;i ® Tl-l’j.

The quantum universal enveloping algebra ﬁq (s1(2)) is generated by K, K—!, E, F subject to

l
Li,j &,

K?-K?

KK '=K'K=1 KEK'=¢E KFK'!=¢'F |[EF]= =
q—q

with coproduct
AK)=K®K AE)=EQK+K'®FE A(F)=F®K+K'QF
and counit and antipode
e(K)=1 e(E)=¢(F)=0 S(K)= K1 S(E)=—qFE S(F)=—q 'F.

Note that this is not the same as U, (sl(2)), although the latter is a Hopf subalgebra of ﬁq(5[(2)) [KS97,
§3.1.2]. There is a nondegenerate pairing (-, ) between [7,1(5[(2)) and O(SU,(2)) [KS97, Theorem 4.21].
By this pairing, U, (sl(2)) is an algebra of unbounded operators affiliated to C*(SU,(2)). We may
define left and right actions of U, (sl(2)) on O(SU,(2)) by

Xéaza(l)(X,oz(z)) Oé’—XZ(X,Oé(l))a(Q)
The left and right actions of K are automorphisms of O(SU,(2)) and have the properties
(K—a)=K'!—a (a = K)*=a*+— K

In terms of the Peter—Weyl basis, K — té’j = qjté’j and té’j ~— K = q"téyj. We also record the
relationships S71(a) = K2 — S(a) «— K2 and ¢(af) = ¢(B(K? — a «— K?)) for the left Haar state
¢ on C(SU,(2)). The unitary antipode R on C(SU,(2)) is then given by R(a) = K = S(a) — K ';
on the Peter-Weyl basis, R(téj) =K — té-i* ~ K1=(K!— té-i — K)* = q_i“téi*.

The Podle$ sphere S2 has polynomial algebra O(S?2), the subalgebra of O(SU,(2)) generated by

i 1)2« 1/2 L 9,1)2 1/2% L ie—
A=—qlbe=cc= 2, —1/2t1/2,-12 = 4 27571/2,1/2’571/2,1/2 = —q '[2]; 50
. _ 1/2 1/2% _ ~1/2
B=ac*=—q 'ab= t7/1/2,71/2t1§2,71/2 = —q 2], / tl1o
. o 12 12 _1/9,1/2 1/2% o172

and is spanned by t.,. The subspaces S, = span{ti ,|li} and S_ = span{ti _1|1,i} of O(SU,(2))
are the spinor bundles of the Podle$ sphere. They can be completed under the inner product

on O(SU,(2)) given by the left Haar state. The natural Dirac operator defining a spectral triple
(C(S2),L*(S; @ S_), D) is [DS03, Theorem 8§]

o)

where 0y = E — and 0p = F' — or, in terms of the Peter-Weyl basis,

aEté,j = \/[l +1/212 - [j + 1/2]3té,j+1 8Ft2,j = \/[l +1/212 [ — 1/2]3%,]’71 :

qniq—n
q—q*
KL = \/[l +1/2]2 — [k — 1/2]2. We have the twisted derivation property

(Here, we use the convention [n], = for g-numbers.) We abbreviate these coefficients as

Op(aB) = Og(a)(K = B) + (K~ = a)9p(B)  9p(apB) = Op(a)(K — B) + (K~! — a)0p(B)
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which shows that D has bounded commutators with elements of O(Sg). The relationships

Op(a’) = —q0p(e)*  Op(a”) = —¢ ' 0p(a)"

can be used to show that D is self-adjoint [Senll, Lemma A.1].

There is an action of SU,(2) on S2 given by the restriction of the coaction of C(SU,(2)) on itself
to C(S?). The spectral triple (O(S?2), L*(S, @ S_), D) is constructed to be isometric with respect to
this action, cf. [DS03, §4]. We can phrase this in terms of a right coaction

5p:a Z(R®1)Aa thim Yt ®q R
k

of C(SU,(2)) on C(S?), where R is the unitary antipode. We can write the admissible unitary as
Vot ®th ) Z thy ®q R
We then have
(05 @ DVa(t, @) = S kbl ) @q kel e
k
= "%+1VA( g1 ® tl;j’) =Vr(0® 1)(%’ ® té:j’)

and, similarly, that 8-®1 commutes with Vj, which means that (C(S?), L*(S, ®5_), D) is isometrically
equivariant for the action of SU,(2).

In addition, there is an action of ST];(\Q) on Sg given by the restriction of the adjoint action of
C(SU,(2)) on itself to C(SZ) [Voill, §4]. Together, these actions give an action of SL,(2) = SU,(2)

S@';TZ), the Drinfeld double of SU,(2), which can be thought of as the quantisation of the classical
Lorentz group SL(2,C) action on the sphere S?. The left adjoint action of C(SU,(2)) is given by

ad(a) : ﬁ — Oé(l),BS(Oé@)) .
For z € C, we define a slightly adjusted action
w, (@) : B = o) B(K** = S(ay)).

For any a € C(SU,(2)), w,(c) preserves the subalgebra C(S2) and its spinor bundles. In terms of the
Peter—Weyl basis,

w. (8 )(B) =Y a7t Bt and w, (i 7)) = Y PETIRIE at
k

k

With respect to the inner product on C(SU,(2)) given by the Haar state ¢, w; is self-adjoint; in general,

(w(@)(B) [ 7) = (B |w_z42(a”) (7))

From the left action w; of C'(SU,(2)) on itself, we obtain a right coaction of C*(SU,(2)) on C(SU,(2))
by the formula

Bo) (/8(1)7 a) = w;(a)(B),
using the Sweedler notation 4, (8) = B(g) ® By, for the coaction. In particular, we obtain that

8uy (B ) = D wnlth ) ) @Th .

! 5l 57
Uz,
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The admissible unitary V,, on L*(S, & S ) ® C*(SU,(2)) is given by

Vo, = Zwl (tﬁ Zq_%tl P ® Tz-l,]- = Zq_2k tl k tl pY ® Tl ka, -

1,i,5 LN

We claim that the spectral triple (C(S7), L*(S, @ S_), D) is conformally S@)—equivariant. The
conformal geometry of the Podle$ sphere is examined at the level of bounded KK-theory in [NV10, Voill].

Because SU,(2) is discrete, the conformal factor p will be the sum of components ' € B(L?(S, &
S_)) ® My (C), I € 1N, labelling the irreducible representations of SU,(2). Noting that C(S2) is
unital, conformal equivariance will be a consequence of

Vo, Do)V —p(Delu*  [De1,u]

being bounded for all [ € 1N, ;.
Note that (K @ K) — (1® S)A(a) = (1 ® S)A(«) because

(K®K)— (18 5)A ZKMQMKAS%)

“Swex b
= Zq’“tﬁ,k (K~ =t} )"
%
= Zté,k ® t%c,j*
%

= (1®9)A(t ;).
Then

Op(w.()(B)) = dp(aq)B(K>** — S(a))))
= Op(aq)) (K = B)(K** = S(agy)) + (K1 = aq))0(8) (K> — S(ay)))
+ (K= a(l)ﬂ)aE(KQZ — S(g))
= Op(a@) (K — B)(K** = S(ay))) + w,41(2)(95(8))
+ (K7 = aq)8)0p(K** — S(a)))

so that Opw, (o) —w, ;1 (a)0g and Opw, (o) —w, 1 () O, similarly, are bounded on S, @S_. Furthermore,

Zwo(té,j)(wl (té’,j*)(ﬁ)) = Z t, kwl )té k*

— }: 2j4l 4l Lo*
= a7t ktis g ﬁt Ry
3ok, K

= > @t JSBE2 =t — K)S(H )
j7k7k/

= > el SRR = (i (K2 = S(t] ) «— K72)) — K?)
j7k7k/

= > el JSBET2 = (i, ST, ) — K?)
7. k,k’

:ZQZktl * K2—\1‘—K2)

_ 2kl 4l *g
—Zq ti,kti/,k

=w_4(t] ;) (1)B.
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Let p! = 2 w12 (ti ) (1) @75 = 2 q"t it ® T Forl=3,
1 1% 11 ox 24 B 1—g?A B
pr =@ TPT +q T3 T% =gz (fB* . _A) +q ( e A) -

Thus, with P, the projections onto the positive and negative spinors, pll? = q1/2PJr +q V2P If we
regard K as an unbounded operator on C*(SU,(2)) the conformal factor is

=

p=wleK)W*

where W is the multiplicative unitary of SU,(2).
We remark that ! is positive and (pu')* = > jw,Z/Q(té’j)(l) ® 7/ ;. Because u' € O(S2) ® My (C),

it is clear that [D ® 1, u!] is bounded. We are now in a position to see also that
! sl I
VI (D@ — pl(D@ 1)

= Z (Wl (té,g)le (té/,j/*) - w71/2(té,j)(l)Dwfl/ZOé/,j/)(1>) ® Til,jT]l'/,i’

lﬂihj?i/’j/

= 3 (@it )Dwy(t )1 — wy ot ) (1) Dy ot (1) @7
l’i7j7i/

= 3 (—(Duwglt ) = wy () D)wn (8 ;) + (D, wy o (8 ) (Dwr_yyalt (1)) @ 7L
l7i7j,i/

S

is bounded. Finally, we obtain that (0(S7), L*(S, @ S_), D) is conformally SU,(2)-equivariant with
conformal factor u.
The locally compact quantum group SLq(Q), the quantum deformation of SL(2,C), is the Drinfeld

JE—

double SU,(2) x SU,(2); see e.g. [VY20, §4.4.1]. As C*-algebras,
C(SL,(2)) =C(5U,(2)) ® C*(SU,(2)).
The comultiplication on C(SL,(2)) is
Agp = (10E@1)(I[d®ad(W)®id) o (A®A)

and the antipode is
SsL,(2) = ad(W*)o (S®S) =(S®S)ocad(W).

By [BV05, Theorem 5.3| the unitary antipode is similarly
Rgp 3y =ad(W*) o (R® R) = (R® R) cad(W).

Our conventions differ from those of [NV10] in that we use right coactions rather than left ones. The
translation between these is not difficult: a left coaction can be turned into a right coaction, and vice
versa, by applying the unitary antipode to the C*-bialgebra leg and then flipping the legs. Taking this
into account in [NV10, Proposition 3.2] the action of SL,(2) on S? is given by the coaction

5, =(2®1)(1®)(adW*) ®id)(R® R®id)(1® £)(id ® id ® R)(id ® 4, )Z(id ® R)d,
= (£01)(1®)(ad(W*) ®id)(1®E)(E@1)(1® £)(4,, ®id)ds
= (i[d ® ad(W*))(1 ® £)(3,,, ®id)da

of C(SL,(2)). Using the standard leg-numbering notation the admissible unitary is

V= 1@ WV, 15(Va 8 1)1 W).
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Let p, = (1 ® W*)uy3(1 ® W). Then

VD@1V — (D@ Dty = 1@ W*) (V, 15(D®1B NV, 13— ia(D@1® Vi ) (1@ W)
is C(SU,(2)) ® C*(SU,(2))-matched because it is bounded when restricted to each of the submodules
L*(S, @S )®C(SU,(2)) ® My (C). In terms of the Peter-Weyl basis,

q

_ k4l 1 * l *41 1 l l
Py = Yot ®t )t Tl Tl
/A4

i7j7k7l7i,7] 71 7]
= Z qkté,kté,k* ® té,m*t_lj,n ® Trln,n‘
i7j7k7l7m7n
This shows that the first leg of p,, is in O(S?) so that [D ® 1 ® 1, u, ] is similarly C(SL,(2))-matched.
Regarding K as an unbounded operator on C*(SU,(2)), the conformal factor is

My = I/I/'2>'E-',VV13(1 ®1® K)m*3%3-
We have now demonstrated

Proposition II[.3.7. The spectral triple (C(S3), L*(S, @ S_), D) is conformally SL,(2)-equivariant
with conformal factor p,,.

Remark T.3.8. As a consequence, applying Theorem III.3.5, the logarithmically dampened spectral
triple (C(S7), L*(S, ©S_), Lp) is uniformly SL,(2)-equivariant. Recalling the expressions for 0 and
Op in terms of the Peter—Weyl basis,

One can check that

I+ 3
[—2](1]210g\/1+[l+%]g—(l—i-%)logq_l
q

1+[+3

converges to log(q~! — q) as [ — co. Hence, up to a bounded difference, L, is equal to log(¢~!)D;,
where D, is the Dirac operator on the classical 2-sphere; cf. [DDLWO7].

III.4 Conformally generated cycles and twisted spectral triples

In this section, we present a new way of guaranteeing that unbounded cycles without bounded
commutators in the conventional sense have well-defined bounded transforms. In particular, our
approach covers all known examples of twisted spectral triples with well-defined bounded transforms.
One of the features of our approach is that no ‘twist’ or automorphism of the algebra is involved, which
suggests that this structure is a red herring, at least as far as KK-theory is concerned.

So far, relatively few examples of twisted spectral triples have been described in the literature.
One reason for this is the difficulty in guaranteeing that the bounded transform is well-defined. The
Lipschitz regularity condition [CMO08, Definition 3.1 (3.3)], although natural in a relatively classical
situation, where a pseudodifferential calculus is available, is not so satisfactory in general. Part of
the motivation for developing the technical results in this Chapter was the construction of twisted
spectral triples for certain badly behaved dynamical systems, for which Lipschitz regularity becomes
intractable.

The framework of conformally generated cycles is applicable to all examples of twisted spectral
triples with topological content in the literature, as far as we are aware. Among those examples to
which it can be applied are
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o Conformal perturbations of spectral triples (or Kasparov modules) of the D ~ kDk type [CMO08,
§2.2];

o Crossed products by groups of conformal diffeomorphisms [CM08, §2.3] [Mos10, §3.1] (and, more
generally, the dual Green—Julg map of conformally equivariant unbounded Kasparov modules);

o Cuntz—Krieger algebras, as in [Haw13, Chapter 6];
o Unbounded modular cycles, in the sense of [Kaa21, Definition 3.1]; and
¢ Pseudodifferential calculus on the Podle$ sphere and other examples with diagonalisable twist, as

treated in [MY19].

The multiplicative perturbation theory developed in §1I1.1.3 was partly inspired by [MY19]. In principle,
the techniques here could be used to build pseudodifferential calculi, mimicking the approach in [MY19].
Examples of twisted spectral triples to which our methods do not apply are

o The quantum statistical mechanics constructions of [GMT14] which are not Lipschitz regular
and, indeed, whose bounded transform is manifestly not a Fredholm module;

o The Lorentzian geometry constructions of [DFLM18], whose twist is an involution and not
relevant to the topology; and

» Examples without (locally) compact resolvent, such as those in [KS12] and [IM16].

To formulate a framework sufficient to describe the examples, we will again use the notions of
matched operators and compactly supported states from Appendices A.1.2 and A.1.3. Recall from
Proposition A.1.22 the x-algebra of matched operators Mtc*(F, C) on the module F with respect to
the algebra C.

Definition IT.4.1. A conformally generated A-B-cycle (A, Eg, D;C, ) is an A-B-correspondence E,
a regular operator D on E, a C*-algebra C, and a pair = (uy,pug) of (even) C-matched operators on
FE ® C, whose inverses are also C-matched, such that

1. D is self-adjoint;
2. (14 D?)"a is compact for all a € A; and
3. With & the set of a € Mtc*(E ® C, C) such that
[D®1l,a] [p,(D®1)uy,a] [D®1,ppa] [D®1up'al [D@1apy] [D®1,app™]
are C-matched, with & the set of a € Mtc*(E ® C, C) such that
D®1,0 [ia(D® Vphal (D@1 uhal (D81 uzlal [D&1aug] [D&1auz"
are C-matched, and with
T ={aeMtc"(EQC,0)|p (DR 1)upa—apr(D 1)y € Mtc* (E® C,C)},

the algebra A is contained in C*((1 @ Y) (LT R)| ¢ € 8.(C)), where §.(C) are the compactly
supported states on C.

If Eis a Z/2Z-graded A-B-correspondence (that is, with A acting by even operators), we require that
D be an odd operator and that p; and pp be even and call (A, Ex, D;C, u) an even conformally
generated cycle. If F is ungraded, (A, Eg, D;C, 1) is odd.

Remarks 1I1.4.2.

1. The spaces & and % are x-algebras. The space I is a ternary ring of C-matched operators. We
have 9 CJ and X C T, and LT X is also a ternary ring of C-matched operators.
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2. Proposition A.1.30 shows that the application of a compactly supported state on C' to a C-matched
operator is well-defined. By Proposition A.1.31, §.(C) in condition 3. of Definition I.4.1 could
be replaced with §(C), the set of all states on C, at least to those elements of I % which are
adjointable.

3. Any unbounded Kasparov module (A, E5, D) can be regarded as a conformally generated cycle
(A,Eg,D;C,(1,1)).

One should think of conformally generated cycles as having a dynamical quality, in addition to a
strictly geometrical one, with the C*-algebra C as a ‘dynamical direction’ In examples, the elements
of I correspond to endomorphisms with bounded ‘twisted’ commutators with D, as we will see in
Theorem II.4.5. Elements of &, # encode the regularity of the ‘conformal factors’ p;, pp.

Definition III.4.1 could be extended to higher order cycles but, in the interests of readability, we do
not pursue this here.

Remark T1.4.3. Using Proposition A.1.24, we may specialise Definition II.4.1 to the case when
C = Cy(X) for a locally compact Hausdorff space X. Consider a conformally generated A-B-cycle
(A,Eg,D;Cy(X), ). We may interpret p = (uy, ) as a pair of x-strongly continuous families
(Bpz)zex and (Lp . ).cx of (even) invertible adjointable operators over X. Condition 3. of Definition
IT.4.1 becomes:

3. With & the set of #-strongly continuous maps a : X — End*(FE) such that the maps
T [D7 az] z = [ML,zD/’L*L,z7 az]
o= [D,pe0,] @ [Dyppha,]  wer [Dagp,] oz [Dagugy]

are *-strongly continuous to End*(E), with & the set of *-strongly continuous maps a : X —
End*(E) such that the maps

T = [D’ ax] z = [:uR,xD:u’;%,w7 a’w]
e [D, g ,0,] 0 [DipgL,a,] o [Diagug,] @ [Dagug;]
are *-strongly continuous to End*(FE), and with
T = {a € C(X, End"(E),_,)| @ iy, Diy, 10, — ayhin » Diy, € C(X, End*(E)._)},

the algebra A is contained in C*((1 ® m)(ZT X)|m € M,(X)), where M (X) is the set of
compactly supported Radon measures on X.

An important special case is when X is a discrete set (and, in particular, when X is a point). In this
case, Condition 3. of Definition III.4.1 becomes:

3”. With &, the set of a € End*(E) such that
[D7 CL] [ML,zD:u‘z,mv a] [D7 M*L,za] [D’ MZ,lza] [D’ a:uL,x] [Dv aui};]
are adjointable, with &, the set of a € End*(FE) such that

[D,a]  [praDpka.al  [Dipgeal  [Dypggal  [Dapgg] (D apgl]

are adjointable, and with
7, = {a € End"(E)| pp . Dpi, ,0 — apip . Dy, € End”(E)},

the algebra A is contained in the C*-algebra C*(Z, 7, %,z € X).

b
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Theorem II.4.4. Let (A, Eg, D;C,u) be a conformally generated A-B-cycle. Then (A, Eg, Fp) is a
bounded Kasparov module of the same parity.

Proof. The main point to check is that [F},,a] is compact for all a € A. Let ¢ be a positive element of
the Pedersen ideal K, so that, by Proposition A.1.20, the restriction of u to the B®span(CcC)-module
E ® span(CcC) is bounded. From now on, we work on the module E ® span(CcC). Let l;,l, € &
and ry, 79,73 € R. Omitting instances of ®1 for simplicity, Theorem III.1.33 shows that

(FyLDwL - FD)l1l2<NLDH*L>’B (FpRD,u’;% - FD)T1T2T3<D>ﬁ
are bounded for 8 < 1. With [ = [;l, and 7 = r 1,73,
(Fpl — leLDu2)<NLDME>B (FMRDM’E%T - TFD)<D>B
are hence bounded. Let ¢t € . By Proposition I.1.1,
(FMLDM’*Lt - tFMRDM;%) <#RDME>5
is bounded and we have
[FD7 lt’l‘] - (FDl - lFMLDHZ)tT + l(FI'LLDN*Lt - tFMRDM%)T + lt(FMRle}{T — TFD)

We see that [F, ® 1,ltr](D)? ® 1 is bounded on the module E ® span(CcC). This is the case for
every positive ¢ € K so, by Proposition A.1.20, [F, ® 1,1tr](D)? ® 1 is a C-matched operator on
E ® C. Let 9 be a compactly supported state on C. By Proposition A.1.30, we may apply 1 ® 9 to
[Fp ® 1,1tr]{D)? ® 1 to obtain the bounded operator

1@ 9)([Fp ® 1,itr|(D)’ ® 1) = [Fp, (1 @ 9)(itr)|(D)”.
For a € A the operator
[Fp, 1 @ 9(itr)]a = [Fp, (1 ® ¢)(itr)(D)? (D) Pa

is compact. Using the Leibniz rule and taking norm limits, [F},,b] is compact for all b € C*((1 ®
V(LT R) | Y € 8,(C)), which includes A. O

We now consider conformal perturbations of unbounded Kasparov modules, which include the
conformal perturbations of noncommutative tori [CMO08, §2.2].

Theorem II.4.5. Let (A, Eg, D) be an unbounded Kasparov module. Let k be an invertible normal
element of End*(FE). Suppose that span(MAM) DO A where M is the set of a € End*(E) such that

[kDE*, a) [D, a) [D, k*|a [D, k*k]a a[D, k| a[D, k*k]

are bounded. Then (A,Eg,kDk*;C, (k=1 k™1)) is a conformally generated cycle. In particular, if k
is normal and invertible and (A, Eg, D) is an unbounded Kasparov module with [D, k] bounded then
the data (A, Eg,kDk*;C, (k™' k™)) define a conformally generated cycle. Hence (A, Eg, F,pi+) is a
Kasparov module and [(A,Eg, Fypi+)] = [(A, Eg, Fp)] € KK(A, B).

Proof. 1t is straightforward to check that, for all a € A,
[kDk*, a] [D, a [kDk*, k~1*a) [kDk*, ka] [kDk*, ak™!]

are bounded so that # C &£ N % where &, R are as in Definition .4.1. As AC T = Lipz(D), we
are done. For the final statements, if [D, k| is bounded then . contains scalar multiples of the identity
and so span(#AM) O A. An application of Theorem III.1.33 gives the equality of the Kasparov
classes. O
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Example II1.4.6. We recall the noncommutative torus C(T2) from Example II[.1.13 and the spectral
triple

(C2),22(12) 9 €, D = (4 1mg, 7))

As in Example III.1.13, choose a positive invertible element k& € C(T2) in the domains of §; and J,.
Using left multiplication by k yields a conformally generated cycle

(C(T2), L*(T2%) ® €2, kDk; C, (k™1,k71)) .

Thus the classes defined by F}, and F,p,, in KK(C(T?),C) coincide.
The unbounded Kasparov module (C(T?), L?(C(T?2), ®)c (), 02) also gives rise to a conformally
generated cycle
(C(Ti)’ LZ(C(Ti)a (P)C(T)’ k52k; C, (k’il’ kil))

where k € C(T?2) is now a positive invertible element in the domain of §,. Thus the classes defined by
F;, and Fps  in KK(C(T?%),C(T)) coincide.

Next we consider unbounded modular cycles in the sense of [Kaa21, Definition 3.1] [Kaa24, Definition
8.1]. Using our methods the bounded transform can be achieved in greater generality. Compare
Proposition II.1.42.

Proposition Ill.4.7. Let E be an A-B correspondence. Let D be a self-adjoint reqular operator and
AL and A_ a pair of commuting positive adjointable operators on E such that

e Foralla € A, (1+ D?)7'a is compact and the sequence (a(A, + A_)(A, + A_ + 1)),
converges in norm to (the representation of) a;

e {A,,A_}domD C domD and [D,A_], [D,A_] are bounded; and
e AC W, where N is the set ofa € End*(E) such that adom D C dom D and A_DaA,—A aDA_

1s bounded.

Let (hp)nen,, € G (RY) be any sequence of positive functions with bounded reciprocals which agree
with the function x — x~/2 on the interval [%,n]. Then, with py, ,, = pig., = hy (A )R, (A_)7, the
data (A, Eg, D; Cy(Ny,), 1) define a conformally generated cycle.

Proof. First, by the smooth functional calculus of Theorem A.4.18, [D, h, (A, )k, (A_)"'] is bounded
sole %, R, for every n € N5,. Second, J, consists of those b € End*(E) such that

[hn(A+)h’n(Af)_th’n(AJr)hn(Af)_l7 b]

extends to an adjointable operator. Let fy, fy, fs, f4 € C°((1,n)) and @ € # and define b € End*(E)
to be the product

FADHA afs(A)f(A) € Co(7,m) (AN C((5,n)) (A )N Co((5,n)(A ) Co((7,m)(AL).

Then bh, (A, )h,(A_)t = bA;l/QAl_/Q and, again using the smooth functional calculus,

n

[hn (A ) (AZ) T Dhyy (A by, (AZ) 7, 0]
= fl(AJr)fz(A—)A;l(A—DaAJr - A+aDA_)A;1f3(A+)f4(A_)

(AR (A [D,APAY £ (M) f(AL)] afy(A) fa(A)

+ (A f(A0)a | D, AV2AT (AL Fu(AD)] BB )b, (A
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is bounded. The closure of Cy((£,n))(A,)Cy((2,n))(A_) is C*(A,,A_). By Lemma I.1.43, A C
AC*(A,,A_) so that

LITRDCHAL,A)NCH(AL,A_)DCH (AL, A )AC*(A,,A_)CA
and we are done. O

As a last application we consider again the relation to the logarithmic transform.

Proposition IIl.4.8. ¢f. [GMR19, Corollary 1.20] Let (A, Eg, D) consist of a C*-algebra A represented
on a Hilbert B-module E and a reqular operator D on E, such that

e D is self-adjoint;
e (1+D?)'2q is compact for all a € A; and
e There is a dense subset of a € A such that adom D C dom D and [Fp, a]log(D) is bounded.

Then, with L, = Fplog(D), the triple (A, Eg, L) is an unbounded Kasparov module whose bounded
transform is equal to (A, Eg, Fp) up to a locally compact difference.

Theorem II.4.9. Let (A, Eg,D;C, (i1, tr)) be a conformally generated cycle. Then (A,Eg,Lp) is
an unbounded Kasparov module of the same parity.

Proof. By the Proof of Theorem 1II.4.4, [F},, (1®4)(Itr)](D)? is bounded for ¢ € 8.(C),l € ¥*, t € T,
re %3, and < 1. We have

ltrdom(D® 1)(1® K¢) C ltpg*dom(D®1)(1® K¢) C lup** dom(D® 1)(1® K()
Cdom(D®1)(1® Kp).

Hence ({D) ® 1)itr({D)~! ® 1) is C-matched. Applying Proposition A.1.30,

1®¢)((D) ® 1)itr((D)™' ® 1) = (D)(1 @ ¢)(itr)(D) ™"

is an adjointable operator on E, and so (1 ® ¥)(ltr)dom D C dom D. By Proposition III.1.35, the
commutator [Lp, (1 ® v)(Itr)] is bounded. By the Leibniz rule, [Lj,b] is bounded for all b in the *-
algebra generated by {(1® ¢)(LT %) | ¢ € $,(C)}. This is dense in C*((1 @ Y)(LTXR) | ¥ € S,.(C)),
which includes A. O

In principle, the logarithmic transform, if carried out piece-by-piece, could be used to produce
KK-classes from ‘multi-twisted’ spectral triples which have appeared in the literature, such as for
quantum groups [KK20] and dynamical systems [KK25]. (See also [DS22], where an approach similar
to that of [Sit15] is used to obtain ordinary spectral triples from partial conformal rescalings.) The
construction of §I.4.1 is really an example of this. In the next Chapter, we shall develop a framework
accounting for a different kind of ‘multidirectional’ behaviour, which we call tangled cycles. However,
it is not clear whether conformally generated cycles and tangled cycles can be reconciled; we leave this
for the future.

III.4.1 Descent and the dual Green—Julg map for conformal equivariance

In the conformally equivariant setting, the descent map and the dual Green—Julg map produce
conformally generated cycles.
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Proposition I1.4.10. Let G be a locally compact group and let (A, Eg, D) be a (p,) jeq-conformally
G-equivariant unbounded Kasparov module. Then, for t € {u,r},

(A Xy G7 (E Ay G)thGﬁ D; CO(G)7 (17 ﬂg)gEG)

is a conformally generated cycle, where D is the reqular operator given on & € C.(G,E) CEx,G by
(D€)(h) = D(&(h)) and (fig) e are given by (i) (h) = py(€(R)).

Proof. The local compactness of the resolvent is the same as in the uniform case, Proposition 1.2.16.
Recall the spaces &, 7, and &# of Remark III.4.3. It is straightforward to verify that the constant
families (J)QEG € L and (B*E)geG € R foralld € Lip; (D) and b, c € Q. Let (uy) e € Endp, o(Ex,G)
be the canonical unitaries implementing the group action, given by

(upé)(g9) = Ué(h1g)

on & € C,(G, E) (where we recall the notation of Definition 1.2.11). A family of operators ¢ is in J if
gt Dt —t i, Dy is x-strongly continuous into bounded operators. Using the condition for conformal
equivariance that for a € @ the map

g U,DUja — ap, Dy

is #-strongly continuous into bounded operators, we see that g = uga isin 7. So, g Ju;&?)*c" is in
LTR.

We now evaluate £ % on compactly supported Radon measures on G and ask if this generates
Ax, G. It will suffice to integrate the paths g Ju;&?)*é, which are constant apart from uy, against
compactly supported continuous functions on GG. Proceeding step-by-step,

ACH(G)@G* @)

as required. O

Proposition II.4.11. Let (A, Eg, D) be a (p ) jeq-conformally G-equivariant unbounded Kasparov
module, with G acting trivially on B. Then

(A Ay Ga EB? D; CO(G)’ (17 iu’g>gEG)
is a conformally generated cycle, with the integrated representation of A%, G.

Proof. The local compactness of the resolvent is the same as in the uniform case, Proposition 1.2.17.
Recall the spaces &, 7, and &# of Remark 1II.4.3. It is straightforward to verify that the constant
families (d) e € &£ and (b*c) e € R for all d € Lip, (D) and b,c € @. A path of operators ¢ is in I
if

g Dty —t p,Duy

is *-strongly continuous into bounded operators. Using the condition for conformal equivariance that
g+ U, DUja—ap,Duy is *-strongly continuous into bounded operators for a € @, we see that g = Uja
isin 7. So, g = dUjab*c is in T R. As in the Proof of Proposition III.4.10, the closed span of
Lip,(D)Cy(G)Q@* @ includes A %, G. O
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Remark I1.4.12. 1t is clear that the bounded transform (A X, G, (E %, G) py.c, Fp = F},) of the descent
(A Ay Gv (E Ay G)thGa D; CO(G)’ (1a ﬂg)geG)

of a conformally G-equivariant cycle (A, Ep, D) is exactly the descent of the bounded transform
(A, Eg, Fp). The same is true for the dual Green—Julg map.

We recall the identity
2A*CB=(A+B)*C(A+ B) —i(A+iB)*C(A+iB)+ (-1 +4+14)(B*CB + A*CA)
for elements A, B, and C of a *x-algebra, which implies that
span{z*Cz | z € span{A, B}} = span{z*Cy | z,y € span{ A, B}}.

Proposition IIT.4.13. Let G be a locally compact quantum group and let (A, Eg, D) be a p-conformally
G-equivariant unbounded Kasparov module. For t € {u,r}, let v be the inclusion End®(E) —
M(End’(E) %, G) = End}p,, ¢(E %, G). Then

(A Ay G? (E Xy G)thG’ L(D); Cg(G)’ (1’ (L ® ld)(p,)))

is a conformally generated cycle.

Proof. The compactness of the resolvent is as in the Proof of Proposition 1.3.18. Recall the spaces &,
I, and & of Definition I.4.1. It is straightforward to verify that «(d) ® 1 € & and «(b*c) ® sis3 € #
for all d € Lipz(D), b,c € @, and 54,55 € S, S,.

By the universality of the crossed product, see [Ver02, §4.1] [Vae05, §2.3], the morphism

End’(E) x, G — End®(E) x, G
gives rise both to the morphism
v : End’(E) - M(End°(E) x, G) =~ End*(E x; G)
and a unitary X € M((End’(E) x, G) ® C7 (G)) = End*((End®(E) x, G) ® CJ(G)) such that
XT)®1)X* = (t®id)(Vp(T ®;, 1)Vx)

for T € End’(E). Let a € @ and s, € S,; then X*(1(a) ® s;) € T because

(D) ® DX*(1(a) ® 57) — X*(u(a) ® 1) (¢ ® id) (1) (u(D) ® 1) (¢ ® id) ()"
= X* (X((D) ® DX*(1(a) ® 1) — (1 ®id) (4 ® 5,)u(D @ 1)*)
= X*(1®id) (Va(D®;, DVi(a®s;) — (a®s;)u(D @ 1)u*)

is Cj (G)-matched. So, (d ® 1) X*(¢(ab*c) ® s,55s5) is in ZT R.
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We need to show that A x, G is contained in C*((1 @ W)(LTR) | w € S.(C)). Proceeding
step-by-step,

C*((1®w)(ZLTR) |we S,(C))
D span {(1 ®w) ((1(d) ® 1) X*(t(ab*c) ® s183s5)) = L(d)(1®@w) (1® 3’5323’{))()* t(ab*c)
|a,b,c € @;d € Lip}(D); 5, € 8,58, € &; 85 € 3w € 8,(CF(G)) }
= span (L(LipB(D»{(l ®w) ((1® s35557)X) |51 € 585 € Syi83 € Sw € SC(CJ(G»}*L(@))
> span (o(Lip (D) { (1 ® 775553551 X (1 © 5,1)
|51 € 1152 € S5 € S € Koy € (@)} @)
— spam ((Lip (D)) { (1 ® 77555251 X (1@ 55m)
‘31 € 8u;Sp € S 83 € 83 84,85 € Kor@ys 1572 € L2(Cy (G } L )
{1 @ n)XA®m,)|m,m, € LACH(G))}1(@))
= span ((Lipj(D){(1 @ w)(X)|w € L} (G)}'1(@))

= span (1(Lip} (D)
)

= span(¢(Lipy (D))C; (G)(@))
)
)

2 span(«(A)C;(G)u(@)) = span((A x, G)u(@)) = span(C;(G)(AQ))
2 span(C;(G)u(A)) = Ax, G
by the density of LQ(G)KCg(G) 88,8 C L?(G) and the inclusion A C span(AQ). O

Proposition Ill.4.14. Let G be a locally compact quantum group and let (A, Eg, D) be a conformally
G-equivariant unbounded Kasparov module, with G acting trivially on B. Then

(A >qu G7 EB: Da C(;((G)7 (17 /.L))
is a conformally generated cycle, with the integrated representation of A%, G.

Proof. Recall the spaces &, 7, and & of Definition II.4.1. It is straightforward to verify that d®1 € &
and b*c ® s3s5 € X for all d € Lip_ (D), b,c € @, and sy, 55 € &, S,. Let a € @ and s; € §,; then, by
Definition 1II.3.1,

(DN)Vi(a®s)—Vi(a®s)u(D® 1)u*

is Cj (G)-matched and Vi (a ® s;) € 7. So (d @ 1)Vg (ab*c @ s,s%s3) is in LT R.
We need to show that Ax,, G is contained in C*((1Qw)(ZLT R)|w € S.(C)). The same manipulations
as in the proof of Proposition II.4.13, with Vj in place of X, show that

C*(1®w)(LTR) |w e $.(C)) 2 span(Lipy(D)C; (G)@) 2 Ax, G,
as required. O

Remark I1.4.15. It is again clear that the bounded transform (A X, G, (E' %, G) gy, ¢, F,(p) = t(Fp)) of
the descent

(Ax; G, (E Xy G) gy, t(D); Gy (G), (1, (¢ ®id) (1))

of a conformally G-equivariant cycle (A4, Eg, D) is exactly the descent of the bounded transform
(A, Eg, Fp). The same is true for the dual Green—Julg map.
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III.4.2 An equivalence relation on conformally generated cycles

In this section, we consider an equivalence relation on conformally generated cycles making the
equivalence classes an abelian group, following §I.1.

Remark 1.4.16. The direct sum of two conformally generated cycles (A, E; g, D;;C,puy) and
(A, By g, Dy; Gy, piy) is
(4, El,B D E2,Ba D@ Dy;Co®Cop; @110 py)

where 1, @10 1@, € (B;C, OE,QC, ®E, ® C, ® E, ® (C,)2. If C; = C, or, more generally, if C,
and C, have a common ideal J, one could write the direct sum in a smaller way. In practice, also, it is
often possible to change C' and p without affecting the validity of a cycle (A, Eg, D; C, u). One should
therefore think of conformally generated cycles (A, Eg, D;C, 1) and (A, Eg, D; Cy, py) as equivalent.

Note that the external product of conformally generated cycles is not constructive.

Definition II[.4.17. Two conformally generated cycles (A, E; g, Dy; Cy, j11) and (A, Ey g, Dy; Cy, i)
are cobordant if there exists a conformally generated cycle (A, Eg, D; C, 1) and an even partial isometry
v € End*(F) such that

1. v commutes with (the representation of) A, and vv* and v*v commute with D;

2. vACC((1@Y)(ZLTR) | ¢ € S(C));

3. (A, (1 —w")Eg, (1 —vv*)D(1 — vv*)) is unitarily equivalent to (4, E; 5, D;); and
4. (A, (1 —v"v)Epg, (1 —v*v)D(1 — v*v)) is unitarily equivalent to (A, Ey g, Dy).

Example IIT.4.18. Let (A, E, D;v) be a cobordism between unbounded Kasparov modules (A, Ej, D;)
and (A4, E%, D,). Then
(Aa EB: D; (Ca (17 1); U)

is a cobordism between (A, Eg, D;;C,(1,1)) and (4, E%, D,; C, (1,1)).

When applied to ordinary Kasparov modules, Definition II[.4.17 also encompasses conformal
transformations and singular conformal transformations.

Example TIT.4.19. Suppose that (U, u) is a conformal transformation from the unbounded Kasparov
module (A, Eg, D) to (A, Eg, D,). Then

(4 Ee )5 (7 5,)ie ()8 (). ()8 )i(u°)

is a cobordism between (A, Eg, D;;C, (1,1)) and (A, Ej, Dy; C, (1,1)). We leave the demonstration of
this as a special case of Example III.4.20.

More generally,

Example IIT.4.20. Let (U, (u;);c;) be a singular conformal transformation from one unbounded
Kasparov module, (A, Eg, D;), to another, (A, E%, D,), as in Definition III.1.38. We will show that

(A’(EGBE/)B’(Dl Dz);CO({pt}UI)’((l1)@(11)1‘61’(11)@(M1>ie1>;(U0))

is a cobordism between (A, Eg, D;;C, (1,1)) and (A, Eg, Dy; C, (1,1)). Here, I is treated as a discrete
set. For a € /#;, we can check that

I A TR TE A T S A
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is bounded, so that ( 0) (“” 0) € ;. One can check that (! 1) € Z, and that %, contains (“”1/4 0).

Furthermore, &, 74, and &, all contain <LipB(D1) Lip( D2)>. Hence

pt» “pt’

TpRy | w € {pt} UT)
and we are done.
We are led to the following definition.

Definition III.4.21. Two unbounded Kasparov modules (A, Eg, D;) and (A, Eg, D,) are conformant if
there exists if there exists a conformally generated cycle (A, Eg, D; C, 1) and an even partial isometry
v € End*(F) making the conformally generated cycles (A4, Eg, D;;C, (1,1)) and (A, Eg, Dy;C,(1,1))
cobordant. We call the data (A, Eg, D; C, p;v) a conformism between (A, Eg, D;) and (A, E, D,).

Example IIT1.4.22. We pick up from the setting of Theorem III.4.5, adopting the notation there. We
will show that the conformally generated cycles

(A7 EBaD)(Ca(lal)) (AaEB7ka*;Ca (k_lak_l))

are cobordant. A suitable cobordism is

(e (" ame) (o) (40)) 7))

We check that

([ )(D we) (1) ()6 ) C ) (7o) () -

so that (,© E . Both & and & contain C1 & 4. We remark that . is a x-algebra of operators, so
span(M?) = M. We have

<1O>Agm((10) (,9) (oﬂQ)A(OJ%)) C 5pan(LT RLT R)
and we are done.

Proposition III.4.23. Cobordism of conformally generated cycles is an equivalence relation and is
compatible with direct sums.

Proof. For reflexivity, we take v = 0 € End*(F) to see that (A, Eg, D; C, i) is cobordant to itself.

For symmetry, note that v*A = (vA)* C C* (1 @ Y)(LTR) | ¢ € &.(C)) so that making the
substitution of v* for v reverses the roles of (A, Ey g, Dy;Cy, 1) and (A, Ey g, Dy; Gy, ig).

For transitivity, suppose that (A, Eg, D;C,u;v) is a cobordism between (A, Ey g, Dy;Cy, i)
and (A, Ey g, Dy; Cy, f15), and (A, E, D';C’, p';v") is a cobordism between (A, Ey g, Dy; Cy, i) and
(A, E5 g, D3; G5, p3). Let U : (1—v"v)E — Ey and U’ : (1—v"v"*)E — E, be the unitary equivalences
between the cycles

(A, (1 —v*v)Eg, (1 —v*v)D(1 —v*v)) and (A4,(1—v'v™)Eg, (1 —v"v*)D'(1—vv"™))
and the cycle (A, Ey g, D;). Then

(A, (E®E)g, DD ;CoC,dCu®1dv'v+Uu,Udv'v*  +U*u U @1 p';0+U"U +'),
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is a cobordism between (4, E; 5, Dy;Cy, py) and (A, Ej3 g, D3; G, j13), where
p®d1®vvtU pU dv'v™* + U pU &1 p’
EERC)®(ERC)®(ERG)D(ERC)®(ERC)®(E'®C).
We have
W+ U U+ 0o+ U U+ = @1  (v+ U U+ ) w+U*U +0)=1® 0.
Let &£”, ", and #” be the spaces of Definition III.4.1, corresponding to this cycle. We have
oz CZ” Teg CcT” RDR C R,

so that (v+v")ACC*(1QY)(ZL"T"R") | Y € S.(CHC,dC")). Because D commutes with (1 —v*v)
and D’ commutes with (1 —v'v™), D'U™U = U"”*Dy,U =U"*UD on E @ E’. Hence

U/*QQ%%2U g g//gl/%//
and

UrUA=U"AU CU"C (1@ ) (L%R,) | ¢ € S.(G))U
CC(A®@YL'T"R") [Yes(Colal))

as required. O

Unlike additive perturbations of unbounded Kasparov modules, conformal transformations are not
necessarily reversible nor composable. The extra room in the definition of conformism circumvents
this issue. As a special case of Proposition II[.4.23, we have

Corollary II.4.24. Conformism of unbounded Kasparov modules is an equivalence relation and is
compatible with direct sums.

Proposition 1I[.4.25. Given two cobordant conformally generated cycles (A, Ey g, Dy;Cy,py) and
(A, Ey g, Dy; Gy, py), their bounded transforms (A, Ey g, Fpp ) and (A, Ey g, Fpp ) are cobordant and so
define the same element in KK (A, B).

Proof. Let (A, Eg, D;C, u;v) be a cobordism between (4, E; 5, Dy;Cy, py) and (A, Ey g, Dy; Cy, pig).
By Theorem II.4.4, (A, E, Fp,) is a bounded Kasparov module and [F},,vA] C End’(E). By Lemma
L1.7, Fy_ypyD(1—ver) = (1 —vv*)Fp(1 — vv*) on the module (1 —vv*)E and Fi_ ) p1—ve) = (1 —
v*v)Fp(1 — v*v) on the module (1 — v*v)E. Hence (A, Eg, Fjp;v) is a bounded cobordism between
(A, Ep, Fp,) and (A, ER, Fp ). O

In the following, we use the notation Zq-(T') = {x € | [T, z] = 0} for the centraliser in a subspace
2 C Mtc*(E® C,C) of an adjointable operator Ton E ® C.

Definition IT.4.26. A conformally generated cycle (A, Eg, D; C, i) is positively degenerate if there
exists a self-adjoint unitary s € End*(E) (odd if the cycle is of even parity), preserving the domain of
D, such that

e The anticommutator Ds + sD is semibounded below, i.e. Ds + sD > —c for some ¢ > 0;

o [1,s®1] =0; and

C ACCHA8Y)(Zg(s®1)Z5 (s®1) Za(s® 1)) | ¥ € ,(C)).

Proposition I1.4.27. A positively degenerate conformally generated cycle (A, Eg, D;C, 1) is cobordant
to the zero cycle (A,05,0;0,0).
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Proof. Let s € End"(F) be a symmetry implementing the degeneracy. Let N be the number operator
and S the unilateral shift on ¢2(N5,). Then

(A,Eg®*(N5(),D®1+s@N;C®C, (1, @101 1,1 0101®1);1®595) (II.4.28)

is a cobordism from (A, Eg, D;C,u) to (A4,05,0;0,0). The compactness of the resolvent is as in

Proposition 1.1.13.
Let &', ', and &’ be the spaces of Definition III.4.1, corresponding to the cycle (III.4.28). Using
the relation NS = S(N + 1), we check that

(DR1+s®N)(1®S5)—(1®5)(D®1+s®QN)=sQ[N,S|=s®S
is bounded. Hence, noting that [u,s ® 1] =0,

¥ DZ7Z4(s®1) @ Cl®span{l, S}
R D Zgz(s®1) @ Cl®span{l, S}
I 2Z7(s®1)® Cl®span{l,S}

and (1@ SYACC*((1QY)(L'T'R') | ¢y € 8.(C & (C)), as required. O
Corollary IIT.4.29. Given a conformally generated cycle (A, Eg, D;C, p),
(A, Ep, D;C, 1) @ (A, E¥Y ,—D;C,p) = (A, (E@ E©P))p, (P _1):COC,1u@1@1@p),
where E°P) s E with the opposite grading if E is graded, is cobordant to (A,05,0;0,0).
Proof. Using the observations of Remark II.4.16, we may replace the direct sum cycle with
(A, (E®@ E“P)p, (P _p);C, N)
and the symmetry s = (1 1) makes this positively degenerate. O

We thus obtain

Theorem III.4.30. Cobordism classes of conformally generated A-B-cycles form a Z/27Z.-graded
abelian group which surjects onto KK (A, B). Similarly, conformism classes of unbounded Kasparov
A-B-modules form a Z/2Z.-graded abelian group which surjects onto KK (A, B).
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In this Chapter, we introduce the notion of tangled cycle, which encompasses the anisotropies arising
in parabolic geometry as well as the parabolic commutator bounds arising in so-called ‘bad Kasparov
products’ Tangled cycles incorporate anisotropy by replacing the unbounded operator in a higher order
cycle that mimics a Dirac operator with several unbounded operators mimicking directional Dirac
operators. We allow for varying and dependent orders in different directions, controlled by a weighted
graph. We study the conformal equivariance of tangled cycles as well as how they fit into KK-theory
by means of producing higher order cycles. Our main examples fit into two classes: hypoelliptic
spectral triples constructed from Rockland complexes on parabolic geometries and Kasparov product
spectral triples for nilpotent group C*-algebras and crossed product C*-algebras of parabolic dynamical
systems.

IV.1 Strictly tangled cycles

The operator D in an unbounded cycle will in a strictly tangled cycle be replaced by a collection of
operators D. We first introduce some terminology, make some preliminary observations and provide

141
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some examples that motivate our definition of strictly tangled cycles.

Definition IV.1.1. A collection of self-adjoint regular operators D = (D;),c; on a Hilbert B-module
E is said to be strictly anticommuting if, for all j £ k,

on a common core for (D;) e

Examples IV.1.2.

1. Assume that M; and M, are two oriented, compact, Riemannian manifolds, with Clifford bundles
E, - M, and E, - M, with Dirac operators ¢1 and $2 thereon. For simplicity, we assume
that the manifolds are even dimensional so all Clifford bundles and Dirac operators are graded.
We write F; X E, — M; x M, for their graded exterior tensor product. By construction, the
pair of operators

Dy =D ®1g, D, =15 ® D,

form a strictly anticommuting collection on the Hilbert space L?(M; x M,, E; X E,). Here the
domain of D, is the (graded) Hilbert space tensor product H!(M;, E,) ® L?(M,, E,) and the
domain of D, is the (graded) Hilbert space tensor product L?(M;, E;) ® H*(M,, E,). Here
D := D, + D, is a Dirac operator on the Clifford bundle E; X E, — M; x M,. A similar
construction can also be made for a foliated manifold [CS84, Kor08], with D, being a tangential
Dirac operator and D, a transversal Dirac operator but in this case D; D, + D, D, is generally
not zero, and only lower order if the foliation is Riemannian.

2. We can more generally consider the (constructive) external Kasparov product. If (¢, H;, D;) and
(o5, Hy, Dy) are two higher order spectral triples, their external Kasparov product is constructed
as (o, @ Ay, HH ® Hy,D; ® 1 +1® D,). Here (D; ® 1,1 ® D,) form a strictly anticommuting
collection on the Hilbert space H; ® H, and their sum is the operator in the external Kasparov
product. This example goes back to Baaj—Julg’s seminal paper [BJ83] where the unbounded
picture was first introduced. The two pairs of strictly anticommuting operators discussed in this
example will fit into the framework of ST?s discussed in the next section (see Definition IV.1.7).

3. A more simple-minded example is the direct sum of two higher order spectral triples. If
(¢,,H,,D,) and (&, Hy, D,) are two higher order spectral triples, their direct sum is (o, @
d,,H, ® H,, D, & D,). Albeit in a somewhat trivial way, (D; & 0,0 & D,) form a strictly
anticommuting collection on the Hilbert space H; & H,.

4. Let M be a compact Kéhler manifold. Write d for the complex dimension of M. We can consider
the Dolbeault complex

E) E) E)
0 — C=(M) _1) Foo(AlTO,lM) _2> Foo(AQTO,lM) _3>
5d—1 éd
o TO(AIITOL M) — T (AT M) — 0.

Here A*T%!M denotes the (complex) exterior algebra of the (0,1)-forms. The operators aj
obtained as the closure of 5j + 5: on L?(A*T% M) satisfy for j # k

D, =0= B0,

d

In particular, the collection ((ﬁ]) j—1 Is a strictly anticommuting collection of operators on

L?(A*T%*M). The collection of strictly anticommuting operators discussed in this example will
fit into the framework of ST?s discussed in the next section (see Definition IV.1.7).
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We can in fact for any partition {1,2,...,d —1,d} = S; U--US,, form D, := Zjes ¢’9j and
l

the collection D = (D))", also forms a strictly anticommuting collection. In both of these

constructions 4 J
n
2 — — —_ —
ARy =2 0= 80;+0,0;, =) I}
=1

Jj=1 j=1

is the Kodaira Laplacian. In later examples arising from complexes, we see that the orders of
the differentials affect which partitions we can choose when building an ST?; see in particular
Remark IV.2.18.

As a simple consequence of the functional calculus, we have

Lemma IV.1.3. If D = (D]) i1 15 a strictly anticommuting collection of self-adjoint reqular operators
on Eg and t € (0,00)", (sgn(D;)|D;|%) e is also a strictly anticommuting collection of self-adjoint
regular operators.

We have the following consequence of [LM19, Theorems 2.6, 5.1, 5.4].

Lemma IV.1.4. If D = (Dj)jd is a strictly anticommuting collection of self-adjoint regular operators
on Eg and t € (0,00)!, then the operator

Dy = ngn )1 D; |%

jel
is self-adjoint and regular with dom(D,) = (). ier dom |D)|*i. Further,
D, =YD,
jel
with domain ().  dom|D,|?'i. We also use the notation AP = Ei.
jel J

Lemma IV.1.4 certainly does not use the full power of [LM19]. We leave to the future the problem
of generalising Definition IV.1.7 to weakly anticommuting collections of operators.

—2
We record the notation AP := Dj.

Lemma IV.1.5. Let D = (Dj)jel be a strictly anticommuting collection of self-adjoint reqular operators
on Eg. For s,t € (0,00)! and 0,7 € (0,00) such that os; > 1t; for all j € I, there exists a constant
C > 0 for which

(1+A2)7 <CA+AP)

as positive elements of Endz(E). As a consequence, the following are equivalent for a € Endg(FE):

e a(14+AP)' € End%(E) for every t € (0,00); and
e a(14+AP) ' € End%(E) for some t € (0,00) .

Proof. First, for (z;);c; € [0,00)!, one can check that

(1+Zx28) SC(I—?—Zx?tj)

Jjel Jerl

—T

for some constant C' > 0 depending on s, t, o, and 7. Noting that (D )jer is a strictly commuting
collection of self-adjoint regular operators, the Lemma follows from functlonal calculus of several
commuting operators. [
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We will encode the orders (relating to commutator properties as in a higher order spectral
triple) of the components in a finite collection D = (D;),c; of self-adjoint operators in a matrix
€ = (€;;);i jer € M([0,00)). Here we write M for the matrices indexed by a finite set I. We think of €
pictorially as a weighted directed graph. The weighted directed graph has vertices labelled by I and
there is an edge from ¢ to j labelled by €;; whenever €;; > 0. For instance, the diagram

€11 €21 €22

Ly

€12
pictorially describes a 2 x 2 matrix € = (¢;;)7 ;_; € My([0,00)), and, if the reader imagines a larger
collection, they may begin to understand our use of the word ‘tangled’ for the main concept of this
Chapter.

Definition IV.1.6. We say that a matrix € = (¢;;); jer € M;([0,00)) satisfies the decreasing cycle
condition if for any k and v = (71,7, ..., V) € I*¥ with v, = v, we have that

k
He’Yj'Yj-%—l <l
7=1

The decreasing cycle condition means that the total weight along any cycle in the weighted directed
graph should be < 1. The condition that Hf: L e < 1 is indeed only a condition appearing along
the cycles in the weighted digraph associated with e since v = (7;,%,, -..,7;) € I* represents a cycle
if and only if Hf: L v 0. In particular, if the weighted digraph associated with € has no cycles
then e automatically satisfies the decreasing cycle condition. It follows from [Jos21, Lemma 3.23] that

€ € M,(]0,00)) satisfies the decreasing cycle condition if and only if the convex cone
Q(e) == {t = (t;) € (0,00)" : €;t; < t; Vi, j}

is nonempty.

We can interpret € as a matrix valued in the tropical semiring, in which context (€) is a well-studied
object. The tropical semiring, in the multiplicative convention, is [0,00) with addition @ given by
z @y = max{z,y} and multiplication x defined just as usual. Remark that 0 is the additive identity,
1 is the multiplicative identity, and multiplication distributes over addition. The reader can find more
details on matrices in the tropical semiring and their relationship to weighted directed graphs in [Jos21]
(where an additive convention is used for the tropical semiring, related to our multiplicative convention
by the logarithm). It seems likely that there is more to be gleaned from interpreting € as a matrix over
the tropical semiring but, for the purposes of this Chapter, it suffices to remember the nonemptiness
of the cone (€) as the antecedent of the decreasing cycle condition.

We now come to the main definition of this Chapter.

Definition IV.1.7. A strictly tangled A-B-cycle consists of an A-B-correspondence E and a finite
collection D = (D) ¢; of regular operators on E such that for a matrix € € M([0, o)) satisfying the
decreasing cycle condition (see Definition IV.1.6) we have that

1. every D is self-adjoint and D = (Dj) jer is strictly-anticommuting

2. for every a € A, (1+ AP)la is compact for some t € (0,00)! (and so for all ¢t € (0,00)! by
Lemma IV.1.5); and

3. Ais contained in the closure of @, the set of a € End"(F) such that, for all i € I, {a,a*} dom D, C

dom D; and
—1
(1+Z’Dj|5ij> [D;, al [Di’a](l-i_Z‘Dj’e”)

gel gel

-1

extend to adjointable operators on End*(E).
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We refer to € as a bounding matrix or graph. If E is graded, we require all operators in D to be odd
and call (A, E, D) an even strictly tangled cycle. If F is ungraded, (4, Egz, D) is odd.

If, for a dense *-subalgebra o C A, o C @, we will say that (&, Ex, D) is a strictly tangled
o-B-cycle.

When B = C, we will use the term strictly tangled spectral triple or ST?.

In §IV.1.2, we will show that, from any strictly tangled cycle (A, Eg, D), one can build a higher
order cycle (A,Eg, D, := Zjel sgn(D;)|D;|"), for suitable t € Q(e). Before this, we make a few
observations and give some motivating examples.

Remark IV.1.8. A strictly tangled cycle (A, Eg, D) with n = 1 is the same as a higher order cycle.
Indeed, € € [0, 00) satisfies the decreasing cycle condition if and only if € < 1. In this case, if € € [0,1)
is the bounding matrix then (A, Egz, D) is an unbounded cycle of order m = (1 — €)~!. Furthermore,
we point out that there is an implicit lower bound m > 1 on the order of our higher order spectral
triples originating in the requirement on € to have coefficients in [0, c0).

Remark IV.1.9. We note that our definition of a strictly tangled spectral triple is somewhat restrictive
in requiring the elements of the collection D = (D) < to be strictly anticommuting. We expect that
this definition can be relaxed to include collections D = (D;),c; on which there is a size constraint
on the anticommutator D; Dy + D, D; along the lines of for instance [LM19]. For our applications to
complexes, in particular Rockland complexes, we will make do with strictly anticommuting collections
but in order for more general applications to Rockland sequences [DH22, GK24, Gof24] and more
general Kasparov product constructions [GM15, KL13, Mes12] to fit into the framework one needs
to extend the notion above to a weaker anticommutation condition. See Remark IV.1.19 for further
comments on where in the proofs this is used.

Remark IV.1.10. If the operators D = (D) c; have a prescribed order m = (m;),c; € [1,00) in an

appropriate sense, e.g. in some pseudodifferential calculus, there is an intuitive guess of bounding
matrix €. Similar to the intuition of a higher order spectral triple, a commutator [D;, a] should behave
like one order lower than D, and therefore be controlled by operators of order m; — 1. Therefore, a

natural choice that turns out to be correct in examples is the bounding matrix ¢,; = mifl, fori,j €1,
J

J m

represented by the weighted digraph

m; m; m;
m;—1
m

which also matches the order of a higher order spectral triple in that m; = (1 —¢;;)~!. Such an € fulfils
the decreasing cycle condition since

k _ Eon
ﬁevjqjﬂ _ Hj=1( v, 1) _ Hj=1( v, 1) _ ﬁ (1 — mi) <1 (IV.1.11)

k k
Jj=1 Hj:1 m'yj“ szl m’yj J=1

for any cycle v = (74, ...,7;), where we use the cycle property v; = 7, in the second equality. In
particular, Q(€) contains a ray of the form

Indeed, t,,, (1) € Q(€) since ¢,;t; = ¢;;t; < t;. The operator

ET = Etm(T) = ngn(Dj”Dj‘mij
jel
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constructed from this ray should then morally be a sum of operators of order 7, which is discussed
further in Remark IV.1.23 and placed in a solid mathematical foundation in Proposition IV.2.7.

Operators with prescribed orders m with this type of bounding matrix € will be considered further
in §IV.2 in the context of complexes. For an ST? arising from a complex, we will depart from the
preceding discussion by setting €;; = 0 if the operators D; and D; are ‘far apart’ in the complex. When
we consider the C*-algebras of nilpotent groups in §IV.3.1, we will see that one does not always have a
natural prescription of orders. However, in the case of a Carnot group, there will be a natural way of
assigning orders, related to conformal equivariance under the dilation action.

IV.1.1 Three motivating examples

Before delving into the general theory and the main examples of this Chapter, we provide some simpler
examples to clarify and justify the structure underlying ST?s. Further examples, generalising these,
will be presented in §§1V.2.4, IV.3.1, and IV.3.2.

The Rumin complex on a contact manifold, which we discussed in §1II.2.1.3, is an example of a
Rockland complex. We will consider Rockland complexes in §IV.2 and return to explain and study
Rumin complexes in more generality in §IV.2.4. Let us start with the simplest situation to explain the
ideas motivating the notion of ST?s.

Example IV.1.12. We consider the 3-dimensional Heisenberg group H;. As a manifold, H; coincides
with R3 but is equipped with the product (x,y,2)(z’,vy',2') = (z + 2’y + v,z + 2 + zy’). We write
T for the cocompact subgroup defined from the integer points Z3. On the nilmanifold M = H; /T, the
Rumin complex takes the form

co°(M)de —Z2X 5 ¢oo(M)dz A 8

X/ T2 \Y
v C®(M)dz AdyAO — 0
R ——

C>(M)dy W) C®(M)dy A6

0 — C®(M)

where X =0, —y0,, Y = 0,, and Z = 0, are the standard basis elements of the Heisenberg Lie algebra
with the commutator identity [X,Y] = Z, here acting as vector fields on M. Here § = ydx + dz denotes
the contact form. We equip M with the volume density induced from the Haar measure on H;/I" and
declare dz, dy and 6 to be an orthonormal frame. With these choices, the Rumin complex above is
completed into a Hilbert complex, see [BL92| or §IV.2 below.

We shall shorten the notation for the operators in the Rumin complex to df = (dé%, df df). It is
a mixed order differential complex. Let

D, = dff + (df) +df + (@) and D, = af + (af".
We view D; and D, as densely defined, self-adjoint operators on L?(M; H) where H — M is the sum
of all line bundles appearing in the Rumin complex; so A = M x Cb. The differential operators D,

and D, are of order m; = 1 and m, = 2 respectively. We note that D, D, = D,D; =0, so D; and D,
are strictly anticommuting. The Rumin Laplacian takes the form

AR = D 4+ D2.

The data (C>®(M), L?(M; ¥ ),(D,, D,)) constitute an ST? with bounding matrix

(0 0
€=17 1 1
2 — ¢ =

.):) =
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If one squints, the bounding matrix can be guessed from the structure of the Rumin complex. The
diagonal arrows, corresponding to the operators —X? and Y2, require the weight-1/2 loop and the
horizontal arrows, corresponding to the operators Z + XY and Z — Y X, require the weight-1 edge
from D, to D;. The other arrows, forming part of D, are all first order, making no contribution to the
bounding matrix. Of course, this is not a rigorous argument; for that we will have to wait until §IV.2.4.

In particular, for any t = (t;,t,) € (0,00)? with ¢; > t,, we arrive at a higher order spectral triple
with Dirac operator

t1-1 to—1

D, = D,|D, |7t + Dy| D, "> = D) (AR)" 4 Dy(AR) ™.

If ¢ lies along the ray spanned by (1,1/2) then D, is an H-elliptic operator in the Heisenberg calculus
and if ¢t = (2k; + 1,2k, + 1) where k; > k, are natural numbers then D, is a differential operator; see
§IV.2.4 for more details.

Below in §1IV.2.4.1, we will show that the naively formed candidate D; + D, for a noncommutative
geometry on M fails to be a higher order spectral triple, motivating the need for ST2s.

In the following Example, we show that the order-2 spectral triple for the C*-algebra of the
Heisenberg group built in §11.4.2 and studied further in Example II[.2.10 naturally arises from a strictly
tangled spectral triple.

Example IV.1.13. Let H; be the 3-dimensional Heisenberg group. In the 3 x 3-matrix presentation,
we can write

1 a c
Hy=<geM;(R):g=[0 1 b
1

The group Hj is a central extension of R? by R, fitting into the exact sequence

0 » R —— H; —— R? > 0.
As in §11.4.2, we begin with the weights
ER:R_)(C fRziRz—)CngZEnd(C2
cHc (a,b) — avy; + by,

Again, let us define a weight EI; :Hy — C by ZRj(g) = c¢. As we saw in §11.4.2, Eﬁ: exhibits the ‘parabolic’
feature that

1 (Zr(gh) — T (1)) (1 + |7 (bga) (Y)Y = le + ab[ (1 + (a’® + b))~ < [[Zg (9] + | 7* (€r2) (9)]

so that — —_~
Sl}llp H (E]R(gh) — KR(h))(l + |W*(£R2)(h)|)ilH < oo.

Further,
sup |7* (€g=)(gh) — 7" (€g2) (R)]| = |7 (€gz2)(9)] < oo

We therefore have a strictly tangled spectral triple

(C*<H3)7 L2<H37 (02)7 (Mﬂ'*(émg)7 MZE))

€= 00 1
“\1 0 — ¢ o
The set Q(€) consists of t,t, € (0,00) such that t; > t,. We recover the order-2 spectral triple of
§I.4.2 by taking t; = 2 and ¢, = 1.

with bounding matrix
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In §IV.3.1, Example IV.1.13 will be generalized to all simply connected nilpotent Lie groups (and
their closed subgroups) where there are as many Dirac operators as the step length in the group.

In §1IV.3.2, we will see that ST?s allow us to generalise the construction of spectral triples for elliptic
dynamical systems by Bellissard, Marcolli, and Reihani [BMR10] to parabolic dynamical systems,
including nilflows, horocycle flows, and large diffeomorphisms of tori, classical and noncommutative.
We here give a simple instance of this latter family of examples.

Example IV.1.14. Consider the group of diffeomorphisms (¢,,),,cz of T? given by

1 n
¢, = (0 1) € SL(2,Z).

This family of diffeomorphisms is large, in the sense that each ¢,, is in a distinct connected component
of the diffeomorphism group of T2. This induces a Z-action a on C(T?) given by a,,(a) := ¢*,,(a) for
a € C(T?), preserving C>(T?). Let (C>(T?), L?(T?2,C?), D) be the Dirac spectral triple on the torus.
With N the number operator on £*(Z), we write (C*(T?) x Z,£*(Z) ® C(T?)¢q2), N ® 1) for the
unbounded Kasparov module associated with the crossed product.

In attempting to form the Kasparov product, we encounter the pointwise-boundedness condition
of [Pat14, §1], reproduced (and generalised) in Definition IV.3.12 below. For a € C*°(T?) x Z, we
require uniform boundedness of |[D, «,,(a)]| in n. Let us see how |[D, a,,(a)]| behaves as |n| — oo.
For a € C*(T?)

an(a) (337 y) = a(a: —ny, y)?
and
D =0, +7,0,,
S0

[Da a, (a’)] = 71¢in(8za) + Y2 (¢in(aya’) - n¢in (aza’)) :
We conclude that there is a constant C' > 0 such that, for any a € C°°(T?) and n € Z,

Inll0za] L — ClVal L= < |[D,a,(@)]] < [nl|8,a] L~ + ClVal

We see that the pointwise-boundedness condition is not satisfied, rather we have the growth behaviour
D, (@] ~ In/|,al . as [n] — oc. Hence

1®D,ma)](1+|N) a1l
is bounded. In particular, the collection
(Co(T?) % Z,0*(Z) ® L*(T%,S), (N ® 7,1 ® D))

is a strictly tangled spectral triple with bounding matrix

€= (0 0) 1
and Q(e) = {(t1, ;) € (0,00)% : ;, > t,}.

IV.1.2 Assembling a strictly tangled cycle into a higher order cycle

Let us study how to construct a higher order cycle from a strictly tangled cycle. In conjunction with
the bounded transform, we will see that there is a well-defined KK-class associated with a strictly
tangled cycle.
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Definition IV.1.15. A strictly e-tangled cycle (A4, Eg, D) is p-preserving for p € [1,00)! if A is
contained in the closure of @, the set of a € End*(F) such that, for all i € I, {a,a*} dom|D;|P: C

dom |D; |+ and
-1 -1
( ; %) [D;, a] [D;, a]( : %‘)

extend to adjointable operators on End*(FE). If p, = oo, the condition {a, a*} dom | D,
should be interpreted as requiring that {a,a*} dom |D,|* C dom |D;|* for all ¢ > 1.
If, for a dense *-subalgebra of C A, o C @, we will say that (o, Eg, D) is p-preserving.

jerl jer

Pi C dom

Every strictly tangled cycle is by definition p-preserving for p = (1,...,1) and, if a strictly tangled
cycle is p-preserving, it is o-preserving for all & < p by Theorem A.3.4. Recall that

Q(e) = {t = (t;) € (0, o) : teity <t Vi, g},

For p € [1, 0], we will define the subset

Q(e, (&) N ], 11u(1,p;).

jerl

Here, the interval (0,1] U (1, p;) = (0, p;) U {1} is simply the half-open interval (0, 1] if p; = 1 and the
open interval (0, p;) if p; > 1. We remark that (e, p) is a convex set.

Theorem 1IV.1.16. Let (A, Eg, D = D = (D;),c1) be a strictly e-tangled cycle which is p-preserving.
For t € (0,00)!, we define the operator
= sen(D;)| D[,

Jel

Ift € Q(e, p), then the triple (A, Eg, D,) defines an order-m cycle for any

-1 €.t
m > max max{l Pi ti}(l — Y 2) . (IV.1.17)
i,j€1 s — U t]
(If p; = oo for some i € I, we interpret /f;:tli asl. If p, =t, =1 for some i € I, we also interpret /f;_t

as 1.)
If (4,Eg, D = (D;),c1) is a p-preserving strictly e-tangled cycle, for t € Q(e, p), (4, Eg,D,) is
an order-m cycle for m as in (IV.1.17).

We remark that it is impossible for 1 # p, = t,. To prove Theorem IV.1.16, we use results from
§A.3 about fractional powers and interpolation.

Proof. Let t € Q(e, p). The local compactness of the resolvent follows immediately from Lemma IV.1.5.
We now proceed to show that, for all i € I and a € @ (where @ is as in Definition IV.1.15),

-1+L
ti g (1 +y° |Dj|ta-) (IV.1.18)

jel

[sgn(D;)|D;

is bounded. If ¢; = 1, again using Lemma IV.1.5 we see that (IV.1.18) is bounded if (1 —1/m)t; > ¢t
for all j, which is equivalent to m > (1 —¢;;t;/t;)~". In the context of Proposition A.3.8, let

A=D, B=1+) |Dj%
jel

and
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We see that (IV.1.18) is bounded if 1—1/m > max c; €;;t;/t;, equivalent to m > max e (1—¢;;t;/t;) 7"
If1<p, <ooandt; €(1,p,),still in the context of Proposition A.3.8, let ag = p; and B3 = p,/t;. We
see that (IV.1.18) is bounded if

1 1 €55 0;
1—— —t, oyt — 1=
m>pi_1<(pz ngg;{ L -+ (5 — 1) )

equivalent to

—1 €.t
m>maxp t(l ”l)
pz_t t]

If p, = 0o and t, € (1, p;), we see by taking the limit that (IV.1.18) is bounded if

€; t
m>t-<1—max )
gel i

Noting that p L t > 1 if and only if p;,t; > 1, we thus obtain the claimed order estimate. O

Remark IV.1.19. Theorem IV.1.16 is proven under strong assumptions on the anticommutators
D; Dy, + Dy, D;, namely that they vanish for j # k. We expect that Theorem IV.1.16 holds under
much milder assumptions on the anticommutators D;D, + D, D;. In the proof of Theorem IV.1.16,
we rely heavily on Proposition A.3.8 for A = D, and B = A%}Z Assumptions such as those in
[KL13, KL12, LM19], modified according to an e-power of D, may allow one to extend Theorem
Iv.1.16.

Let us discuss a prototypical example to which Theorem IV.1.16 extends, despite a lack of vanishing
anticommutators. In [CM95, §1.1-2|, an order-2 spectral triple

(Coo(M) T, LA (M, A*V* @ A*N*), (dd}, — djd) (1) +dy + d) (IV.1.20)

is built from the data of a manifold M with triangular structure preserved by a group of diffeomorphisms
I'. To arrive at this higher order spectral triple, the longitudinal signature operator d; + dj is first

found to be homotopic to Azl/Q (dpdj —djdy). At this point, we can consider the collection
(CCOO(M) T, L2(M,A*V* @ A*N*), (A;”?(de*L —dd; ) (—1)2N, dpy + d’;,)) . (IV.1.21)

The operators in the collection (IV.1.21) are not strictly anticommmuting but the anticommutators
are of lower order in the pseudodifferential calculus of [CM95]. The pseudodifferential calculus allow
us to think of (IV.1.21) as a ‘tangled spectral triple’ with bounding matrix

0 0 1
€=1; 1 1 2
2 — %
so that taking ¢ = (2,1) produces the order-2 spectral triple (IV.1.20).

Remark IV.1.22. Let us consider the consequences of Theorem IV.1.16 in the special case when the
collection D has only one element. Let (A, Eg, D) be an order-m cycle which is p-preserving for
p €10,00]. For t € (0,1] U (1, p), (A, Eg,sgn(D)|D|") is an order-m’ cycle for

/ p—1
m’ >m max<q1l, ——t
p—t

If p = oo, this means m’ > m max{1,t}.

In examples, it is frequently the case that the requirement in (IV.1.17) may be taken as an equality.
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Remark IV.1.23. For an strictly tangled cycle (A, Eg, D) such that the operators D have prescribed

orders m € [1,00)! with bounding matrix on the form €5 = m;;_l, as in Remark IV.1.10, then for any

J
7 > 0 we would like the higher order cycle (A, Eg, D,) to be of order 7. Abstractly, Theorem IV.1.16
guarantees the order to be at most 7+ § for any § > 0. In the examples below coming from Rockland
complexes (see Corollary IV.2.20), the pseudodifferential calculus ensures that the order can be taken
to be 7 on the nose.

In light of the bounded transform for higher order cycles, Theorem IV.1.16 implies the following.

Corollary IV.1.24. Let (A, Eg, D) be a p-preserving strictly e-tangled cycle. There is a well-defined
class
[(A’ EB7 D)] = [(A7 EBa I%t)] € KK*(Aa B)

for any t € Q(e, p) with the same parity as (A, Eg, D). The class [(A, Eg, D)] depends only on
(A, Eg, D) and not on t.

Proof. That a class in KK-theory is obtain for any t € Q(e, p) follows immediately from the bounded
transform for higher order cycles, Corollary 1.0.7. Consider distinct s,t € Q(€, p). Since Q(¢, p) is a
convex set, zs + (1 —z)t € Q(e, p) for all z € [0,1]. That (A, E, F5_) and (A, Ep, Fp,) are equivalent
can then be shown by taking the straight line homotopy. O

We note that in Corollary IV.1.24, the fact that we retain the sign of each D, in the combined
operator D, = Zje sen(D;)|D; |'s ensures that the KK-classes can be non-trivial also when a component
of t is an even integer.

Theorem IV.1.25. Let (Ay, By g, Dq) and (Ay, By g, Dy) be two strictly tangled cycles with bounding
matrices €, and €, respectively. Here we write Dy = (D; ;) and Dy = (D, p)yer,- Then, with the

collection D; ® 1 U 1 ® Dy = (Dl)lellu12: given by

Jjen

. D ,®1 lel
DI:Z ,_,7 y
1®Dy, lel

the data
(A, ® Ay, (E, ®(C E2)BI®BQa D, ®1U1® D,)

constitute a strictly tangled cycle with bounding matriz the direct sum €, @ €5. Moreover, the exterior
Kasparov product of the associated KK-classes can be written as

(A1, By g, D1)] ®¢ (A2, Eo g, Ds)] = [(A; ® Ay, (Ey ®¢ Eo)p gp,» D1 ®1 U 1® D)
in KK,(A; ® Ay, B, ® B,).

Proof. Tt is straightforward to verify that (4; ® Ay, (B} ®¢ Es)p gp,: D1 ® 1 U 1& D,) is an ST?
with bounding matrix €; @ €,. It is also clear that Q(e; @ €5) = Q(e;) X Q(€y). For t = (t4,t,) we
have that .

D,=D, ®1+1®D,,

which is the form of the product operator for the external product of higher order cycles. Hence,
any higher order cycle assembled from (A; ® Ay, (B} ®¢ Ey)p,g5,, D1 ® 1 U 1® D,) represents the
exterior Kasparov product of the higher order spectral triples assembled from (A4, E, g , D) and
(Ay, Ey g, Dy). The Theorem follows. O

In a simpler way, we obtain
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Theorem IV.1.26. Let (A, E; g, D;) and (A, Ey g, D,) be two strictly tangled cycles (of the same
parity) with bounding matrices €; and €, respectively. Here we write Dy = (D, ;);e;, and Dy =

(Dy g )ker,- Then, with the collection Dy & D, = (f?l)le[l|ﬂ2, given by

A Dll®0 lEIl
DlZ: ’ s
0D, lel,

the data
(A7 (El EBE2)BaD1 ®D2)

constitute a strictly tangled cycle with bounding matriz the direct sum €, @ €,. Moreover, the direct
sum of the associated KK-classes can be written as

(A, By g, D) @ [(A, Ey g, Dy)] = [(A, (B, @ Ey) 5, Dy © Dy)]
in KK,(A, B).

It unclear whether it is an advantage or a disadvantage of the framework of ST?s that products and
sums are treated in the same way, in the sense that they have the same effect on the bounding matrix.
The difference is in the support of the operators: for an external product, every operator is supported
on the entire Hilbert module whereas, for the direct sum, the operators have disjoint support. In this
respect, when we come to consider complexes, we will see they behave more like sums than products;
on the other hand, examples coming from the constructive unbounded Kasparov product will behave
more like products than sums.

IV.1.3 Finite summability of strictly tangled spectral triples

The natural notion of dimension in noncommutative geometry is determined from spectral properties
in analogy with the Weyl law. We introduce a notion of summability of an ST? that takes into account
the different directions by means of a function. To simplify the description, we restrict our discussion
of summability to the Schatten ideals with exponent p > 0.

Definition IV.1.27. Assume that f : (0,00)" — (0,00) is a function decreasing in each argument. An
ST? (o, H, D), with o unital, is said to be f-summable if, for t = (t,...,t,) € (0,00)", the domain
inclusion

N, dom(|D;|%) < H

belongs to the Schatten class £f (t)(ﬂj dom(|D,|*), H), where the left hand side is given the Hilbert
space topology from the intersection of graph topologies.

Example IV.1.28. The notion of f-summability is for n = 1 compatible with the notion of summability
for spectral triples or, more generally, higher order spectral triples. Indeed, if (¢, H, D) is a p-summable
higher order spectral triple then it is an f-summable ST? with n = 1 for f(t) = p/t. Below in §IV.2,
we consider ST2s arising from Hilbert complexes defined from mixed order operators in which case the
function f plays a role of controlling different orders of summability in the different directions.

Example IV.1.29. Let us return to the exterior Kasparov product of Theorem IV.1.25. Assume that
(¢fy,H,,D,) and (o,, Hy, D,) are two even higher order spectral triples that are summable of order
p, and p, respectively. Their external Kasparov product is represented by the ST? (&, ® ,, H; ®
H,, (D, ®1,1® D,)). The ST? (o, ® oy, H, ® Hy, (D, ® 1,1 ® D,)) will then be f-summable for any
f:(0,00)%2 — (0,00) such that

(14D, [" @1+ 18 |Dyl'2)! € £7t2) (H, & Hy).

For instance, we could take

p p
[ty ty) = t_l + t_2
1 b



1V.1. Strictly tangled cycles 153

Example IV.1.30. We return to the direct sum of Theorem IV.1.26. Let us assume that (o, H;, D;)
and (&, H,, D,) are two higher order spectral triples that are summable of order p; and p, respectively.
Their direct sum is represented by the ST? (of; & oy, H; ® H,, (D, ® 0,0 ® D,)). The ST? (o, &
Ay, H; ® Hy, (D, & 0,0 D,)) will be f-summable for any f : (0,00)? — (0, 00) such that

(L+[Dy ") @ (1+[Dyf2) " € £I0et) (Hy) @ £7001) (H,).

f(tl’ t2) ‘= max &, 12 .
tl t2

If (¢,H, D) is fi-summable and f, > f;, then (&, H, D) is also f,-summable. The reader should
note that if (&, H, D) is f-summable then by complex interpolation it is also f-summable for any
f > fo where f, is the homogeneous function of degree —1 given by

For instance, we could take

inf, o sf(stft|")

fo(t) = I

Here | - | is an arbitrary norm on R™. If the infimum is attained, (&, H, D) is f,-summable.
The following is immediate from the fact that dom(D;) = Njc; dom(|D;|*) for a strictly anticom-
muting n-tuple (D;) ;-

Proposition IV.1.31. Let (&, H, D) be an f-summable ST?. For t € Q(e), (o, H,D,) is an f(t)-

summable higher order spectral triple.

IV.1.4 Equivariance of strictly tangled spectral triples

We now come to defining equivariance in strictly tangled spectral triples and, with the applications
to parabolic geometry and dynamics in mind, we allow for conformal actions. In the uniform case,
there are no additional technical issues arising in the equivariant setting. This follows from the same
method of proof as Theorem IV.1.16 (with an application of Remark 1.2.8.2 in the nondiscrete group
case). We record this in a Definition and Proposition.

Definition IV.1.32. Let (A, Eg, D) be an strictly e-tangled A-B-cycle with E a G-equivariant A-B-
correspondence. We say that (A4, Eg, D) is uniformly G-equivariant if A is contained in the closure of
@, the set of a € End"(E) such that, for each i € I, adom D; C U, dom D; for all g € G and the maps

1 -1
g+ (U,D;Uza — aD;) (1 +Y |Dj\%‘) g, (1 +Y |Dj\%‘) U:(U,D;Uza — aD;)
gel gel
are *-strongly continuous as maps from G into Endp(E). If U,D,U; = D, for alli € I and g € G, we
say that the cycle is isometrically equivariant. If of is a dense *-subalgebra of A contained in @, we
say that (¢, Eg, D) is a uniformly G-equivariant strictly tangled &/-B-cycle.

Proposition IV.1.33. If (A, Eg, D) is a uniformly G-equivariant strictly tangled cycle, the higher
order cycle (A, Eg, D,) is uniformly G-equivariant for all t € Q(e) N (0, 1],

Naively, the right way of applying the idea of conformal equivariance to ST?s would seem to be to
have a collection of conformal factors, one for each operator in the collection D = (D;),c;. Alas, this
idea falls apart already in the simple example of the exterior product of two real line Dirac spectral
triples,

(CCOO<R2)7 L2(R2) ® (C2’ (awl ® 71 8:52 ® 72)) ’

whose bounding matrix is € = 0. In this simple example the action of R? by dilation in each direction,
(ry,7m9) : (x1,29) > (ryx1,T9x,), makes any resulting higher order spectral triple fail to be conformally
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R2-equivariant. The source of this problem is actually deeper, however, because the bounded transform
of any resulting higher order spectral triple also cannot be R2-equivariant.

However, under some circumstances, it may be possible to align the conformal factors so that the
resulting higher order spectral triple is conformally equivariant. We will see such a phenomenon for
Carnot groups in Proposition IV.3.11. In the example above with its dilation action, this is possible by
restricting to a subgroup where r; = rg, for some fixed a # 0. If we choose t € R, (1, ) C Q(€) = R2,
the higher order spectral triple

(Ceo(R2), L*(R?),5gn(9,, )10, | ® v, + s80(9,,)[0,, | © 1)
is conformally equivariant, with conformal factor rl_tl/ ?= Ty t2/2,
Another example to consider is the direct sum of two real line Dirac spectral triples,

(CoRUR),L*(R) ® L2 (R), (3,, ®0,089 0, ))  €=0
with an action of R? by dilation on each corresponding copy of R,
(ry,r9) t Ty > Ty Ty b ToTy (z; e RUD,z, e DUR).

Here there is no restriction on ¢t € 2(e) = R?, as we may take the conformal factor to be r1_t1/2 EBr;tQ/Z

on the higher order spectral triple
(C*(R UR), I2(R) ® L2(R), sgn(@, )16, | ® sgn(0,,,)10,,|%2)

Unfortunately, the development of an abstract framework for conformal equivariance of ST2s seems
elusive. The main technical problem is to find conditions guaranteeing that, if UDU* — uDp* is of
‘lower order’, U|D|*U* — u*|D|*(u*)* is also of ‘lower order’. For natural candidate conditions, we have
been able neither to prove such a result in the abstract nor to find a counterexample.

The approach we take in the examples below is to take the following Proposition as giving an ad
hoc notion of a conformally equivariant ST2. Here, we fix ¢ and give sufficient conditions for a single
conformal factor (,ug) gec to give rise to a conformally equivariant higher order spectral triple at ¢.
A more general statement would be possible but this will suffice for our needs. One could view this

approach as similar to the ‘guess-and-check’ method of computing Kasparov products, discussed in
§1.4.

Proposition IV.1.34. Let (A, H, D) be an ST? with a unitary action of G on H, implementing the
action on A. Suppose there exists a family (,ug)geG of invertible bounded operators such that, for all
9 € G, pgy, py, and U, preserve dom D; for all i, with

1 1
QH[Divﬂg](l+Z|Dj|%’) and g+ [Dy;, 1y <1+Z|Dj|6i]‘>

jerl jel

defining *x-strongly continuous maps from G into the space of bounded operators on H. Suppose
furthermore that, for some t € Q(e) N (0,1]!, the maps

—t;
g+ (Uysen(D)|Di|" Uy — pysen(Dy)|D; " ) (1 +2 |Dj\6~> and

jel
—t;
g U, (1 +) |Dj|%‘) Uy (U, sen(D,)|D, | Uy — g sgn(D;)| D, [t us)
gel

are *-strongly continuous from G into the space of bounded operators on H. Then (A, H,D,) is a
conformally G-equivariant higher order spectral triple with conformal factor p.
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The proof is a straightforward extension of the proof of Theorem IV.1.16. We give in Remark
IV.2.8 a statement in the context of Hilbert complexes. There, we will naturally begin with a collection
of conformal factors which will need to be cajoled into cooperating with one another and so into giving
a single conformal factor u for the higher order spectral triple.

IV.2 Examples arising from differential complexes

The main application of strictly tangled spectral triples that we study in this Chapter comes from
Hilbert complexes and, more concretely, Rockland complexes on filtered manifolds. We first present an
abstract framework for Hilbert complexes and proceed to describe it in detail for Rockland complexes.
We here work only with Hilbert spaces and ST? but it seems likely that our methods could be applied
to Hilbert C*-modules, using [VVD25].

IV.2.1 Hilbert complexes

We first recall the notion of a Hilbert complex. We follow the presentation of [BL92] and refer the
reader there for further details.

Definition IV.2.1. A Hilbert complex

dO d1 dn—l
0—=>Hy —m H, —H, | —H, =0,

abbreviated as (A,,d,), consists of Hilbert spaces J#, A, ..., H, and closed densely defined maps
d; : H; --» H; , with the property that

Ran(d;_;) C ker(d,).
We say that (F,,d,) is Fredholm if the cohomology groups
H'(7,,d,) = ker(d;)/Ran(d,_;)

are finite-dimensional. We say that (#,,d,) has discrete spectrum if, for each i, the self-adjoint
Laplacian d;d; +d,;_;d;_;, densely defined on J;, has discrete spectrum, i.e. the spectrum consists of

isolated eigenvalues of finite multiplicity.

By [BL92, Theorem 2.4], (#,,d,) is Fredholm if and only if 0 is not in the essential spectrum of
all the Laplacians dfd; + d;_;df ;. In particular, (,d,) is Fredholm if it has discrete spectrum. We
shall make use of a construction analogous to Rumin—Seshadri’s construction of Laplacians in the
Rumin complex [RS12]; see also [DH22]. Given parameters m = (my,...,m,_;) € [1,00)" that we
refer to as an order and a Hilbert complex (#,,d,) we define the Rumin Laplacians

Aﬁm,i = (djd;)% + (d;_dj_;)%1,

where a;, = Hl#i my =m/m; for m = [[;" m;. Clearly, (%,,d,) has discrete spectrum if and only if
all the self-adjoint operators Aﬁn,i have compact resolvent. We also introduce, for s > 0, the abstract
Sobolev spaces

}[ifm = dom((Aﬁz,i)s/Qm) C ;.
Definition IV.2.2. Let & be a x-algebra. A Hilbert complex over & of order m = (my,...,m,,_;) €
[1,00)™ is a Hilbert complex

do d, d,_o d,_4
O—-Hy —mH, — - —H, | — H,, =0,
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where each J(; is a left &/-module under *-representations
7, A — B(H,;)

such that, for all a € o/, 7;(a) preserves dom(d;) and the densely defined operators

(dym;(a) — 741 (a)d;) (1 + A, ) 75" and

1-m;

(T4 Apyir) 2 (dﬂi(a) - 7Ti+1(a)di)

are norm bounded.

If, for all s > 0, m;(a) preserves the domain of d; as an operator on the Sobolev spaces ,,, and the
densely defined operator (diwi(a) — 7ri+1(a)di) 1+A4,,,) “m' is continuous in norm I = Hii1m
then we say that (#,,d,) is a regular Hilbert complex over & of order m.

To ease the notation, we drop the representations 7w, when they are clear from the context, writing
[d;, a] instead of d;m;(a) — m;;(a)d; for a € .

1

Lemma IV.2.3. Let (7,,d,) be a Hilbert complex which is Fredholm and of order m = (m;)}=) €

[1,00)". With a; = Hl# m; =m/m; form = szol my. Then, setting H = @, H; and D; = d; +dj,

the collection D = (D,)™= is a strictly anticommuting collection of selfadjoint operators on H. Morever,
1/1=0

for any o we have that

D;|D;|* = Di((A'rI‘?L,i)amai_l + (Aﬁz,i—l)a/%i‘l)-

Proof. We remark that a; 1-m; _ 1-m; _ %(_1 + mi) Since the Hilbert complex is Fredholm,

2m 2m;

(AR )7 = (dfd)?% + (d;_ydj_1)7%.
In particular,

Di(Aﬁz,i)ﬁZd;—l(di—ldz—l)BaFl and D;(AF

m,i—1

)P =d;_y (df_qd; )P
On the other hand,
|Di‘a = (d;—ldi—l)am + (di—1d?—1)a/2
SO
Di’Di’a = difl(d;—ldifl)aﬂ + d:71<di71d;‘kfl)a/2

and the Lemma follows. O

Theorem IV.2.4. Let (H,,d,) be a Hilbert complex over of of order m with discrete spectrum. We set
H =@, H; and write D = (D,)*=y for the collection D; = d; + d}. It then holds that the collection
(#,H,D) is a ST® with bounding matriz € = (e;;)} ;2 where

i,5=0
m.—1 . . ..
L =i—1,4,1+1
;=1 ™ J (IV.2.5)
0 otherwise.

Furthermore, if (H,,d,) is reqular, (¥, H, D) is p-preserving for p = (00, ..., 00).

Proof. We have that the bounding matrix (IV.2.5) satisfies the decreasing cocycle condition by the
same argument as in (IV.1.11) (with the first equality of (IV.1.11) replaced by an upper bound). Since
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(H,,d,) has discrete spectrum, what remains to prove is the commutator condition. And (#,,d,) is a
Hilbert complex over & of order m, so
(i a)(14 A,y )7t = [d;,a)(1+ A, )7 75 and

1-m,

(1+ Am,i+1) o [dy,a] = (14 Am,i+1)%727i[dia al

are bounded. Since A, ; = (djd;)* + (d;_;d} )%, we conclude from the boundedness of the first
operator that

__1 1-myg\ L
[d;, a] <1 + |Di|1 mict A | Dy | 1)

is bounded and from the boundedness of the second operator that

__1 1-m,_ -1
|5, af <1+\Di!1 ™1+ |Dy_y| m>
is bounded. ]

For instance, for a complex with n = 5, the graph corresponding to the bounding matrix would be

mo—1 my—1 my—1 mo—1 mo—1 ms—1 ms—1 my—1 my—1

Mo mo my my my moy mg mg my
mo—1 my—1 mo—1 ms—1
my Mo m3 my

Remark IV.2.6. If (H,,d,) is a Hilbert complex with discrete spectrum over &, there are multiple ways
of grading the ST? (o, H, D). The first option is to use the grading coming from the complex in which

H, = @ Ty H_ = @ FHoita-

Another option arises if (,,d,) satisfies a mild strengthening of Poincaré duality; see [BL92, Lemma
2.16]. Assume that we have ¢/-linear unitaries v, : H; — J,_, such that

dy_i 1% = —Yipds and vy, = Ly,

We can then define a symmetry v = @'yj on H that anticommutes with D;, for j = 1,...,n. In
particular, v grades H in such a way that the ST? constructed in Theorem IV.2.4 forms an even ST?.
This construction is analogous to the grading induced from the Hodge star on differential forms defining
the signature operator from the Hodge-de Rham operator.

Proposition IV.2.7. Assume that (o, H, D) is an ST? defined from a Hilbert complex with discrete
spectrum (H,,d,) over o of order m and bounding matriz € as in (IV.2.5). Then, for any 7 > 0,

¢ (r) = (i,i T ) € Q(e)

b
mg My M,

and

= d'(Aﬁm,i)T;:i + df(Aﬁz,iH)T;:i-

m(7) i

Proof. We see that t,,(7) € Q(e) since = > mmi and the expression for D, , follows from
J J 7 m

Lemma IV.2.3. O]
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Recall the weak Hodge decomposition of [BL92, Lemma 2.1],

where % = kerd; Nkerd; ; = ker AR .. Note that if (7,,d,) is Fredholm, e.g. if it has discrete

7 m,i°

spectrum, the ranges are automatically closed with
imd, ; = (kerd} ;) and imd}= (kerd;)’.

We can build up a conformally equivariant higher order spectral triple by specifying conformal factors
on each part of the decomposition.

Remark IV.2.8. Let & be a unital *-algebra with an action of a locally compact group G. Let

do d; d,,—o d,,_1
O—-Hy —mH, — - —H, 1 — H, =0

be a Hilbert complex over & of order m with a unitary action U; of G' on each J{; intertwining the
representation of & and preserving the domains of d,.

Let (v; 4)gec C B(imd}) and () ,cq C B(imd;_;) be families of invertible operators, all of them
and their adjoints preserving the domains of d,, such that the densely defined operators

1-mg

(Fryrgdi —divig) (14 Ay )50 and (14 Apy i) 20 (Pryygdi — iy )

L) 1mng

are in fact bounded and define *-strongly continuous functions G — B(7;, #;,,). Suppose that, for
some t € §(€), the densely defined operators

—1+t; 1—

5 ity o mg
(Ui+1,gdi(A§1,i) 2m U — Vi+1,gdi<Afm,i> Zm ”’iyg) (1 +Am,i> am b and

1 -1

Mgy Him- * - - i
(1+ Am,i) Zm b (Ui+1,gdi(A§1,i) 2m ZU;,g - Vi+1,gd'<A'§1,,i> zm

(1

are in fact bounded and define *-strongly continuous functions G — B(#;, K;,,). Then (o, H, D,) is
conformally equivariant with conformal factor

J
by Proposition IV.1.34.

IV.2.2 The Heisenberg calculus

In §1IV.2.3, we shall study Rockland sequences on filtered manifolds. Rockland sequences were studied
in detail in Dave and Haller’s work [DH22]. The associated analysis relies heavily on van Erp and
Yuncken’s Heisenberg calculus [EY17a] on a filtered manifold. Filtered manifolds are known also as
Carnot manifolds, and relate to the equiregular differential systems of sub-Riemannian geometry.

Let us therefore outline the geometry of filtered manifolds and their Heisenberg calculus. We refer
the details to the literature [DH22, GK24, EY17a]. A filtered manifold is a manifold X whose tangent
bundle is equipped with a filtering

TX=T7"X2T™X2.2T2X2T'X20
of subbundles such that [T/ X,T-*X] C T—7~*X for any j, k. We call  the depth of X. We write

ty X =P TIX/TX
J
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for the associated graded bundle. Taking commutators of vector fields induces a fibrewise Lie bracket
on t; X, making t; X — X a Lie algebroid. The fibres are nilpotent of step length at most r, so the
Baker—Campbell-Hausdorff formula implies that t;X integrates to a Lie groupoid Ty X =X X (with
the same range and source map). Concretely, as a fibre bundle, Ty X = t;X. However, Ty X carries
a fibrewise polynomial group operation defined from the Baker—Campbell-Hausdorff formula and
the commutator of vector fields modulo lower order terms in the filtration. We call Ty X = X the
osculating Lie groupoid. The osculating Lie groupoid carries an R  -action d defined from integrating
the R -action on t; X defined from its grading.

The Heisenberg calculus on a filtered manifold introduced by van Erp and Yuncken [EY17a] is
built from operators whose Schwartz kernels in appropriate exponential coordinates are defined from
r-fibred distributions on T X that expand asymptotically into a sum of almost homogeneous fibrewise
convolution operators. A way to formalize this statement uses van Erp and Yuncken’s parabolic tangent
groupoid [EY17b], a Lie groupoid T X =X X X [0,00). As a set,

TpX =T X x {0} UX x X x (0,00),

with the groupoid structure of T X on the first component and the pair groupoid structure on the
second component. The Lie groupoid structure on Tz X =X X x [0, 00) is defined using a blowup in
exponential coordinates defined from a graded connection. The parabolic tangent groupoid carries an
IR} -action called the zoom action, which by an abuse of notation we also denote by J, acting by

9y i (z,v,0) = (x,6,(v),0) (z,y,t) = (z,y, \71t).

A Heisenberg pseudodifferential operator T of order m is defined to be an operator on C°°(X) whose
Schwartz kernel k. € D’'(X x X) can be written as the evaluation at ¢ = 1 of a properly supported,
r-fibred distribution K € 2/(TX) which is homogeneous of order m modulo properly supported
elements under the zoom action. In exponential coordinates, we can Taylor expand such a K at t =0
and arrive at an asymptotic sum

K(z,v,t) ~ Y t7k;(z,v), (IV.2.9)
3=0

where k; € £/ (T X) is homogenenous modulo C2°(Ty X) of degree m — j. Here K and the collection
(kj);io are uniquely determined by k; modulo respectively properly and compactly supported smooth
elements. Writing ¥77(X) for the space of Heisenberg pseudodifferential operators of order m, we
arrive at a short exact sequence

0— Tm1(X) = U(X) — S1(X) — 0,

where X7 (X) C & (TyX)/C°(TyX) consists of elements homogenenous of degree m. The map o}
is called the principal symbol and is defined by o7} (T') := [k,] for k, the leading term in (IV.2.9). A
composition of Heisenberg pseudodifferential operators of order m and m’ respectively as operators on
C°(X) is again a Heisenberg pseudodifferential operator but of order m + m’. The principal symbol
respects products in the sense that

oF(TT) = o (T) oy (T'), T € Wp(X), T € Uy (X)

where * denotes groupoid convolution on T X.

We can realize the principal symbol algebra in a more concrete way. Write §(TyX) C C°(TyX)
for the space of fibrewise Schwarz functions: functions that together with their derivatives decay faster
than the reciprocal of any polynomial in the fibre. We define §,(TyX) to consist of those functions
f € 8(TyX) such that for any x € X and any polynomial p on 7, X we have

/T P =0
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The space 8§,(TyX) is closed under convolution and is dense in the ideal of C*(TyX) of elements
vanishing in the fibrewise trivial representations. We embed X% (X) in the multipliers of 8,(TyX) as
follows. Any element k € X%(X) can be represented near the zero section X C Ty X by an r-fibred
distribution k € D/ (T5X) of the form

k=ky+plogl-|,

where IA€0 is homogeneous of degree m, p is fibrewise polynomial and where | - | is a fibrewise gauge
(smooth outside the zero section and homogeneous of degree 1). Upon fixing | - |, the distribution & is
unique up to a fibrewise polynomial. In particular, the muliplier on §;(7X) defined by convolution
by k depends only on k € L0(X).

To understand further the principal symbol, we study its action in localizations of 8,(TyX) in
its *-representations. Whenever (7, /') is a unitary representation of a nilpotent group G, we write
So(m) = w(8y(G))H . If m does not weakly contain the trivial representation, Sy (7) = 7(8(G))H and
is dense in . Moreover, any multiplier k£ of §,(G) localizes to an operator 7(k) on K with domain
8y (m) defined by 7 (k)(mw(a)f) = 7(k * a)§ for a € 8§5(G) and £ € H. We can therefore for a Heisenberg
pseudodifferential operator T of order m, x € X and a unitary representation = of (T5X),, define the
represented symbol

(T, ) = 7 (0B (T)) : Sylm) = Sylm).

The discussion above readily extends to operators on vector bundles. We denote the space of Heisenberg
pseudodifferential operators of order m from the vector bundle E; to E, by Y7} (X; E,, E,). We recall
the following important definition.

Definition IV.2.10. Let X be a filtered manifold and F;, £, — X two vector bundles. Assume that
T:C*(X,E,) = C>®(X, E,) is a Heisenberg pseudodifferential operator of order m. We say that T’
satisfies the Rockland condition if, for any x € X and any irreducible, non-trivial, unitary representation
7 of (TyX),, the represented symbol

o (T,m) =m(og(T)) : So(m) ® By , = Sp(m) ® By,

is injective. If the represented symbol in all points and all irreducible, non-trivial, unitary representations
is bijective then we say that T is H-elliptic.

Operators in the Heisenberg calculus act continuously in a scale of Sobolev spaces adapted to the
filtering. Fix a volume density on X. Following [DH19, DH22], we know that there exists a family
of H-elliptic operators (A"),.g (in fact the complex powers of a single H-elliptic operator) that we
can assume satisfies A° = 1. We define Wj3(X) = A~°L?(X) C 2’(X) with inner product defined by
declaring A° : W5(X) — L?(X) unitary. A similar definition can be made also for vector bundles. Any
T € V7 (X; E,, E,) extends by density to a continuous operator

T: Wi (X; By) = W (X; By)
as soon as s; +m > s, and a compact operator when s; +m > s,.

Theorem IV.2.11. Let X be a closed filtered manifold equipped with a volume density, let B, E, — X be
two hermitian vector bundles, and let T : C*° (X, E;) — C*(X, E,) be a Heisenberg pseudodifferential
operator of order m. Then the following are equivalent:

1. T and T* satisfy the Rockland condition;

2. T is H-elliptic;

3. T:W§H(X; E,) = W5 ™(X; E,) is Fredholm for some s; and

4. T WX E) = Wi™(X; Ey) is Fredholm for all s.
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Moreover, H-elliptic operators are hypoelliptic and admit parametrices in the Heisenberg calculus.

Here it is clear that 4. implies 3. and 2. implies 1.. That 3. implies 2. is proven in [AMY22] and
that 1. implies 4. is proven in [DH22].

For summability results of spectral triples and ST?s on filtered manifolds, we will use Dave-Haller’s
Weyl law in the Heisenberg calculus [DH19]. Its statement gives a leading term in the eigenvalue of
positive, even-order, H-elliptic, differential operators in the Heisenberg calculus. For a filtered manifold
X, we define its homogeneous dimension as

dim,, (X) =Y 4 rk(T7X/T7+X). (IV.2.12)

J

Dave and Haller’s Weyl law [DH19] implies that if T' € UV} (X; E,, E,) for an m < 0 then
pr(T) = O(kdimn(X)/m)y, (IV.2.13)
In particular, for m < 0,

Ui (X5 By, By) € LP(L(X, By), LX(X, By)) - (p > —dimy (X)/m).

IV.2.3 Strictly tangled spectral triples for Rockland complexes

We now turn to studying Rockland complexes in earnest. They play the role of elliptic complexes on
filtered manifolds. We start by recalling the definition and proceed to place it in the context of the
preceding subsection by building ST?2s for filtered manifolds.

Definition IV.2.14. Consider a collection E, = (Ey, E1, ..., E,,) of hermitian vector bundles E; — X
and numbers m = (my, ..., m,,_;) € (0,00)". We let

d

d 1
do: 0— C®(X;Ey) — C°(X; ;) — -

dn—2 dn—l
o —— C®(X5E, ) — C*(X;E,) -0 (IV.2.15)

be a complex with maps d; € \Il}?j (X;E;, E;.1). We say that the complex d, in Equation (IV.2.15) is
a Rockland complex if the symbol sequence o (d,) defined by

Uzo(do) Gzl(dl)
op(d,): 0= 8 (TyX; Ey) —— So(TyX; Ey) ——— -
Ugn_z(dn—z) 0713"‘1((1”_1)

o 8 (Ty X B, ) ————— 8(Ty X E,) = 0 (IV.2.16)

is localized to an exact sequence by any non-trivial, irreducible, unitary representation of the osculating
Lie groupoid T X. We say that m is the order of d,.

There are many interesting examples of Rockland sequences. As shown in [DH22], and further
discussed in [Gof24], there is a general procedure for producing (graded) Rockland complexes via éap,
Slovak, and Soudek’s [CSS01] (curved) BGG complexes. The notion of a graded Rockland complex is
more general than that of a Rockland complex and arises from internal gradings in the bundles E,. For
a curved BGG complex to be Rockland, and not just graded Rockland, all the bundles Ey, E,, ..., E,,
need to be constantly graded, corresponding to t;X having pure cohomology groups [Hal22, §3.7].
This is known to hold for trivially filtered manifolds (where Rockland means elliptic), for contact
manifolds, for generic rank-two distributions in dimension five, and for parabolic geometries of the
same type as the full complex flag manifold of SL(3,C) (as implicitly used in [Yunll]). We discuss
contact manifolds in more detail below in §IV.2.4 and generic rank two distributions in dimension five
in Example IV.2.19.
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For the purpose of completing a Rockland complex into a Hilbert complex, we will henceforth fix a
volume density on X and hermitian metrics on all the vector bundles Ey, E,, ..., E, — X, giving us
Hilbert spaces L?(X; Ey), ..., L*(X; E,,). By an abuse of notation, we write also d; for the closure of
d; as a densely defined operator

The Hilbert complex associated with a Rockland complex (C*°(X; E, ), d,) is given by

d d d,_
0 — L3(X; Ey) — L2(X; Ey) — -+ —— L3(X; E, ) — 0.

Theorem IV.2.17. Assume that (C*(X;E,),d,) is a Rockland complex where all differentials are
differential operators and X is compact. The Hilbert complex associated with a Rockland complex
(C>*(X;E,),d,) of order m = (mq,...,m,,) is a reqular Hilbert complex with discrete spectrum of
order m over C*®(X). In particular, with a Rockland complex we can associate the f-summable ST?
(C>(X), L*(X;®,E;), D) where D = (d; + d})}= and

Jj=

f(t) > mian.
t

Proof. The result will, upon checking the definition, follow from Theorem IV.2.4. Chasing through the
definitions, we see that the Hilbert complex associated with a Rockland complex is a regular Hilbert
complex over C*°(X) as soon as the Rumin Laplacians are hypoelliptic of order 2m. Indeed, if this is
the case then, since the Rumin Laplacians additionally are even order differential operators, [DH19,
Theorem 2] implies that (Afm)% € \Ill’g(X , E;). The Theorem follows from order considerations in
the Heisenberg calculus. The Rumin Laplacians are hypoelliptic by [DH22, Lemma 2.14].

We note the finite summability statement follows from (IV.2.13). Indeed, if we set §(¢) :=

1

j%ﬂ)ﬂ the interpolation as in Lemma IV.1.5 and (IV.2.13) implies that u,((1+ AP)™!) =

O(k—°®) as k — 4-o0. In particular, (14+ AP)~! € £P for any p > 6(t). O

min

Remark IV.2.18. In the construction of Theorem IV.2.17 we group together the differentials in the
easiest way possible, following Theorem IV.2.4. We can in general group together the differentials
more efficiently, e.g. below in §IV.2.4 when studying the Rumin complex on a contact manifold we will
group together the differentials into only two self-adjoint operators. If (C*°(X; E,),d,) is a Rockland
complex of order m = (my, ..., m,,_;), we can consider a partition

Mg
{0,..,n—1}=| |5,
=1

such that m; = m, whenever ¢ and j belong to the same set 5;. Then the collection D= (Zje g d;j+
l ~

d3);°, also fits into an ST? (C*(X), L*(X; ®,E;), D). The bounding matrix € = (Qk)?iﬂ for D is

similar to (IV.2.5) and is given by

m;

B {mi__l if there are i € S; and j € S, with |j —i| <1,
ik "=

0 otherwise.

Example IV.2.19. Let us describe the Rockland complex constructed from the BGG complex on a
generic rank two distribution in dimension five, i.e. a parabolic geometry of type (Gs, P) where G,
is the split real form of the indicated exceptional Lie group and P the maximal parabolic subgroup
corresponding to the shorter simple root. We aim only at describing the overall structure and refer the
details to [DH22, Example 4.21] (see also Example 4.24 in the arXiv version [DH17] of [DH22] and



1V.2. Ezamples arising from differential complezes 163

further computational details in its appendix). Let X be a five dimensional manifold filtered by a
generic rank two distribution throughout the example. We also fix a finite-dimensional representation
Vof Gy. The BGG complex of X looks like

d d,
0 — C®(X; Ey) — C®(X; Ey) — C=(X; E,)

d, d dy
= C®(X; By) — C®(X; E,) — C®(X; Es) — 0,

where E; — X is a bundle induced from the parabolic structure and the cohomology group H I(py, V).
The BGG complex is by [DH22] a Rockland sequence of order

m=(1,3,2,3,1).

To understand the principal symbol structure of the BGG complex of X, one uses the fact that X
locally admits filtered charts modelled on the nilpotent chart N C G, /P arising from the open, dense
Bruhat cell NM AN C G,. In these charts, [DH22, Example 4.21] explicitly describes op,’ (d;) in terms
of elements of the universal enveloping Lie algebra of N.

In this example, we have the bounding matrix

00 0 00
2 2100
i1 1
e=|0 35 35 5 0
00 1 2 2
00 0 00
and the associated weighted digraph takes the form
2 1 1 2
9 3 3 2 1 3
1 1 2
3

We now turn to discussing two special cases of Theorem IV.2.17. We produce two higher order
spectral triples from Rockland complexes, the first with an H-elliptic Heisenberg pseudodifferential
operator and the second with a differential operator.

Corollary IV.2.20. Let (C*(X; E,),d,) be a Rockland complex where all differentials are differential
operators. For any order T > 0, we can form the higher order spectral triple (C*°(X), L?(X; EB]-EJ-),ET),

p-summable for p > dimTh(X), from the H-elliptic Heisenberg operator
n—1
DT = Dtm(‘r) = Zdz(Aﬁw,z) T + d:(Aﬁ"L,Z+1) zm € l:[j}:-[(X7 ®]Eg)
i=0

Any H-elliptic Heisenberg operator of an order 7 > 0 defines a p-summable higher order spectral
triple for p > dim—:(x), so Corollary IV.2.20 follows from the construction implying that D, is H-elliptic
of order 7 > 0. On the other hand, Theorem IV.1.16 together with Theorem IV.2.17 implies the next
Corollary which allows us to construct from a Rockland complex a higher order spectral triple with a

differential operator as its Dirac operator.

Corollary 1IV.2.21. If (C*(X; E,),d,) is a Rockland complex where all differentials are differential
operators, there exist odd integers k = (2k; +1); € Q(€) N (2N +1)" so that the differential operator

n—1
=0

defines a higher order spectral triple (C*(X), L*(X; ®,E;), Dy,).
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We end this section by describing the K-homology class associated with a Rockland complex via
Corollary IV.1.24 and Theorem IV.2.17.

Theorem IV.2.22. Assume that (C*°(X;E,),d,) is a Rockland complex where all differentials
are differential operators and write (C*(X),L*(X;®,E;), D) for its associated ST® graded by
L*(X;®,E;) = L*(X;®,E,;) ® L*(X;®;E,;,,). Take at € Q(e). The class of the higher order
spectral triple (C*°(X), L*(X;®,E;), D,) in Ky(X) coincides with the class [d,] € Ky(X) as defined
in [GK24].

Proof. The class [d,| € Ky(X) as defined in [GK24] was defined by order reduction. If we use the
Rumin—Seshadri Laplacians to define order reduction, a short algebraic manipulation shows that |D__, |
lifts the Fredholm module defining the class [d,] € K,(X) to a bounded perturbation of D__;. O

IV.2.3.1 Equivariance in Rockland complexes

We now turn to studying conformal equivariance of Rockland complexes.

Definition IV.2.23. Assume that (C*°(X; E,),d,) is a Rockland complex and that G is a locally
compact group acting by filtered diffeomorphisms on X and that E, ..., E, are G-equivariant. We
say that (C*(X;E,),d,) is a G-equivariant Rockland complex if the symbol complex op(d,) (see
(IV.2.16)) is G-equivariant.

If (C*°(X; E,),d,) is a G-equivariant Rockland complex with each E; an hermitian vector bundle,
we say that the G-action is a conformal G-action on (C*°(X; E,),d,) if for any j the G-representation
V;: G — GL(L?*(X; E;)) defined from the G-action on E; — X there is a function \; , € C*(X,R.)
such that

VoV, =X,

97,9

The associated unitary representations are

U;: G— U(L*(X;E;)) Uj,= XLV,

7,9"73:9

*  __ \—1
and we observe that U;,, ,d;Ur = A dA; o

Proposition IV.2.24. Assume that (C*°(X; E,),d,) is a Rockland complex of order m = (mq,...,m,,),
where all differentials are differential operators and X is compact, with a conformal action of G. For
t € Q(e), the higher order spectral triple

(COO<X)7L2(X7 @jEj)vﬁt)

is conformally G-equivariant with conformal factor
n
IU/g = @ P%; + ‘Pide;1 (Aié)‘jfl,g)tj_l/2‘Pimdj71 + ‘Pimd;- ()‘;—El,gkj,g)tj/z‘Pimd;‘
§=0
Proof. Because J; , is nonvanishing, bounded, and positive, u, is invertible and positive. Indeed,
K —t, /2
/’Lg > @ P?(; + ”Aj,g>‘;711,9”00J71 Pimdj_l + H)‘j+l,g)‘;glyll_tj/2‘Pimd;-‘
§=0

Using the notation (d;)* = d;(d5d;)~"**, one can check that the difference

U550 = g ()

= Uyd;(d5d;) 75 U5 — Py a, (Al gAy0)5/2d5(d5d,) 5 (NGl oA )52 P

i j+1,97%5,9 j+1,97%5,9

= Pna, (Uydj(d5d)) 4507 — (Al Ay 0)072d; (dgdy) 0 (AT X 0)'/%) B

J+1,973,9 J+1,97%5,9 imdj
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and the commutator
[dj(d;dj)_1+tj)/~l’g] = Iz)irn d; [dj(d;dj)_l—i_tj’ ()‘;-l}l,g)‘j,g)tj/2]Pimd§

are of lower order, since dj(d;‘-dj)_Ht belongs to the Heisenberg calculus by Lemma IV.2.3, as required
by the definition of conformal equivariance. O

An undesirable feature of the above construction is that the conformal factors are not functions on
X. Under some circumstances, this can be remedied but then only for certain ¢ € Q(e).

Proposition IV.2.25. Assume that (C*°(X;E,),d,) is a Rockland complex of order m = (mj);»‘;ol,
where all differentials are differential operators and X is compact, with a conformal action of G.
Suppose that, for some s € Q(e),

)\s'j_l /\s]- _ /\s-+s]-_1

J—1,975+1,9 jfg
forall j=1,...,n. Then, for all T > 0, the higher order spectral triple

(COO(X)7 Lz(X; EB]-E]-),ETS)
is conformally G-equivariant with conformal factor

g = (AT LX0 )50 = - = (A

nfl,g)TSn_1 .

Remark IV.2.26. If we can take s = m, in the situation of Proposition IV.2.25, i.e. if

L N I S ALY
Aj_lngj""l’g - )\jzg ’

the higher order spectral triple (C*(X), L*(X; ®,E;), D,) of order 7 > 0 defined from the H-elliptic

Heisenberg operator D_ (as in Corollary IV.2.20), is a conformally G-equivariant higher order spectral
triple with conformal factor

/’Lg = ()\1_7}])\00)7/7”0 = (A;}g)‘nfl,‘g)T/m"_l'

We will see that this in fact does occur for the Rumin complex on a CR-manifold, in Theorem IV.2.34.

Remark IV.2.27. In the next section we provide further context for conformally equivariant Rockland
complexes by studying the Rumin complex on a contact manifold. It would be interesting to include
further examples of Rockland complexes, especially in higher rank parabolic geometries. As work by
Yuncken [Yunll] and Voigt—Yuncken [VY15] showcases, the interesting aspect lies in the equivariance
properties. However, the approach above cannot produce conformally equivariant noncommutative
geometries with nontrivial index theory, or even equivariant Fredholm modules, for a semisimple Lie
group G of real rank > 1. Indeed, if G is a higher rank semisimple Lie group and and 7T is an H-elliptic
operator on G /P (for some parabolic subgroup P C G) of order m > 0 commuting with G up to lower
order terms then Puschnigg rigidity [Pus11] implies that o} (T") is positive and that T" defines the trivial
equivariant K-homology class. For SL(3,C), as studied in [VY15, Yunll], the BGG complex is an
equivariant Rockland complex (in the sense of Definition IV.2.23) but it is not conformally equivariant.
The same statement holds for the BGG complex of G,/ P, see Example IV.2.19 above.

A separate but equally serious issue at play, as discussed in [DH22, Hal22|, is that a BGG complex
is frequently not a Rockland complex but only a graded Rockland complex. The BGG complex of
a parabolic geometry is Rockland in the usual sense only when the cohomology of the osculating
nilpotent group in each fibre has pure cohomology; see [Hal22, §3.7] for more details. For index theory
purposes [Gof24], the graded Rockland situation works well but it is less clear how to do spectral
noncommutative geometry with graded Rockland complexes. The BGG complex arising from the
quaternionic contact structure on S~ [Jul95, §3] [Rum05, (66-67)] is an example which fails to be
ungraded Rockland but for which the action of Sp(n, 1) is conformal, in a sense made clear in [Jull9].
In particular, the two issues of conformally equivariant geometries and representing geometries by
ungraded Rockland complexes are quite distinct.
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IV.2.4 The Rumin complex on contact manifolds

In this section we will look at an explicit example of a Rockland complex, namely the Rumin complex
on a contact manifold. We will show that the naive way of constructing a spectral triple from the
Rumin complex does not work. However, using our construction with tangled spectral triples we obtain
higher order spectral triples as in Theorem IV.1.16. Lastly, we will look at conformal equivariance
under CR-automorphisms when the manifold has an almost CR-structure.

We have already seen the Rumin complex in §I1.2.1.3. Let X be a (2n + 1)-dimensional contact
manifold with contact structure H C T'X. Following [Rum00] we can obtain a different description of
the Rumin complex as follows. Let us fix a contact form 6 and choose a Riemannian metric g on X.
We require that these be compatible, in the sense that H is orthogonal to the Reeb field, the (unique)
vector field Z such that 6(Z) =1 and ¢4(df) = 0. With our choice of metric, we have an orthogonal
splitting

T*X =H*® H*
defined from the contact coorientation § spanning H+. The exterior derivative takes the form

d= (dH L ) in the splitting A*T*X = (A*H*) @ (H @ A*H*).
Lz —dy

Here £, denotes the Lie derivative along the Reeb field Z and L denotes exterior multiplication with
df. We note that J**! = C*°(X; H' ® F}) where F, = ker L N A*H* and each element in Q¥/J* has
a unique representative in C*°(X; E,) where E, = (im L)* N A*H*. With this, the Rumin complex
takes the form
Pg dy Pg,dy
0— C®(X; By —— C¥ (X Ey) ——
Py, dy Dpg —dy
o —— C®(X;E,) — C®°(X;H ® F,) — -

—d —d
5 C®(X;HEY @ By, ) — C®(X; HE ® By,,) — 0
where the Rumin differential Dy can be expressed as the second order differential operator

Note that L: C®(X; AFH*) — C>(X; A1 H*) is injective for k < n — 1 and surjective for k > n — 1
[Rum94], which is utilized to show that Dy is well-defined.

It is well known that the Rumin complex (C*°(X; E,),dE) on a cooriented contact manifold X is a
Rockland complex [JK95, Rum94]. A detailed discussion thereof can be found in Example 4.21 of the
arXiv version of [DH22]. We shall write the Rumin complex as dZ. This is a mixed order differential
complex.

Let us now describe the symbol complex of the Rumin complex in some more detail. We do the same
procedure as for the Rockland sequences in (IV.2.16) and identify T X, = H,,,,; with the Heisenberg
group via Darboux coordinates for each point z € X. Write X, ..., X,,, Y], ..., Y, , Z for the standard
generators of b, ; with [X,,Y;] = §,;Z corresponding to the Darboux coordinates near z. We will
identify the fibres E, , and Hy ® F, , with subspaces of AFH: = AFR?™ and H} ® AFH? = AR
respectively. Consider the b,,, , ;-valued vector

o= (X, o X, Y . ) €by, ®H
We can express the principal symbols of the differentials in the Rumin complex as
U}q(df)x = wiA: 8g(Hopy1, Ej 1) = So(Happns Bjin z) (j <mn),
o%(d}), = 0} (Dg).
=Z + (WAL wA) 2 85(Hapi1, B ) = So(Hopyns By ) (j=mn),

Ullil(df)m = —wiA: 50(H2n+17F}'—1,z) — 8o (Hapt1,s sz) (j>n).
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In the case of n = 1, we can identify
Ey,=C, E ,=F,=C and F,, =C.

Under these identifications, we have that 0%(Dg) = Z + w,w} where

0 —1 -Y
J_<1 0) and w2—Jw1—<X>.

The symbol complex over z takes the form

X Z+ XY -—-X?
Y Y? Z-YX Y—X)

0 — Sy(Hy) —— 8y(H;) ® C? s 8p(H3) ® C2 ——— 8,(H3) — 0.

The reader can compare this to Example IV.1.12 and the BGG complex for SL(3,C) studied by
Yuncken [Yunll]. In the next section, we continue to analyse this special case.

IV.2.4.1 A naive attempt at a spectral triple for the Rumin complex

A first approach to study the noncommutative geometry of the Rumin complex is to naively roll up
the complex as

P = dE + (aF)".

Rolling up a complex in this way is how one produces the Hodge-de Rham Dirac operator from the de
Rham complex. We shall see that this approach fails to produce a higher order spectral triple, thereby
justifying the approach of §IV.2 and the need for the decreasing cycle condition.

By discreteness of the spectrum, E)R has compact resolvent. However, taking commutators with
C°(X) does not improve the order. We will show this in the case of three-dimensional contact
manifolds. In Darboux coordinates, the Rumin complex is up to lower order terms given by

0 0 0 0

g8 — | “ 0 0 0

° 0 Z4ww; 0 0

0 0 wy 0

Therefore lZ)R takes the form

0 wi 0 0
lDR . UJ]_ 0 —7Z + W2w1 0
10 Z4wwh 0 Wo
0 0 w3 0

Proposition IV.2.29. Let X be a compact contact manifold of dimension 3 and a € C*(X). Then
[IDR, a| is up to a vector bundle endomorphism of the form

0 0 0 0
0 0 wow} (a) + wy(a)wi 0
0 wiws(a)+ w;(a)ws 0 0
0 0 0 0

in local Darbouz coordinates.

Proof. Follows from direct computation with the Leibniz rule. O
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Proposition IV.2.30. Let X be a compact contact manifold of dimension 3. If a € R satisfies that
[ER, al(l+ (JDR)Q)*l/%a is a bounded operator on L?(X;J) for any a € C*®°(X) then a < 0.

In consequence, ﬁR does not define a higher order spectral triple for C__(X).

Proof. We need to show that, for all o > 0, [DR, al(1+ (IDR)Q)*l/%"‘ fails to be bounded on L?(X; %)
for some a € C*°(X). By Proposition IV.2.29 and the computations above, [lDR, al(1+ (ﬁR)z)’l/ero‘
is bounded if and only if (w;w}(a) + w;(a)ws)(1 + T)~Y/2+% is bounded where T = wywi + (—Z +
wowi)(Z + wywj).

Were (w,w3(a) + w, (a)ws)(1 + T)~1/2* to be bounded, we could freeze coefficients in a point =
and represent this operator in a non-trivial character £ € R? C ﬁ2n +1 and obtain a uniformly bounded
function in £. For notational simplicity, write

Vi=wy (a)x

In this notation, wy(a), = Jv. In a character £, w; is represented as &, wy is represented as J¢ and Z
is represented as 0. Hence, T is represented in the character £ # 0 as the matrix valued function

F(§) = &6 + [E2(JE)(TE)* = [€[7e1(§) + [€]%e,(8),

where e, (£) = |€|72£¢* and ey(€) = Je,(€)J are the orthogonal projections onto the span of ¢ and
J& respectively. Since J is anti-symmetric, e;(£) and ey(£§) have orthogonal ranges and F(§) =
1€12e, () + |€|*eq(€) is the eigenvalue decomposition of F(€). By the discussion above, we need to show
that for a > 0, boundedness fails for the matrix valued function

Aa(&) = (§(Jv)* + v(Jg)*)(l + F(g))71/2+a.

By orthogonality of e, (£) and e,(§), we compute that

AL (€)= (L+ €))7 2(E(Jv)* + v(JE) ey (€) + (1 + [€]4) 72+ (E(Tv)* + v(JE)*)ey(€)
= (1+ [¢[2)73+((Jv)*E)ey (€) + O(lg[71+4)

and see that for t > 0
A, (tJv) = t(1 + t2)"2%e, (Jv) + Ot~ 1+4e),

In particular, A, is bounded if and only if & < 0 so in particular boundedness fails for a > 0. O

IV.2.4.2 Strictly tangled spectral triples from the Rumin complex

Let us place the Rumin complex df of a contact manifold in a spectral triple. We have a somewhat
simpler structure than seen in §IV.2.1, since all but one of the differentials are order one, see Remark
IV.2.18. We consider the two self-adjoint operators

D, = de + (df)* D, = Dg + (Dg)".

j#n
These are differential operators of order m; = 1 and my, = 2 respectively. We note that D; D, =
D, D; =0 on the common core C*°(X;®;FE;), so D; and D, are strictly anticommuting. We compute
that

D2 = 3 dR(dR)* + (d®)'df  DE = Dy(Dy)* + (Dp)* Dy.
j#n
The Rumin Laplacian takes the form
AR — D4 4 D2.

We can proceed as in §IV.2.3 to prove the following.
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Proposition IV.2.31. Consider the Rumin complex dF on a 2n + 1-dimensional compact contact
manifold X. Then with D, and D, as in the preceding paragraph, the data (C*(X), L?(X; %), (D;, Dy))
constitute an ST? with bounding matriz

(o 0
€=1; 1 1
2 ._(_

which is f-summable for any function f with

& i

12 1
f(t1,t3) > 2min (n-l— , (n+ )> .
ty t

In particular, for any t = (t1,ty) € (0,00)? with t; > t,, we arrive at a higher order spectral triple
defined from the operator

D, = Dy|Dy|" " + Dy |Dy[="t = Dy (AR) 5 4 Dy(AR) %
If t lies along the ray spanned by (1,1/2) then D, is an H-elliptic operator in the Heisenberg calculus
and if t = (2k, + 1,2k, + 1) where k; > ky are natural numbers then D, is a differential operator.

Remark IV .2.32. We note that

d(z,y) == sup{|a(z) — a(y)| | |[Dy,a]| < 1} = sup{|a(z) —a(y)| | 5][[D,,al,a]| < 1}

and coincides with the Carnot—Carathéodory distance of X. In [Has14, §3.3], compact quantum metric
spaces are built from Carnot manifolds using a ‘horizontal Dirac operator’ similar to D;. Related
results are found in [GG19]. There is a potential for interesting metric aspects of ST?s to be considered.
In this connection, we mention also the work [KK20, KK25] of Kaad and Kyed which uses a collection
of operators for constructing quantum metric spaces.

IV.2.4.3 CR-equivariance

We discussed to some extent the equivariance of the Rumin complex in §I1.2.1.3; let us see how it
applies to the ST? of the entire complex. Recall the setup: X is a cooriented contact manifold with a
fixed contact form 6 and a Riemannian metric g in which the orthogonal complement of H = ker 6
is the Reeb field. The two-form df defines a symplectic form on H. An almost CR-structure is the
additional datum of a complex structure J on H such that g(v, w) = df(v, Jw). Note that the complex
structure J and the metric g uniquely determine one another.

We let Autyp(X) denote the group of CR-automorphisms of X. That is, the group of diffeomor-
phisms g : X — X such that Dg preserves H (i.e. (Dg),H, C H ) for all z) and acts complex linearly
on H (i.e. (Dg), : (H,,J,) = (Hy(), Jy()) is complex linear for all z). The group of CR-automorphisms
is generically a compact subgroup, as the following result of Schoen [Sch95] proves.

Theorem IV.2.33 (Schoen’s Ferrand-Obata theorem). Let X be a compact cooriented contact manifold
with a choice of Riemannian metric as above. The group Autogp(X) can equivalently be topologized
by its compact-open topology, C°- or C*°-topology. The group Autog(X) is compact unless X is an
odd-dimensional sphere with its round contact structure and metric and in this case X = SU(n,1)/P
for the standard parabolic subgroup P C SU(n,1) and Autoi(X) = SU(n,1).

As we saw in §I1.2.1.3, the action of a CR-automorphism has features similar to being conformal.
A contact form for a given contact structure is unique up to multiplication by a nonvanishing smooth
function on X. Because the contact structure is preserved by a CR-automorphism g, the pullback g*(6)
of the contact form must be equal to f6 for some nonvanishing smooth function f. Hence

9" (8)(X,Y) = g"(d0)(X, JY) = (fd0 + df A 0)(X,JY) = fdO(X, JY) = fg(X,Y)
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for all X,Y € H. Moreover, the induced metric on 7X/H is multiplied by f2.
We conclude that, if g € Autsg(X), the differential of g lifts to a graded vector-bundle action

vy E, = E,,
with )
viv, = EB )\zk ® @ )\g(k+2)’
k=0 k=n
in accordance with the grading of F,. We define an action
V:Autop(X) — GL(L2(X; E,)), V(g9)f(x) = vgf(g’1 ).

Since the volume form belongs to A"H* ® H* it rescales with )\gn—i—Q under g € Autgp(X). Therefore
T 2(k 1 2n 2k
V(g)*V(g) = )‘f,"”vzvg — EB )\g( tntl) o @ )\g( +n+3)
k=0 k=n

The Rumin complex of X is defined from a quotient complex and a subcomplex of the de Rham
complex spliced with the Rumin differential. As such, the Rumin complex is invariant under Autyp(X).
In other words,

V(g)ddV(g)~t =d.%.

Set A, =V (9)*V(g), s0o V(g9)* = A,V(g~"'). We conclude that
* IR — R
If we pass to the unitarised action
U: Autop(X) = U(L2(X E,)), Ulg) == V(g)A, ",
we see that
U(g)dfU(g) = A" afiAg ",

From Proposition IV.2.25 we conclude the following.

Theorem IV.2.34. Let (C*°(X; E,),dE) denote a Rumin complex on a (2n + 1)-dimensional almost
CR-manifold X with its conformal action of G = Autyg(X). For T > 0, the H-elliptic Heisenberg

operator
D, = Dy|D,[""! + Dy|Dy| 57! = Dy (AR)F 4 Dy(AF)

defines a conformally G-equivariant, ( o0)-summable, order T spectral triple

27;-2’
(COO(X)7 Lz(X; eajEj)a DT)

with conformal factor u = A"".

IV.3 Examples arising from the Kasparov product

IV.3.1 Group C*-algebras of nilpotent groups

Let G be a simply connected, nilpotent Lie group G. As a manifold G is diffeomorphic to R"™ for some
n and its maximal compact subgroup is trivial. Hence the dual Dirac element, as defined by Kasparov
[Kas88, §5], is an element of K K& (C, C,(G)). By Baaj-Skandalis duality, there is an isomorphism of
the K-groups K K& (C, C,(G)) and KK?(C*(G), C), where G is the dual quantum group. Nilpotent
groups are generally not CAT(0), and we turn to the framework of ST?s.

Recall from Definition II.2.2 that a weight on a locally compact group G is a continuous function ¢
from G to matrices on a finite-dimensional complex vector space V. If Vis Z/2Z-graded, ¢ is required

to be odd.
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Definition IV.3.1. Fixing a finite-dimensional complex vector space V, we will say that a finite
collection of weights £ = (¢,) c; : G — End Von a locally compact group G is

1. self-adjoint if £; = £; for all j;
2. proper if (¢;);c; mutually anticommute and Hj(l +1¢;1)~" € C4(G,End V); and
3. translation bounded with bounding matrix € € M, ([0, 00)) if, for all g € G,

sup H(Ki(gh) —¢;(h)) <1 + Z wj(h)'e“)l

heG jel

< 00

and there exists a neighbourhood U of the identity in G such that, for all s € G,

< 0.

sup H (€:(gh) — £;(h) (1 + lfj@h)'e”)l

geU,heG jel

Note that the second part of the translation-boundedness condition is automatic for a discrete
group. Whether this condition can be simplified in general is unclear. For the time being, we content
ourselves with giving two equivalent conditions.

Lemma IV.3.2. Let G be a locally compact group, V a finite-dimensional complex vector space, and
(ﬁj)jel : G — EndV a collection of weights. The following are equivalent:

1. For all g € G,

< 00

sup H (¢;(gh) — £;(h)) (1 + Z |€j(h)|6ij>l

i€el,heG jeI

and there exists a neighbourhood U of the identity in G such that, for all s € G,

-1
sup o) — e, (14 S 1m0 | < oo
i€l,geU,heG =
2. For every compact subset K C G,
-1
sup estom) — e,y (14 Xl )| < oo

i€l,ge K,heG jel

3. The functions ((;);c; * G = C(G,End V) given by

-1

are elements of C(G, G,(G,End V)g), where B is the strict topology.

) () = (£:(gh) — &) (1+ 3 16,(h)

jel




172

Proof. Suppose that 1. holds and let K be a compact subset of G. The open sets (Ug)ge
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1+ S inre)

jel

Let Ugy, ..., Ugy, be a finite subcover. We have
sup | (ti(om) — ¢,
i1€l,ge K, heG
< sup

1<r<k,icl,geUg,,heG

| €itogrm) -

sup
1<r<k,iel,geU,heG

<

sup
1<r<k,iel,geU,heG

+ sup

1<r<k,icl,heG

<

sup
1<r<k,icl,geU,heG

+ sup

1<r<k,icl,heG

< 00,

that is, 2. is satisfied.

|itgm) — e,

(1+Z|zj(

jeI

h))(1+Zyej(

jel

(Jisosnr -6

gel

@+§]£

Jel

Q+§:w@m>

jel

@+§]£

jel

(g ) -

(£i(gh) — £;(h))

(g ) -

mies)
h) fij) B
@+§:M

—1
)

x cover K.

b

-1
ij)

-1
ij)

Suppose that 2. holds and, by the local compactness of GG, take an open neighbourhood U of the
identity in G contained in a compact set K. Then

| tatah — e

-1

(1 +3 ]fj(sh)|€ij>

sup
i€l,geU,heG jel
=  sup ’ (£,(gsh) — €,(s71h)) (1 + ) 14(h
i€l,geU,heG jeI
< sup ‘ > sTh) —2.(h (1—1— 0.
i€l,geU,heG ( (g ) )) ;| J(
+ sup ’(éi(s_lh) —Ei(h))<1 +314,(h
i€l ,heG jel
< sup H(f (gh) — (1 + I
iel,ge Ks~1,heG JZQ;‘
+ sup ‘(ei(sflh) —Ei(h))<1 +314,(h
icl,heG jel
< 00,

so 1. is satisfied.

The remaining implications follow as in the Proof of Lemma 1I.2.4.

wies)
)

)

)

i

O

Remark IV.3.3. In our construction of weights for nilpotent groups, we will have a bound of the form

sup
i€l ,heG

for some continuous function f : [0, 00)!

(4;);er for a bounding matrix e.

| €itgm) e,

)

(1 +> 1R

jel

< (€9 Die)

— [0, 00), which will imply the translation-boundedness of
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Theorem IV.3.4. Let G be a locally compact group and V be a finite-dimensional vector space. Let
(4;)jer + G — EndV be a finite collection of weights which is self-adjoint, proper, and translation
bounded with € € M;([0,00)). Let (Mz )jer be the operators densely defined on L*(G,V) given by

multiplication by ({;) c; respectively. Then provided € satisfies the decreasing cycle condition,
(CHG), LA(G, V), (M, ));e;)

is a strictly tangled spectral triple with bounding matriz €. If V is 7./2Z-graded, the ST® is even,
otherwise it is odd.

With Lemma IV.3.2 replacing II.2.4, the proof is a fairly straightforward extension of that of
Theorem I1.2.24. A more general statement for fissured Fell bundles, generalising Theorem 11.2.24 can
easily be made.

Proof. The local compactness of the resolvent is, as in the Proof of Theorem II.2.24, a consequence of
the properness of (£;);c; and the isomorphism Cy(G) x G = K(L?*(G)). For the commutator bounds,
fix an element f € C,(G) and let

) —1

T= Me , (
jer

On a vector ¢ € C,(G,V),

(Tg)(h):/(e (h) — £, ‘1h)(1+2\£
G

jel

Is)  F)E(s h)du(s).

With Lemma IV.3.2, a computation similar to that in the Proof of Theorem II.2.24 shows that T is
bounded. O

Let G be a simply connected nilpotent Lie group. Recall the lower central series

01=9  9,=1[01,0, 1]

The successive quotients g,,/g,,,, are abelian Lie algebras. The largest n for which g,, is nonzero is
the step size s of g. In the Baker-Campbell-Hausdorff formula for log(exp X expY’), we will call the
nth-order term 2, (X,Y), so that, e.g.

S (X,Y)= X 4Y zQ(X,Y):%[X,Y] z3(X,Y):%([[X,Y],Y]—i—[[Y,X],X]).

Because z,,;(X,Y) = 0, the exponential map from g to G is a diffeomorphism.

A Malcev basis of g through the lower central series is a basis ((e;, k)zmll gJ/g”“l) -1 of g such that

(e, k):m; gJ/Q”I)J ., is a basis of g,, [CG90, Theorem 1.1.13]. Remark that the span of

{ej,ka sty ej,dimgj/gjﬂaej-',-l,la 7es,dimgs}

(in other words, the basis with some number of elements dropped from the beginning) is automatically
an ideal of g. Using the Malcev basis, we may write an arbitrary element of X € g as a tuple
(xb . ms) c @8 . Rdimgn/gn+l‘

n=

Proposition IV.3.5. Let G be a simply connected s-step nilpotent Lie group and choose a Malcev basis
(( k)dlmg]/g]-H
€5,

el ) _1 of g through the lower central series. Let V be Clifford module for €€y, 5, whose
generators we label ((;, k)zmi g’/9”1)] 1- Then the collection (£;)5_; : G — End V of weights given by
dim g;/9;41

fj(expg(xl, ey X)) = Z T kY k
k=1
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is self-adjoint, proper, and translation bounded with the strictly lower triangular bounding matriz
€;; = max{i — j,0}.

Proof. Self-adjointness is by construction. For properness, observe that

dimg;/g;,1

Ej(expg(a:]_7"‘7$8>)2 = Z x.?:k'

For translation-boundedness, observe that £; is well-defined on the quotient G/G; ; and ¢,;; = 0 for
j > i. Without loss of generality, then, we consider only the translation-boundedness of ¢,. For any

1 <m < s, the map
m
[ g X \/Z £;(exp, X)?

J=1

defines a norm on the finite-dimensional vector space g/g,,,,,. By the necessary continuity of the Lie
bracket in this norm, there exists a constant C,,; such that

11X YTl < Crsa I XD nga 1Y
for all X,Y € g/g,,,,1. Actually, since [X +g,,,Y + g,,] = [X,Y],
1 Y1 < G 1 X [Y D

In the term z,(X,Y") of the Baker-Campbell-Hausdorff formula, there are no more than n—1 instances
of X or of Y. (Actually, for even n > 4, the vanishing of the Bernoulli number B, ; means that there
are no more than n — 2 instances of X or Y.) Because g is s-step nilpotent,

Zn (X + gs—n+2’ Y + gs—n+2) = Zn(X7 Y)

for X,Y € g, and so
|2, (X, Y)Hs+1 < C;L711+2||X||?—_$+2 |Y||?—_71+2

By the linearity of ¢, o exp,,

Es(expg Xexp, Y)—4, (expg Y)=1¢, (expg X)+ Z Es(expg z,(X,Y)).

We obtain a bound i
[£5(exp, Xexp V) — £, (exp V)|
< e, exp, X)] + 2 6, (exp, 2, (X, V)]
< e, fexp, X)] + Z 0 (X, V)
< e, exp, X)] + Z LI X IV 2L

s—1
= [[¢s(exp, X)| + D CarI XI5 Y 5
m=1

s—m
2

s—1 m
= e, (exp, X)| + Y CorRIX[5Th (Z £;(exp, Y)Z)
m=1 j=1

s—1 m

< s (expy X+ D Cag I X 5yims 1 Y ¢y (exp, YV~
m=1 j=1
s—1 s—1

= €, (exp, X[+ Y Y CarpIX sims € (exp, V)|

=1 m=j
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We conclude from this and Remark IV.3.3 that €,; = s — j is sufficient to give translation-boundedness.

O]

The reader can note that a lower triangular bounding matrix automatically satisfies the decreasing
cycle condition since its associated weighted directed graph has no cycles. For instance, for a 5-step
nilpotent group, the bounding graph is

S
1

Proposition IV.3.6. Let G be a simply connected s-step nilpotent Lie group. Then, for an irreducible
Clifford module V for GF 4y, 4

(C*(G)7 L2<G7 V)? (M2n>151:1) €ij = max{z’ - j7 0}

is an ST® with nontrivial class in KK g, ,(C*(G),C). This ST represents the Kasparov product

[(C*(G1), (C.(G1s V1)) e+ (Gy)s M, )]
®c+(c,) [(C*(Gy), (Co(Ga, Vo)) vy s Mo, )]
®cn(cy)  ®ca,) ((C*(Gy), L2 (G, V,), M, )]

where each E; is a Clifford €€ gy, o /o, -module with generators (’ijk):i:ig"/gj“ and V=V, ® V..

Proof. First, note that the maximal compact subgroup of G is the trivial subgroup, so its dual

Dirac element f is in KKﬁmg((C,CO(G)) [Kas88, Definition 5.1]. Take t € Q(e). Comparing

with [Kas88, Proof of Theorem 5.7], we see from the description as an iterated Kasparov prod-
uct that (C,Cy(G, V)CO(G),MZt) represents the dual Dirac class f. By definition, a @ f = 1 €

KKC%(Cy(G),Cy(@)) for the Dirac class o € KK$_ (Cy(G),C). The class of

dimg

(C°(@), L*(C. V), (M, );—1)
is the descent j¢(8) € KK ;1 4(C*(G), Cy(G)xG) = KK g5, (C*(G), C) of B, which is nonzero because
7%(a) ®c(c) i€ (B) = 7% (a ®¢ B) = 1. O

Proposition IV.3.7. Let G be a simply connected s-step nilpotent Lie group and H be a cocompact,
closed subgroup. Then

(C*(H)’L2(H7 V)’(Mén)fm:l) €j = max{i — j, 0}
is an ST with nontrivial class in KK g, ,(C*(H),C).

Proof. To show nontriviality, we argue along the lines of the Proof of Theorem II.3.8. As in Remark
I1.3.13, the spectral triple
(C*(m), e2(H,V), (M, )51

has class x = 77 (B®¢, (¢ [W]) ® c, (s [L* (H)] in K K gy, o (C*(H), €), where § € KK, (C,Co(G)) is
the dual Dirac element and w is the inclusion map H <> G. Using the cocompactness of H C GG, one can
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construct a class [0] € KK,(C,Cy(G)x H), as in [Val02, §6.2], for which [0] ®¢ (c)un 7H ([w]) ®c, (H)xH
[L*(H)] = 1 € KK,(C,C). With the Dirac element o € KKJ | (Cy(G), C), we have

0] ®c,(qm 37 (@) ®cn(ary 37 (B @y W) ®cy(rrywrr 1L (H))]
= [0] ®c, (a1 ®cy(Gymrr 37 (W) ®cy (mryser [LP(H)] = 1,

showing that x is nontrivial. O

Malcev completion says that a group I' is isomorphic to a lattice in a simply connected nilpotent
Lie group if and only if I is finitely generated, torsion-free, and nilpotent; see e.g. [Rag72, Theorem
2.18]. We thereby obtain

Proposition IV.3.8. Let I' be a finitely generated, torsion-free, nilpotent group. Let G be a simply
connected nilpotent Lie group in which T' is a lattice. Then

(C*(F)v 62(1-‘7 V)’ (M£n>f1:1) €ij = maX{i - jv O}

is an ST® having a nontrivial class in KK, ,(C*(T),C). The ST* is f-summable for

£(t) > i dimgj/gj-i-l .

j=1 J
Proof. For the statement about summability, first remark that for ¢ € (0, 00)® the map

-1

s ,dimg;/g;.q t;/2
(@1, g) > 1—1—2( Z x?k)
=1

k=1
is an element of LP(g) for p > Z;_l %_/g”l
- J

Lie group is the pushforward under the exponential of the Lebesgue measure on its Lie algebra, so
LP(g) = LP(G). By [CG90, Proposition 5.4.8(b)], log, I is the union of a finite number of additive
cosets of a lattice in g. By the integral test for convergence, then, the map

. The Haar measure on a simply connected nilpotent

-1

s dimGj/9j+1 tj/2
expg(ml,...,xs) > 1—1—2( Z a:ik)
j=1

k=1

dimg]-/gjﬂl ]

t;

is an element of ¢7(T") for p > Z;:1

If one chooses the Malcev basis to be strongly based on T, as is always possible [CG90, Theorem 5.1.6],

then each £; will be valued in the Q-span of (v, k)dlm /80 [CG90, Theorem 5.1.8(a)]. By rescaling

by a suitable integer, one can ensure that each £; will be valued in the Z-span of ('yJ k)dlm 8/05n1, ; cf.

[CG90, §5.4].

IV.3.1.1 Carnot groups and equivariance

A Carnot group is a simply connected nilpotent Lie group G with a stratification g = @iz ) V., of its
Lie algebra g such that [14,%,] =V,,,. A basic consequence of the stratification is that g, = @°

n j=n"J

and so naturally V, = g,,/8,,,1; for more details see e.g. [LD17].
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Proposition IV.3.9. Let G be a Carnot group and H be a cocompact, closed subgroup (including G

itself). Choose a Malcev basis ((ejyk)zi:n;gj/g"“)ﬁzl with the property that (ejvk)zi:nigj/gj“ CV,. Then

the collection (Ej)jzl : G = EndV of weights and, consequently, the ST?
(C*(H)v L2 (H’ V)7 (Méj )3‘:1)
has the strictly lower triangular bounding matrix

5] i>3

€:: =
Y {0, i<j.

The reader can note that the bounding matrix in Proposition 1IV.3.9 for Carnot groups improves
the bounding matrix of Proposition IV.3.5 built from a general nilpotent Lie group’s lower central
series.

Proof. To verify the new bounding matrix, we again restrict to considering the translation-boundedness
of £,. Using the stratification of g, for X €V, and Y € V,,

151 j(exp [X, YD) < G ;1€ (exp, X)[[[€;(exp, Y

for some constant C; ;. Furthermore, for the Baker-Campbell-Hausdorff expansion z(X,Y) =
log(exp XexpY),

[, (expg 2(X,Y)| < C’Z/’j,suﬁi(expg X)||Ls=9)/2] "Ej(eXPg V)| L(s=0)/4]

for some constant C; ; ;. We obtain a bound

4, (expg Xexp, Y)— Es(expg Y|
<€ (expy X)| + € (exp 2(X, Y))
< | (exp, X)| + G ; |16 (exp X)L ¢ (exp Y| Lo /3L.

7’7j78

Hence, remembering Remark IV.3.3, €; = [831

J is sufficient for translation-boundedness. O

For a 5-step Carnot group, the bounding graph produced by Proposition IV.3.9 is

S
4

Remark IV.3.10. It is notable that the behaviour here, in contrast to the general nilpotent Lie group
case, is close to that of pseudodifferential operators. In the context of Remark IV.1.10, if we let
m = (1,2,...,s), we expect a bounding matrix €;; = %, which is just fractionally larger than the €
given above. We therefore may think of M, ¢, 88 having order j. The ray

t,. (1) = (—.)s_ (r>0)

is in the cone Q(e) when G is Carnot, but will not be, in general, for a nilpotent Lie group and
€;; = max{i — j,0}.
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The stratification provides a canonical vector space isomorphism of g and @‘:L: L 9n /8,41 because
9,/9,11 = V,. We may write any element of g as a tuple (Xi,..., X,) € @ _, 1}, and any element of
G as the exponential of such a tuple. The stratification induces a dilation action of R} as Lie algebra
automorphisms on g, given by

8+ (Xq, Xgy oo, X)) = (8X, 12Xy, .., 15 X,).
This action exponentiates to a dilation action on G by automorphisms, given by
d, : expg(Xl,X27 e, X)) expg(tXl,tQXQ, w9 X0).
Let V, be given by the pullback

V;é(@ng(Xl, aXs)) = é(expg(tilev )tisXs))

on ¢ € L?(G). Recall that the Haar measure on a simply connected nilpotent Lie group is the
pushforward under the exponential of the Lebesgue measure on its Lie algebra. We compute that

Vo ) = [ €0y (67X, 70X fex, Xy, X)X, X
— [ Elexp, (Vi V) (expy (875 0 Y 0 e

_td1mhg § | >

using the notation

dim;, g = animVn

n=1

for the homogeneous dimension of g (cf. (IV.2.12)). Hence V;* = t3™r8V,_,. The unitary in the polar
decomposition of V; is given by U, = t~4mn(9)/2), For 1 < j < s,

£j<eng(t_1X17 b 7t_SXS)) = t_JZ(eng <X17 b 7XS)>
and we see that the operator M, ¢ transforms as
(UM, Uz €)(exp, (Xy, ., X,))
— ¢ @/2(0, U:s><expg<r1X1, X))
=t dimh(g)/ng(eng (tilea a ))( )(eng (tilea ’tisXs))
— t90(exp, (Xy, o, X,)Eexp (X, o, X,))
= t_j(MEjé.)(eng (X17 ) Xs))
on a vector £ € L2(G, V). We thereby obtain, generalising Example III.2.10,

Proposition IV.3.11. Let G be an s-step Carnot group. Then
(€*(©), 226V, Y sen(y, ), )
j=1

is a conformally R} -equivariant higher order spectral triple for the dilation action § and conformal
factor p, = t~7/2.
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IV.3.2 Spectral triples for crossed product C*-algebras and parabolic dynamics

Spectral triples for crossed products by groups of diffeomorphisms have been considered many times
in the literature, first by Connes for noncommutative tori; see e.g. [GBVFO01, §12.3]. We mention
also [CM95, §1] in this connection, to which we shall refer again in Remark IV.1.19. The construction
which we emulate and generalise below appeared first in [CMRV08, BMR10] for the group Z and later
in [HSWZ13, Pat14] for other discrete groups.

Let a be an action of a locally compact group G by automorphisms of a C*-algebra A. The
(reduced) crossed product C*-algebra A x, G possesses a densely defined, completely positive map
®: Ax, G --» A given on f € C.(G,A) by evaluation at the identity e € G. We may complete
dom(®) C A X, G to a right Hilbert A-module under the inner product

(filfa2a=2(f1fs),  for  f1,f, € dom(®).

There is a natural isomorphism of this Hilbert module with L?(G, A) ,. The resulting representation
of Ax, G on L?(G, A), is given by

16(9) = [ g (FRER g)duth
G

for f € C.(G,A) C Ax, G and € € C,(G,A) C L?(G, A). Indeed, L*(G, A) 4 is the Hilbert module
associated with the semidirect Fell bundle; see Example 11.2.12.2.

Given a self-adjoint, proper, translation-bounded weight £ : G — End V, Theorem 11.2.24 produces
a vertical calculus for A x, G, in the form of an unbounded Kasparov A x, G-A-module

(Ax, G, I2(G,V)® Ay, M, ® 1).

Two weights which we shall particularly consider in later examples are the inclusions ¢, : Z — C and
ly : R — C. The first of these gives rise to the number operator N = M, and the Pimsner—Voiculescu
extension class and the second is related to the Connes—Thom isomorphism.

A horizontal calculus is just a spectral triple (&, H, D). Provided that A is represented nondegen-
erately on H, the internal tensor product module L?(G, A) ® 4, H is naturally isomorphic to L*(G, H).
To construct the Kasparov product of the vertical and horizontal calculi, a compatibility condition is
required.

Let M be a o-finite measure space and H a separable Hilbert space. A function f from M to
bounded operators B(H) is measurable if, for every pair £,n € H, the function m > (£ | f(m)n) is
measurable [RS78, §XIII.16]. It suffices to check measurability for £ and 7 in a dense subspace of H
(such as dom D in the context below), because of the separability of H and the fact that the pointwise
limit of measurable functions is measurable. One should compare the following Definition to the fact
that a Lipschitz function has a measurable weak derivative.

Definition IV.3.12. cf. [Pat14, §1] A spectral triple (o, H, D) is pointwise bounded with respect to
an action a of G on A if, for all a € &, the function g - [D, a,(a)] is measurable and

sup [|[D, arg(a)]]| < oo.
geG

In other words, g [D, ay(a)] is L.
We remind the reader of Definition I1.2.15.

Theorem IV.3.13. c¢f. [CMRV0S8, Theorem 3.4], [BMR10, §3.4], [HSWZ13, Theorem 2.7], [Pat1},
Proposition 4.1] Let (o, H, D) be a spectral triple. Let o be an action of a locally compact group G on
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o. Let £ : G — EndV be a self-adjoint, proper, translation-bounded weight. If the spectral triple is
pointwise bounded with respect to the action of G,

(4%, G L*(G,V)®H,M;®1+1& D)
is a spectral triple, representing the Kasparov product
('dxa GaL2(G7 V) ®AA?M€ ® 1) ®A ('QiaH7D)

Theorem IV.3.13 is known in the case of discrete groups but, to our knowledge, the generalisation to
locally compact groups has not appeared in the literature, although see [Pat14, Note after Proposition
4.1].

Proof. This is an instance of the constructive unbounded Kasparov product. We note that M, ® 1
and 1 ® D anticommute, so, in order to apply [LM19, Theorem 7.4] we need only checking the
boundedness of commutators and the connection condition. For the latter, let ¢ ® a € C,(G,V) ® &
and Ty, € B(H,L*(G,V) ® H) be given by

(Tegam(9) = &(9) ® aga(a)n  (n € H).

Then, for n € dom D,

(1® D)Tigy — Trga D)N)(9) = &(9) ® [D, g1 (a)]n.

Because ¢ is compactly supported and g = [D, o, (a)] is measurable, (1 ® D)T;g, — T¢g, D is bounded.

To check bounded commutators, by [FMR14, Corollary 2.2], it suffices to show that the elements
of o 1, G take a core for M, ® 1 +1® D to the domain and have bounded commutators on that core.
Let n=mn, ®ny € C.(G,V) ®dom D, a core for M, ® 1+ 1&® D. (If both Vand H are ungraded, then
n should have an extra C? tensor factor, but this detail does not change the argument below.) Then

(r(afim)e) = [ S (hg)du(h) & oy (a)n, € @ dom D
G

for all g € G and

2

/ (tlg)®1+1& D) / F(hym (b g)du(h) & g+ ()ny | dulg)
G G

< g h 1 hil d h L ag—l a 2 d

_/G ((g)/Gf( Y (W g)du(h) & v, (@), || dpu(g)

du(g)

“

G

is finite owing to the compactness of the supports of f and 7, and pointwise-boundedness. By [RS78,

Theorem XIII.85], this implies that 7(af)n is in the domain of M, ® 1 + 1 ® D. It is routine to check
that

/ F Ry (1 g)dya(R) & (D, g+ (a)] + o+ (a)D) 1
G

18 D,m(af)ln(g) = 1& (D, ag+ (a)ln(f)n(o)
and
M, 8 1,7(af)n(9) = ay+(a) [ ((€0h719) — €a)F) & 1) (b~ g)duh).
G

The commutator [M, ® 1 + 1 ® D, w(af)] is then bounded because of pointwise-boundedness and the
facts that ¢ is translation bounded and that f is compactly supported. By the Leibniz rule, we are
done. O
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With the technology of ST?s available, we are not so constrained as in the spectral triple case. We
make the following definition.

Definition IV.3.14. A spectral triple (o, H, D) has parabolic order s € [0,00) with respect to an
action a of G on A and a weight £ on G if, for all a € &, the function g = [D, a/(a)] is measurable
and, for all g, the matrix inequality

I[D; ay(a)]] < G, (1 + [£(9)]°)
holds for some constant C, > 0. (If s = 0, we recover pointwise-boundedness.)

Remark IV.3.15. Let a be an action of a locally compact group G on &. If § is an automorphism of A
preserving &, there is an isomorphism

A Hgonop-1 G = A X, G.

Let (&, H, D) be a spectral triple which is parabolic of order s with respect to the action and a weight
£. Suppose that there is a constant C’ > 0 such that, for all a € o,

I[D, B(a)]] < C’[[D, al].
Then (&, H, D) also is parabolic of order s with respect to 30 a o 87! and /£ because
I[D, Boago B (a)]l < CI[D,ay(87(a)]] < C"Ch(q)(1 +1£(g)]).

Theorem 1IV.3.16. Let (o, H, D) be a spectral triple. Let a be an action of a locally compact group G
on . Let £ : G — EndV be a self-adjoint, proper, translation-bounded weight. If the spectral triple is
parabolic of order s with respect to the action and weight,

(4%, G, L*G,V)®H,(M;®1,1® D))

€= s .
s 0 — <o

The ST? represents the Kasparov product

is an ST? with bounding matric

(A%, GLAG V)R Ay, M, ®1)®, (4, H, D).

Proof. The proof of Theorem IV.3.13 carries over with the appropriate modifications for the tangled
boundedness of commutators implied by the pointwise order.

For the last point, using Kucerovsky’s theorem [Kuc97] (and in particular its extension to higher
order spectral triples in [GM15, Theorem A.7]), we see that, e.g. for m > s, the higher order spectral
triple

(A %G, L*(G,V)& H, Myy-1:m ®1+1& D)

represents the Kasparov product of (A x, G, L*(G, V) ® Ay, Myg-1+m ®1) and (o, H, D). O

Remark IV.3.17. cf. [HSWZ13, Theorem 2.7] In the context of Theorem IV.3.16, if G is discrete
and (1 + [£))"! € ¢P1(G,EndV), so that (C.(G),¢*(G,V),M,) is p;-summable, and (,H, D) is
py-summable, then

(4%, G 3G, V)®H,(M;®1,18 D))

is f-summable for f: (¢1,t,) zt>_11 + %-
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To see the meaning of parabolic order, we specialise to the case of a complete Riemannian manifold
(X, g) and a spectral triple (C>°(X), L?(X,S), D), with either the Atiyah-Singer or Hodge-de Rham
Dirac operator. Let ¢ be an action of a locally compact group G by diffeomorphisms; the resulting
action on C>°(X) is given by ¢~ !* the pullback of the inverse. For f € C>°(X), the commutator [D, f]
is just the one-form df acting by Clifford multiplication. Hence |[D, f]| = |df||. Using the notation

(d@g)m : TxX — T(pg(]))X
for the pushforward by ¢, at z € X, the chain rule gives
dQOZ(f)x = dfcpg(x) (dgog)m

Hence
ldey (oo < ldfloclldeglo

and the parabolic order condition reduces to the matrix inequality
ldeylloe < C(A+ [€(9)I°)

for a constant C' > 0. In other words, the supremum norm of the Jacobian should be of polynomial
order. To be clear, the norm of dp, at z € X is

d u o ((de,)u, (do,) u 1/2
gyl = sup MO0ty Bon (BP0l (00y)e)
ueT, M ”U” ueT, M gz(“?“) /

Making our observation precise, we obtain:

Corollary IV.3.18. Let (C>°(X),L?(X,S), D) be the Atiyah-Singer or Hodge-de Rham Dirac spectral
triple on a complete Riemannian manifold (X,g). Let ¢ be an action of a locally compact group G
by diffeomorphisms on X. Let £ : G — EndV be a self-adjoint, proper, translation-bounded weight.
Suppose that, for some s > 0, the matriz inequality

ldeylloe < C(A+ [€(9)I°)
holds for some constant C' > 0. Then
(CCOO(X) A G7 L2(Ga V) ® L2(X7 S)) (MZ ® 15 1 ® D)

is a strictly tangled spectral triple with bounding matriz

€= s .
s 0 — <o

This ST? represents the Kasparov product of
(C2(X) %G, L*(G, V) ® Co(X) gy (x), My ® 1)
and (G (X), I3(X, S), D).

The behaviour of dynamical systems can be loosely classified into three paradigms: elliptic, parabolic,
and hyperbolic [HK02, §5.1.g]. These roughly refer to the Jacobian’s having respectively constant
growth, polynomial growth, or exponential growth. The classical example of the distinction is the
classification of M&bius transformations, which we discuss in the following Example. The meaning
of Corollary IV.3.18, then, is that ST?s can be built for parabolic dynamical systems in addition to
elliptic dynamical systems which already fall within the scope of Theorem IV.3.13. For a survey of
parabolic dynamics, we refer to [HK02, Chapter 8]; see also [Fra04, AFRU21].
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(a) elliptic (b) parabolic (¢) loxodromic (d) hyperbolic
Figure IV.1: The classification of Mbius transformations of S?, taken from [Nee97, Figure 3.26].

Example IV.3.19. In terms of the complex coordinate z on the Riemann sphere S?, a Mobius

transformation is given by
az+b a b
— SL(2,C).
~ cz+d (c d) € 5L(2,C)

The centre {+1,—1} of SL(2, C) acts trivially, so that the group of Mébius transformations is PSL(2, C).

Equip S? with the round metric
4dzdz

(1+]2[?)?
and a corresponding spectral triple (C*°(S?),L?(S?,S), D). We will consider the behaviour of a

Z-action generated by a single M6bius transformation, with the weight £ corresponding to the number
operator. A Mobius transformation ¢ is classified by its eigenvalues A\, \~! into three types:

ds? =

o If A7t € T\ {-1,1}, ¢ is elliptic, possessing two fixed points; see Figure IV.1(a). An
elliptic M&bius transformation ¢ is (smoothly) conjugate to a rotation 7 : z i+ %2, for which
[dm*(f)| = 1. By Remark IV.3.15, (C*(S?), L?(S2,S), D) is pointwise bounded with respect to
the Z-action generated by ¢, placing it under the aegis of Theorem IV.3.13.

o If A\ = A1 = 41, ¢ is either the identity or it is parabolic, possessing one fixed point (and
not diagonalisable as a matrix); see Figure IV.1(b). A parabolic Mébius transformation ¢ is
(smoothly) conjugate to a translation 7 : z - z + 1. We compute that

1+ |22 1/, )
ldr" ] :Sgpm =3 (n + |n|\/n2+4+2) € O(n?).

Again, by Remark IV.3.15, (C*°(S?), L2(S2,S), D) has pointwise order 2 with respect to the
Z-action generated by ¢ and the number operator weight ¢,.

o Otherwise, if \, \™! € C\ T, ¢ is lozodromic, possessing two fixed points; see Figure IV.1(c). A
loxodromic Mobius transformation ¢ is (smoothly) conjugate to a dilation, perhaps combined
with a rotation, 7 : z = A2z. In this case,

1+ |z

dr™ — /\2n
|| T ”oo Sgp| | 1+‘>\‘4n|z‘2

= max{|A|*", [A|7*"}

which is not of polynomial order in n. In the special case that A, \™! € R\ {—1,1}, ¢ is called
hyperbolic; see Figure IV.1(d).

Example IV.3.20. cf. [HK02, §8.3.a] The group SL,(Z) acts on the torus T¢ by large diffeomorphisms.
The action is realised by identifying T¢ with R¢/Z% and SL,(Z) acting on R in the usual way that
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a matrix acts on a vector. For ease of exposition, equip T¢ with a constant Riemannian metric g.
For A € SL,(Z) and the corresponding action ¢4 on T¢, |[(d¢™),| = |A™"|, which generically will
be exponentially divergent. However, suppose that A € SL;(Z) is a unipotent matrix, i.e. such that
(A—1)**1 =0 for some s € N. By Newton’s binomial series, for n € Z,

An = Z (Z) (A—1)F

k=0
and
5 n
I(de_p)ol = 1A g <> (k) [(A—1)¥|g € O(n®).
k=0
Hence

(C(T?) %4 2, 03(2Z) & L*(H, ), (N®1,1® D))

is an ST? with bounding matrix
0 0
€E = S .
s 0 — (o

This Example admits the following generalisation to outer automorphisms of noncommutative tori.

Example IV.3.21. Let © be a skew symmetric d-by-d real matrix. For z € Z?, define an operator
lo(x) on ¢3(Z4) by
(lo(2)€)(y) = e™O" 7 E(—z +y).

The algebra C°°(T¢) of smooth functions on the noncommutative torus T¢ is the *-algebra spanned by
lo(z) for all z € Z?. We call the C*-algebra envelope C(Tg). When © = 0, we recover C(T?). As in
the classical case, integer matrices can act by automorphisms. Following [JL15, §2.3], let A € SL,(Z)
be such that A*©A = ©. Then a, : lg(z) - lg(Az) defines an automorphism of C(T%). (For d = 2,
the condition A*©A = © is automatically satisfied.)

Let (v;)L, be a basis of R%. To simplify notation, we will also write (v;)%_, for their images in
€7, Let S be a Clifford module for €7, and define an unbounded operator

(DE)(y) = i(ei, y€ly)  (y €2
on ¢%2(Z%,S). We obtain a spectral triple (&"X’ (T4),¢%(Z%,S), D). We have
([D,lo(2)]€) (y) = —e™Ox=tv) d —z +y)
so that ) 221 )
d 2 d 2
|| [D,lg(z || = Zl e; ,x)(ej,mﬁ)ivj = ”21(&', ei><ful,vj)<ej,x> = |Vz|
ij— ij=

where V : Z¢ — R is the linear map taking e; > v;.
If A€ SLy(Z) (with A*©A = ©) is unipotent, so that (4 — 1)**! = 0 for some s € N, then
|A™| € O(n®) as in Example IV.3.20, and

I1D; e (e (@)]]| = [[[D; le(Am2)]|| = [V A™a] < [V]|A"[]z] € O(n*).

Hence
(Coo(Td)

is an ST? with bounding matrix

Mo, Z,2(Z) & (2(2%,8),(N®1,1® D))
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IV.3.2.1 Nilpotent flows on homogeneous spaces

Let G be a connected Lie group. Right-invariant Riemannian metrics on G are in bijection with inner
products on g. If g, denotes such an inner product on g = T,G, we define the Riemannian metric g at
any other point g € G by

8y(u,v) = 8. ((dR ;1) gu, (dRy-1),v)

where R 1 is the diffeomorphism of G given by right translation by g~* and dR-. is its pushforward.
If the group is noncompact, the metric so obtained will not usually be left invariant [Mil76, §7]. The
norm of the Jacobian of left translation L, by g € G, at h € G is

ggh((dLg>hu7 (dLg)hU)

1

dL =
I(4Zy)nl weT, G gn(u,u)
— sup ge((dR(gh)‘l)gh<dLg)hu7 (dR(gh)—l)gh(dLg>hu)
weT, G 8c(dRp-1)pu, (dRy-1)pu)
8.((dAdy) v, (dAd)v)
= sup
veT, G=g ge (’U’ ’U)
= [(dAdy).|
~ | Ad, [,

where we have used the identity (dRj-1),,(dL,), = (dL,).(dR)-1);, resulting from the facts that left
and right actions commute and that the pushforward at e € G of the adjoint action on G is the adjoint
action on g.

If H is any closed subgroup of G then G/H is a quotient manifold. A right-invariant Riemannian
metric g on G reduces to a Riemannian metric h on G/H. To construct h, let 7 : G — G/H be the
quotient map. Its pushforward at any point g € G,

dr,: T,G — T,y(G/H),
restricts to an isomorphism between T,(gH)* = (kerdn,)" and T,y (G/H). Define h by
th(ua U) = gg(dﬂgE*gl(gH)LUa dﬂgG’gl(gH)LU)'
There remains a left action of G on G/H. As a crude estimate, we have

[(dLg)pul < (dLg)nl = [ Adg g,

for the Jacobian of left translation Lg.
Recall the Campbell identity

o)
1 n
Adeyp x (V) = exp(ady)(Y) = 2) —2dx (Y).
n—
An element X € g is nilpotent if adﬁgrl = 0 for some step size s € N. In that case,
S tn
Adexp tX(Y) = Z E ad&(y>

n=0 """

Consider the flow ¢X given by ¢;¥ = Leypix on G/H. We have

||d¢tX||oo < " Adexp tX(Y) € O(ts)

e,

so that
(C2=(X) x5x B, L2(R) & L*(G/H, S), (M,, ®1,1& D))
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is an ST? with bounding matrix

€ = S .
s 0 — <o
Such flows ¢ constitute an important family of parabolic dynamical systems [HK02, §8.3.b].

Example IV.3.22. cf. [HK02, §8.3.3] Let I' C SL(2,IR) be a cocompact lattice. A horocycle flow ¢~
on SL(2,R)/T is generated by a nilpotent element X € s[(2,R). Of necessity, X will be conjugate to

(8 (1)) € sl(2,R)

Example IV.3.23. cf. [HK02, §8.3.2] [AFRU21, §2.2] A compact nilmanifold is a quotient G/T" of a
simply connected nilpotent Lie group G by a lattice I' C G. The nilflow ¢X generated by a vector
field X € g is the restriction of the left action of G to the one-parameter subgroup (exptX),.p. Every
element of a nilpotent Lie algebra is nilpotent, with step size less than or equal to the step size of the
Lie algebra, so the above construction may be applied.

and so will be 2-step nilpotent.

Example IV.3.24. Let P C SO,(n, 1) denote the standard parabolic subgroup. The homogeneous
space SOqy(n,1)/Pis S ! and the Lorentz group SOy(n, 1) acts by Mobius transformations on S™*.
We thereby recover Example IV.3.19 as a special case.
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In this Appendix, we present a number tools relating to Hilbert C*-modules and their operators. The
main new idea is that of matched operators, explained in §A.1.2, and used extensively in §§1II.3 and
.4

Let us first set some conventions and notation.

Definition A.0.1. [RW98, Definition 2.1] Let A be a C*-algebra. A right inner product A-module is a
right A-module E with an A-valued C-bilinear form (-,-) 4, on E satisfying

o (z|ya)s = (z]y)aa,

* (z|ya=(y|z)sa, and

o (z|x), >0, with equality if and only if z = 0.

1/2

The last property means that the expression |z| = |[(z | =) 4]'/* defines a norm on E. We call E a

right Hilbert A-module if it is complete in this norm.

Definition A.0.2. e.g. [RW9S8, §2.2] Let E be a right Hilbert B-module. The C*-algebra Endj(F) is
defined as the set of C-linear maps T : E — E for which there exist a map 7™ : E — E such that

(T(z) |y)g={=|T"(y)5

for xz,y € E. These maps are automatically right B-linear, since
(T(2)b | y)p =b"(T(x) [y)p ="z | T*(y))p = (xb [ T*(y)) p = (T'(xd) | y) 5

187
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In addition, T* € Endz(E), since

(T"(z) |y)p =y [ T (@) = (T(y) [ 2) =« [T(Y))s

Let A be another C*-algebra. An A-B-correspondence is a right Hilbert B-module with which is made
a left A-module by a *-homomorphism ¢ : A — Endj(E).

A.1 Hilbert C*-modules over spaces and algebras

A.1.1 Hilbert C*-modules over topological spaces

We review and extend some known facts about Hilbert modules built from functions X — Ep for a
fixed Hilbert module E5 and a locally compact Hausdorff space X.

Definition A.1.1. e.g. [RW98, §B.2] Let A be a C*-algebra and X a locally compact Hausdorff space.
Define Cy(X, A) to be the C*-algebra of norm-continuous functions f : X — A such that z — | f(z)| 4
vanishes at infinity, equipped with the supremum norm. Let E be a right Hilbert A-module. Define
Cy(X, E) to be the set of continuous functions f : X — E such that z i ||f(z)| g vanishes at infinity.

Lemma A.1.2. c¢f. [RW98, Example 2.13] Let E be a right Hilbert A-module and X a locally compact
Hausdorff space. Then Cy(X, E) is a right Hilbert Cy(X, A)-module with inner product and right action
defined pointwise in X.

Proof. The algebraic conditions on a Hilbert module are satisfied for C,(X, E) since they are satisfied
pointwise for E. The norm on an element f € Cy(X, E) arising from the inner product is

1/2 1/2 12
|1 ey | = sup [[(f | Neyx (@ >H = sup [ (f(2) | S@all}” = sup 1 (@) e
Co(X,A) zeX
which is the supremum norm. Hence, C,(X, E) is complete as Hilbert module. O

Lemma A.1.3. Let E be a right Hilbert B-module and X a locally compact Hausdorff space. Let
J =span(E | E) g be the ideal of A generated by inner products on E. There is an equality

span(Co (X, B) | Go(X, B))c,x,p) = Go(X, J)
of ideals of Cy(X, B).

Proof. Consider f;, f, € Cy(X, E). Their inner product is given at x € X by

(f1 ] f2>CO(X,B)(3U) = (f1(z) | fo(x))p € J.
Noting that

1/2 1/2

||< fi(z) | fol= BH ||<f1( )| fi(z BH || fo(z) | fo(z BH = [ fi(@)| gl f2(2)] g,

we see that (f; | fo(c,(x,5 € Co(X,J). Hence
(Co(X, E) | Go(X, E))eyx,8) € Go(X, ).

Label the ideal I = 8pan(Cy(X, E) | Gy(X, E))¢,(x,p) of Co(X, B). By e.g. [Fel61, §1.2], I must have
the form

{se€ Cy(X,B) |Vz € X,s(x) € I}
where each I, = {s(z) | s € I} is an ideal of B. We must have I, C J for every z € X. Suppose
that I, # J for some z, € X. Since (E | E)p is linearly dense in J, it is not contained in I, , and
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there must be a pair e, e, € E such that (e, | e5)g € J\ I, . Choose a function h € Gy (X) for which
h(zy) =1 and define f;, fy € Cy(X, E) on x € X by f,(x) = e;h(x). Then

(f1 f2>CO(X,B)(5E0) = (fi(zo) | f2(20)) g = (€1 | €2)

is not in I, , so (fy | f2)¢,(x,p) is not in I, which is a contradiction. In other words, I, = J for every
z € Xand I = Cy(X,J). O

Lemma A.1.4. Let E be a Morita equivalence A-B-bimodule and X a locally compact Hausdorff space.
Then Cy(X, E) is a Morita equivalence Cy(X, A)-Cy(X, B)-bimodule.

Proof. The left and right norms on F agree by [RW98, Lemma 2.30], so there is no ambiguity in the
continuity used to define Cy(X, E). The algebraic properties of a Morita equivalence bimodule are
satisfied for Cy(X, E) because they are satisfied pointwise for E. The fullness of Cy(X, E) as a right
and left Hilbert module follows from Lemma A.1.3 and the fullness of F. O

Lemma A.1.5. Let E be a right Hilbert B-module and X a locally compact Hausdorff space. Then
End* (G (X, E)) = G,(X, End™(E),_,)

the C*-algebra of x-strong-continuous functions f : X — End*(E) such that sup__y | f(2)]gna () < o0
Furthermore, End®(Cy(X, E)) = Cy(X, End’(E)).

Proof. Let A =End’(E), so that E is a Morita equivalence A-B-bimodule. By [RW98, Corollary 2.54],
End*(E) = M(A), the multiplier algebra of A. The equality

End’(Cy(X, E)) = Cy(X,End’(E)) = Cy(X, A)
is a consequence of Lemma A.1.4. Again by [RW98, Corollary 2.54],
End*(Cy(X, E)) = M(End’(Cy(X, E))) = M(Cy(X, A)).
Let M(A)z be M(A) equipped with the strict topology. By [APT73, Corollary 3.4],
M(Gy(X, A)) = G(X, M(A)g),

the C*-algebra of strictly continuous and norm-bounded functions. By [RW98, Proposition C.7], the
strict topology on M(A) = End*(E) agrees with the x-strong topology on norm-bounded subsets.
Hence

Cb(Xa M(A),B) = Cb(X7 End*(E)*fs)a

where the norm on both algebras is given by the operator norm on E composed with the supremum
norm over X. Finally, we obtain

End*(CO (X’ E)) = Cb(Xa End” (E)*—s)a
as required. O

Definition A.1.6. e.g. [Wil70, Definition 43.8] A topological space X is a k-space if a subset Y of X is
open if, and only if, for every compact subset K of X, Y N K is open in K. Conditions on X which
imply that it is a k-space include local compactness and first-countability [Wil70, Theorem 43.9].

Lemma A.1.7. e.g. [Wil70, Lemma 43.10] Let f : X — Y be a map between topological spaces with X
a k-space. Then the continuity of f is equivalent to the continuity of f restricted to K for all compact
subsets K C X.
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Lemma A.1.8. Let E be a right Hilbert A-module and X a locally compact Hausdorff space. The norm-
continuity of a function f: X — End’(E) is equivalent to the condition that f|; € End’(C(K,E))
for all compact subsets K C X.

Proof. By Lemma A.1.7, the norm-continuity of a function f : X — EndO(E) is equivalent to the
norm-continuity of f|, for every compact subset K C X. By Lemma A.1.5, the norm-continuous
functions from a given K to End’(E) can be identified with the elements of End’(C(K, E)). O

Theorem A.1.9. (Banach—Steinhaus or uniform boundedness principle) e.g. [RS80, Theorem III.9]
Let V be a Banach space and W a normed linear space. Let & C B(V, W) be a family of bounded
operators from V to W with sup,._g [T|w < oo for each v € V. Then sup,_g |T| grv,w) < 0.

Corollary A.1.10. Let V be a Banach space and X be a compact space. Let f : X — B(V') be a strongly
continuous map. Then f is bounded in operator morm; in other words, sup__. |f(z)|pn) < oo.

Proof. We have a family & = (f(z)),ex C B(V) of bounded operators. The strong continuity of f
implies that x > f(x)v is continuous for every v € V. Since X is compact, its image f(X)v C Vis
compact and thus bounded. Hence, for a fixed v € V,

sup [Ty = sup | f(z)v]y < co.
TeF reX
Applying Theorem A.1.9, we obtain that
sup | f ()l govy = sup | T gy < o0,
zeX TeF

as required. O

Lemma A.1.11. Let E be a right Hilbert A-module and X a compact Hausdorff space. The x-strong
continuity of a function f: X — End*(E) is equivalent to the condition that f € End*(C(X, E)).

Proof. By Lemma A.1.5, End*(C(X, E)) = C,(X,End*(E),_,), the C*-algebra of *-strongly continuous
functions f : X — End"(E) such that sup__ [f(z)|gear() < o0 If f € End"(C(X, E)), then it is *-
strongly continuous as a function f : X — End*(E). On the other hand, if we assume f : X — End"(FE)

is *-strongly continuous, we may apply Corollary A.1.10. Thereby, sup__ [f(z)|gna*(5) < o0 and so
f € End*(C(X,E)). O

Lemma A.1.12. Let E be a right Hilbert A-module and X a locally compact Hausdorff space. The
x-strong continuity of a function f : X — End"(E) is equivalent to the condition that f|, €
End*(C(K, E)) for all compact subsets K C X.

Proof. By Lemma A.1.7, the *-strong continuity of a function f: X — End*(FE) is equivalent to the
x-strong continuity of f|, for every compact subset K C X. By Lemma A.1.11, the *-strong continuity
of flx : K — End*(FE) for a given K is equivalent to the condition that f|;, € End*(C(K, E)). O

A.1.2 Matched operators

Definition A.1.13. Let E be a Hilbert B-module and C a C*-algebra represented on the right of F by
a nondegenerate C*-homomorphism p : C' — M(B). A regular operator T on E is C-matched if those
¢ € C for which

Ep(c) C dom(T")

are dense in C.
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Remark A.1.14. The condition that Ep(c) C dom(T') combined with Lemma A.3.2 implies that the
C-linear map
EFE—>FE &= Téc

is bounded.

Lemma A.1.15. Let E be a Hilbert B-module and C a C*-algebra represented on the right of E by a
C*-homomorphism p : C — M(B). Let T be a regular operator on E. The set of ¢ € C for which

Ep(c) C dom(T)
form a (not necessarily closed) two-sided ideal in C.

Proof. This follows from a general statement about rings and modules. Suppose that we have
Ep(c) C dom(T) for some c € C. If ¢;, ¢y € C, then

Ep(cicey) = Ep(ey)p(c)p(cy) € Ep(c)p(cy) € dom(T)p(cy) € dom(T)
and we are done. OJ

Recall that the Pedersen ideal K of a C*-algebra C is the minimal dense two-sided ideal of C; see
e.g. [Bla06, §11.5.2].

Proposition A.1.16. Let T be a regular operator on Eg which is C-matched. Then
Ep(c) C dom(T)
for all ¢ € K, the Pedersen ideal of C. Furthermore, Ep(K~)B is a core for T.

Proof. As those ¢ € C for which Ep(c) C dom(T') form a dense two-sided ideal, they must include the
Pedersen ideal. For an element ¢ € K, there exists an element d € K such that dc = c¢. Hence

Ep(c) = Ep(d)p(c) € dom(T)p(c) € Ep(c)

and Ep(Ky) = dom(T)p(Ky) = (14 T*T)"/2Ep(K). Next, note that p(K,) is dense in p(C). By
the continuity of multiplication, Ep(K-)B is dense in Ep(C)B. By nondegeneracy of p, Bp(C) is
dense in B and, again, by the continuity of multiplication, EBp(C)B = Ep(C)B is dense in EB = E.
Hence Ep(K)B is dense in E and Ep(Ky)B = (1 + T*T)"Y/2Ep(K)B is consequently a core for
T. O

Remark A.1.17. In [Web04], the multiplier algebra I'(K ) of the Pedersen ideal of B is shown to
consist of exactly those unbounded operators affiliated with B, in the sense of [Wor91], whose domains
include K. A similar characterisation is given in [Pie06, Théoréme 1.30]. The previous Proposition
can be used to show that, if p(C') = B, the C-matched operators on Ep are exactly the multipliers
I'(Kgnqo(g)) of the Pedersen ideal of End’(E). See [Ara01, Proposition 1.7] for the details of passing
through the Morita equivalence bimodule g, 0/ Ep.

Lemma A.1.18. Let E be a Hilbert B-module and C a C*-algebra represented on the right of E by
a C*-homomorphism p : C — M(B). A regular operator T on E is C-matched if and only if, for all
¢ € K, the restriction T]m of T to the Hilbert submodule Ep(c) over the hereditary C*-subalgebra

p(c)*Bp(c) of B is bounded.

Proof. Assume that Ep(c) C dom(T) for ¢ € K. Choose d € K such that dc = ¢. As Ep(d) C

dom(T'), the C-linear map & = T¢p(d) on E is bounded by Lemma A.3.2. On Ep(c), p(d) acts as the
identity, meaning T restricts to a bounded operator on Ep(c).

On the other hand, assume that T’W is bounded for ¢ € K. Then dom(T) D Ep(c) 2 Ep(c),
as required. O
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The following is well-known.

Lemma A.1.19. Let a be an element of the multiplier algebra of a C*-algebra A. Then the closed
right ideal aA is a Morita equivalence bimodule between the hereditary C*-subalgebra aAa* of A and
the (closed two-sided) ideal span(Aa*aA) < A.

Proposition A.1.20. Let E be a Hilbert B-module and C a C*-algebra represented on the right of E
by a C*-homomorphism p : C — M(B). A regular operator T on E is C-matched if and only if, for
all positive c € K¢, the restriction T'|spas (e p) of T to the Hilbert submodule span(Ep(c)B) over the
ideal span(Bp(c)B) < B is bounded.

Proof. Assume that Ep(c) C dom(T') for ¢ € K. Then the restriction of Tto Ep(c)———n—— FORTIC) is bounded.
The closed right ideal p(c)*B of B is a Morita equivalence p(c)* Bp(c)-span(Bp(cc*)B)-bimodule. We
have a natural isomorphism

*

Span(Ep(CC*)B)spﬁ(Bp(Cc*)B) = EP(C)W ®W p(C) BSpﬁ(Bp(cc*)B)

of Hilbert span(Bp(cc*) B)-modules, under which T|Ep(cc,,)B = T\Ep(c) ® (o7 Bp(e) L+ Hence the restriction
T |span(Ep(cery ) 18 bounded. Since every positive element of K is of the form cc*, we conclude this
direction of the argument.

On the other hand, assume that T'|s5(pp(c) ) 8 bounded for ¢ € K. Recall that the product of
(two-sided) closed ideals in a C*-algebra is again a closed ideal, so that Bp(c)B = BM(B)p(c)M(B).
Then

dom(T) 2 ES5an(Bp(c) B) = Espan(M (B)p(cc”)M(B)) 2 Ep(c),
as required. O

Lemma A.1.21. ¢f. [LT76, Proof of Proposition 4.5] Let w be an irreducible representation of a
C*-algebra A on a Hilbert space H. Then K,H = H.

Proof. Let £ € H be a cyclic vector and choose a € K, such that |r(a)| = 1. (Such an a € K4
can always be found; otherwise the density of K, in A would imply that £ = 0.) Let n € H be any
non-zero vector. The finite rank operator |n)(m(a)| takes a to n. By [Dix77, Theorem 2.8.3(i)], there
exists an element b € A such that

n=n)(m(a)é|r(a)§ = m(b)m(a)¢ € KuH
as required. O
Proposition A.1.22. The C-matched operators on Eg form a x-algebra Mtcy(E, C).

Proof. Let T be a regular operator on Ep which is C-matched. By Lemma A.1.18, T restricts to a
bounded operator on Ep(c) )| 5B for all ¢ € K. The restrictions (T, (c))" = T"|gp(c) of the adjoint
T* of T are consequently bounded, and so T* is also C-matched, again by Lemma A.1.18.

Let T7 and T, be C-matched operators. For an element ¢ € K, we have

T,Ep(c) = T, dom(T3)p(c) C Ep(c) C dom(Ty)

so that T} T, is well-defined on Ep(K)B. Similarly, 75T} is also well-defined on Ep(K-)B so that
T, T, is semiregular. The localisation of EKy C Ep(K~)B to any irreducible m € B is equal to

EBKB ®7‘r H7r = EB ®7‘r W(KB>H7r = EB ®7‘r H7T

by Lemma A.1.21. Hence, dom((7175)") = E5®, H, and (T}T,)™ is bounded. As the same is true for
(T5T7)™, we may apply the local-global principle [Pie06, Théoréme 1.18(2)] to obtain that the closure
of T\ T, is a regular operator on E. By similar reasoning, we conclude that the closure of the sum
T, + T,, defined on the common core Ep(K)B, is a regular operator on E. O
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Remark A.1.23. Combined with Proposition A.1.20, Proposition A.1.22 could be used to show that
Mtcy(E, C) is a pro-C*-algebra (or locally C*-algebra) [Phi88]|, [Fra05, Chapter II].

Proposition A.1.24. Let X be a locally compact Hausdorff space and E a Hilbert B-module. Then
the Cy(X)-matched operators on Cy(X, E) are exactly the elements of C(X,End*(E),_,), the (not
necessarily bounded) *-strongly continuous functions from X to End*(E).

Proof. Suppose that T is a C,(X)-matched operator on Cy(X,E). Because T(1 + T*T)"'/? ¢
End*(Cy(X, E)) = Cy(X,End*(FE),_,) uniquely determines T, we may conclude that T is given by a
function from X to regular operators on E. Let K be a compact subset of X. The Pedersen ideal of
Cy(X) is C,(X), the compactly supported functions on X. Let f be a positive element of C,(X) which
is nonzero on K. We have

dom(T) 2 Cy(X, E)f = Cy(supp f, E)

so that T restricts to a bounded operator on Cy(supp f, E)CO(Supp #,B)- By Lemma A.1.5,
End" (G, (supp f, E)) = Gy(supp f, End*(E),_,).

Furthermore, the localisation of T to C(K, E)¢(k,p) must also be bounded and so an element of
C,(K,End*(E),_,). Given that T is a x-strongly continuous function on every compact subset K of
the k-space X, by Lemma A.1.7, T'is a #-strongly continuous function on X.

Let T € C(X,End*(E),_,). Then T(14 T*T)"'/? € C,(X,End*(E),_,) and

(1+T*T)Y2Cy(X, B) 2 C,(X, B)

so that T is a regular operator on Cy(X, E). (For a more detailed argument, cf. [Pal99, §4].)
Furthermore, for an element f € K (x) = C.(X), G(X,E)f C C.(X,E) C dom(T) and T is

C

Cp (X )-matched. O

A.1.3 Compactly supported states

Definition A.1.25. [Har23, Definition 6.11] A state ¢ on a C*-algebra A is compactly supported if
there exists an a € A such that ¥ (a) = |a|. We denote the set of compactly supported states on A by
S.(A).

Proposition A.1.26. For a state v of a C*-algebra A, the following are equivalent:

(1) v is compactly supported, i.e. there exists an a € A such that 1p(a) = ||a|.

(2) There exists an a € K, such that (a) = ||a|.

(8) There exists a positive a € K 4 such that ¥(a) =1 = |a| and (ab) = ¥ (b) for allb € A.
(4) ¥ is given by b — d;fg,,b;)) for a state ¢ of A and an a € K 4.

Proof. (2) clearly implies (1). (4) implies (2) almost by definition of the Pedersen ideal. If ¢ : b ";(& *b;))
for a € K4, there exists positive ¢ € A such that ca = a. Let f € C,(RY) be a compactly supported
continuous function which is equal to 1 on the spectrum of ¢. By the continuous functional calculus,

we obtain f(c) € K, such that f(c)a =a and |f(c)| = 1, and therefore

¢(a*f(c)a)
P(f(e) = ———=—==1=|f(o)|.
(r(e)) = 2522 1)
To see that (1) implies (3), let a € A be such that 1(a) = 1 = |a|. By the Kadison inequality,
P(a*a) > [¢p(a)|* = 1 and since |a*a| = |a|* = 1, we must have ¢(a*a) = 1. We may assume, without

loss of generality, that a is positive. Let A be the minimal unitisation of A and 1 the unique extension
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of 1. Let Hy be the Hilbert space of the corresponding GNS representation and & the cyclic vector.
Then

I — agsl = (1~ )%, | &) = (1 —2a+a?) = 0

and so a§; = §;. Let f € C,(R}) be a compactly supported continuous function such that f(1) =1
and | f|,, = 1. By the continuous functional calculus, f(a) is an element of the Pedersen ideal of A

such that f(a)§; = &y and Y(f(a)) = (f(a)é, | €x) =1 =|f(a)|. Hence 7 satisfies
P(f(a)b) = <f(a)b§¢ | 51/;) = <b§¢ | f(a)f¢> = <b§¢ | f¢> = (b) (A.1.27)

for all b € B.
To see that (3) implies (4), let positive a € A be such that ¢¥(a) = 1 = |a|. As before, we must
have 9(a?) = 1. For all b € A, as in (A.1.27) we have

¥(aba)
¥(@)

so we may simply choose ¢ = . ]

= Y(aba) = (aba&,, &) = (bSy, &y) = ¥(b)

Remarks A.1.28.

1. In [LT76, Chapter 3], a topology x on I'(K,), the multipliers of the Pedersen ideal of A, is
introduced. In [LT76, Proposition 6.5], condition (4) of Proposition A.1.26 is shown to be
equivalent to 1 being a norm-1 positive x-continuous functional on I'(K ).

2. For a locally compact Hausdorff space X, recall that the states on Cy(X) are exactly given by
the Radon probability measures on X [Bla98, 11.6.2.3(ii)]. The compactly supported states on
Cy(X) are then exactly given by the compactly supported Radon probability measures on X.

Proposition A.1.29. c¢f. [Har23, Lemma 6.12] The compactly supported states S.(A) on a C*-algebra
A are weak-x-dense in S(A).

Proof. Let 1 be a state on A. Using [Bla98, 11.4.1.4], let (hy),cp be an approximate unit for A
contained in the Pedersen ideal K 4. Consider the net of states (¢y)\ca given by

P(hyahy)
P(h3)

Each of these is compactly supported by Proposition A.1.26(4). The net (1)(h3)),cp converges to 1 by
[Bla98, I1.6.2.5(i)]. To see that the net (¢(hyahy)) cp converges to 1(a), observe that

lb(a) = p(hyahy)| = [((1 = hy)a) + p(hya(l — hy))|
< (It = hy)al + a1 —Ry)l)
— 0,

'(/)A:(I'—)

where we have used the bounds ||¢)| =1 and |h,| < 1. O

Proposition A.1.30. Let E be a Hilbert B-module and C a C*-algebra. Let T be a regular operator
on (E ® C)ggc which is C-matched. Then, for any compactly supported state 1 on C, (1 ® ¢)(T) is
well-defined and a bounded operator on E.

Proof. The state 1 extends to a completely positive map 1 ® 1 from End’(E ® C) = End®(E) ® C
to EndO(E). Being nondegenerate, this completely positive map further extends to a map from
M(End°(E) ® C) = End*(E ® C) to M(End’(E)) = End*(E) [Lan95, Corollary 5.7].

Let a be a positive element of K such that ¢(a) =1 = ||Ja| and ¢(c) = ¥(ac) = ¥(ca) for all ¢ € C.
As (FE®C)Kp CdomT, 1®a(FE®C) C dom7T. By Lemma A.3.2, T(1 ® a) is a bounded operator
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on E® C. Hence we may apply 1 ® ¥ to T(1 ® a) to obtain an element of End*(E). To see that the
choice of a does not affect the value of (1 ®9)(T(1® a)), let b € K~ be another positive element such
that (b) = 1 = |b| and ¥(c) = ¥(bc) = 1(cb) for all ¢ € C. We note that, because T* is C-matched,
T*(1® a) is also a bounded operator. We have a series of equalities

19¢)(T(1eb)=(10¢)(1®a)T(18))
=12 (1ed)T*(1®a)
=(10y)(T*"(1®a))
=1eY)(1®a)T* (1®a))*
=(1e9)(1®qT(1ea)
=(1®¢)(T(1®a)
so that (1 ® ¥)(T) has a unique meaning. O
Proposition A.1.31. Let E be a Hilbert B-module and C a C*-algebra. Then 1® 8,(C) is dense in
1 ® 8(C) in the pointwise-norm topology on completely positive maps from End®(E) ® C to End®(E).
That is, for ¢ € 8(C), there exists a net (P¥y)yen S 8.(C) such that, for all y € End*(E) ® C,

(1®¢)(y) € End’(E) is the norm limit of (1 ® 1,)(y). As a consequence, 1 ® 8,(C) is dense in
1® 8(C) in the pointwise-norm topology on completely positive maps from End*(E ® C) to End*(E).

Proof. Let (hy)yca be an approximate unit for C contained in the Pedersen ideal K. Let

P(hyahy)
P(h3)

y [Fra05, Lemma 29.8], (1 ® hy)yc, is an approximate unit for End*(E) ® C. For y € End’(E) ® C,

[A@¥)(y) — (1@ =11 ((1® (1 —hy))y) + (1Y) (1@ hy)y(1® (1—-hy)))|

<tevl (I1® (1 —h)yl+ly(1® (1 —hy))l)
— 0,

@b)\:al—)

as required.
For the second statement, let H,, be the Hilbert space of the GNS representation of C' corresponding
to 1. One can check that the KSGNS construction [Lan95, Chapter 5| gives

(End’(E) ® C) ®g, E = H,Q E.
Let &, be the cyclic vector of the GNS construction. Then, by [Lan95, Theorem 5.6],
1®Y)(y) =1®&)y(1®&)

for y € EndO(E) ® C. By [Lan95, Corollary 5.7], 1 ® ¢ is extended to a completely positive map from
End*(FE ® C) to End*(E) by the same formula, viz.

(1®P)(y) = (1®&)y(1®Ey)
for y € End"(E ® C'). We have

[A@¥)(y) =A@ P) @] =11 Y)((1® (1 —hy)y) + (1 P)(1®hy)y(1® (1—hy)))
=[1e&) e —h))ylef,)
(1)1 ®h)y(1® (1—hy)1 &)

< 2[y[I(1 — hx)&yl
— 0,

as required. O
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A.2 Proper actions, cut-off functions, and a partial imprimitivity
bimodule

In this Appendix, we recall a few details of proper actions and cut-off functions and construct a partial
imprimitivity bimodule.

Definition A.2.1. [Pal61, Definition 1.2.2, Theorem 1.2.9] A proper action of a locally compact group
G on a locally compact Hausdorft space X is one for which the map given by

GxX—-XxX

(g,x) = (g-:L‘,iE)

is proper, meaning that the preimages of compact subsets are compact. An equivalent definition of a
proper action is that, for any compact K C X, the closed subset

{9€Glg-KNK +0}

of G be compact. Some basic consequences are that

The orbit space X /G is locally compact Hausdorff;

The stabiliser group G, at any point z € X is compact;

The orbit Gz of any point x € X is locally compact Hausdorff; and

e The restriction of the action to any closed subgroup of G is also proper.
The following is presumably well-known but we provide a proof for completeness.

Proposition A.2.2. Let G be a locally compact group acting on a metric space (X,d) (not necessarily
isometrically). Picking a point x, € X, define the function b € C,(G) by

b(9) = (1 +d(zg,9 - 79)*)"
The action is proper if and only if b € Cy(G).

Proof. The continuity of b results from the continuity of each of the maps

G y X 5 [0, 00) ——— (0, 1]

g— gz =1 — d(zg,2) =1 —— (1+12)71

which, in turn, result from the continuity of the group action and the continuity of the metric.

Suppose that the action is proper. To show that b vanishes at infinity, we need to find for a given
e > 0 a compact set S C G outside of which (that is, for all g € G\ S) b(g9) < e. Take 0 < e < 1 and
let L= (e7' —1)"/2 so that e = (1 + L?)"'. Let B(z,, L) C X be the closed ball of radius L centred
at x,. By the properness of the action, the subset

S={9€G|g-B(zg, L) N B(zy, L) # 0}

of G is compact. For g € G\ S,
g- B(xO7L) n B($O7L) =0
and so
d(zg,9-29) > L= (e —1)!/2

Finally,
b(g) = (1 +d(zg,9-75)*) ' <e
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and b € Cy(G) as required.
On the other hand, suppose that b € Cy(G). Let K C X be any compact subset. The subset

Y={geG|g-KNK+0}

closed in G. Since K is compact, it is bounded with diameter diam K. For a fixed g € Y, pick
x€ KNg-K. Then

d(zg, 9 xo) < d(zg, ) +d(z,9-x) +d(g- 2,9 70) = 2d(2¢, %) + d(z,9 - z) < d(z¢, K) + 3diam K
Hence, b|y > (1 + (d(zy, K) + 3diam K)?)~!. Choosing
0<e< (14 (d(zy, K)+ 3diam K)?)*

there must be a compact set 7' C X for which b|x\r < €. In particular, Y C T, so Y'is compact, and
the action is proper. ]

For the definition of a Cy(X)-algebra, we refer to [Kas88, Definition 1.5] and [Wil07, Appendix C].
For a Cy(X)-algebra A, denote by A, the compactly supported elements [Kas88, §3.2].

Definition A.2.3. [Kas88, Definition 3.2, Lemma 3.2(1)] Let X be a locally compact Hausdorff space
with a proper action of a locally compact group G. For a G-Cy(X)-algebra A, A% is the subalgebra of
G-invariant elements a € M(A) such that C;(X)a C A and z > |a,| gives an element of C,(X/G). In
the natural way, A is a C,(X/G)-algebra.

For a G-equivariant right Hilbert A-module E, the Hilbert A%-module E€ is defined as the right
Hilbert A®-module consisting of G-invariant elements ¢ € Hom*(B, E) such that Cy(X)¢é C E C
Hom"(B, E) and z — |£,| gives an element of Cy(X/G). If, for another group H, A is an H-Cy(X)-
algebra, and the actions of G and H commute, A® is an H-C,(X/G)-algebra. If H also acts on E,
commuting with G, E® is an H-equivariant Hilbert A%-module.

In the special case of Cy(X, A) for a C*-algebra A with G action «a, Cy(X,A)% is the induced
algebra and is the C*-subalgebra of C, (X, A) consisting of f € C,(X, A) such that

fgz) = a,(f(z))
and z - ||f(z)| gives an element of Cy(X/G); see e.g. [Wil07, §3.6].

For explicit formulas involving elements of crossed product C*-algebras, we take our conventions
from [Wil07, (2.16-17), (2.25-26)]. Let G, a locally compact group, act on a C*-algebra A by « and
on a locally compact Hausdorff space X. For f;, f, € C.(G x X, A) C Cy(X, A) x G, their convolution
product is given by

(h82)(00) = [ Fi(h)an (g b)) duh
G
and, for f € C.(G x X, A) C Cy(X, A) x G, the involution is given by

[ (gz) =a,(flgh gt - 2))Ag(g™).

The reader should keep in mind the special cases A = C and X = {pt}.

For a C*-algebra A with an action « of a locally compact group G, we also recall the Morita
equivalence Cy(G, A) %, G-A-bimodule L?(G, A); c¢f. [EKQR06, Example A.10]. As a right Hilbert
A-module, L?(G, A) is isomorphic to L?(G) ®¢ A4. The left action of Cy(G, A) X, G on L*(G, A) is
given by

umm=/awuwmwmwww>
G

for f € C,(G x G, A) and £ € C,(G, A).
We also require the idea of a cut-off function.
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Definition A.2.4. e.g. [EE11, §3] Let G be a locally compact group acting properly on a locally
compact Hausdorff space X. A cut-off function is a positive function ¢ € Cy(X), with compact support
on every cocompact subset of X, with the property that

/ c(g~tz)?du(g) = 1
G

for all z € X. In particular, if G acts cocompactly on X, ¢ € C.(X). A cut-off function always exists,
provided that X /G is paracompact; for a proof see [Bou04, Proposition 7.2.8]. The cut-off function
gives rise to a projection p, € M(Cy(X) X, G), given by

pe(g,7) = c(z)e(g " e)Ag(g™)/? (A.2.5)
which is an element of Cy(X) x,. G if and only if X/G is compact.

Theorem A.2.6. cf. [Kas88, Theorem 3.13], [EE11, §5] Let G act properly on a locally compact
Hausdorff space X. Let A be a G-Cy(X)-algebra with action o of G. Let ¢ be a cut-off function for the
action of G on X and define the projection p, € M(A X, G) by (A.2.5). Give A, the structure of a
right module over C.(G,A) C Ax, G by

&f = [ ay(€6™)8cls™) P dulg) (€€ Auf € CG.A)
G
and a right C,(G, A)-valued inner product by
(€ 1 &)(g:2) = Eay(&)Ac(g™)? (4.6 € 4).
The map ¢ : A, — C.(G,A) C Ax, G given by

$(€)(9) = ag(§)cAg(g™)!?

is right C,(G, A)-linear, has ¢(&;)* (&) = (&1 | &), and has range dense in p,(A X, G). Completing A,
gives a right Hilbert A x,, G-module, which we denote by © A, isomorphic to p,(Ax, G). The inclusion
A% C M(A) gives A, a left A®-module structure. The A®-valued left inner product given by

aclEy | &) = / o, (EE)dulg) (6.6 € A,),
G

makes Y = p (A X, G) a partial imprimitivity A®-A x,. G-bimodule, full on the left.

If the action of G on X is free as well as proper, [Kas88, Theorem 3.13] says that ¢4 is a Morita
equivalence A%-A x,. G-module. This is closely related to the Symmetric Imprimitivity Theorem; see
e.g. [Wil07, Chapter 4]. Otherwise, A“ is Morita equivalent to the ideal span(A %, G)p.(A x,. G) of
Ax, G; cf. [EE11, §3, Lemma 3.9).

Proof. Checking that the right module structure on A, is well-defined and compatible with the inner
product structure is routine. For example

€= [ [ (a6 0 ) Aa (-t 2 dutg)auth)
- / / oy (££1(571) ) (o) Ag(g™) Y 2dp(g) du(h)
GYG
- / / oy (1, (W (Fo(h1g71))) A (g7 Y 2dpu(g)dpa(h)
GYaG

[ a6 £)a7) Acla™) dnls)
G
=¢{(f1f2)
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However, it is not so easy to show that the inner product is positive definite. We will do this using the
map ¢; it will be an immediate consequence of the identity ¢(&;)*¢(&;) = (& | &5)-
First, we check that ¢ is linear in the right action of C,(G, A) C A x, G:

600 = [ ap(Efh))eale k) P au(h)
G

B / ap(E)eDg(h)2ay (f(h " g))du(h)
G

= (¢(£)f)(9).
For the inner product identity,

(¢(£1)"0(£2))(9) :/Gah(¢(§1)(h_l)*¢(€2)(h_lg))AG(h_1)d:u(h>
=/ Elan, (c)Ag(h)!2ay(&) o (c)Ag(g™ h) 2 Ag () dp(h)
G

— £0,(6)Ag(g™) / ap(c)?du(h)

G
= <£17‘£2>(g7$)'

We will now see that the range of ¢ includes p,C.(G, A) and so is dense in p.(Cy(X, A) X, G). Let
neC,(G/A) CCy(X,A)x, G. We have

(pem)(g) = / ca (€) A (h™) 2y (m(h~ 9)) dps(h)
G

/ca c)Ag(h g™ )1/20‘gh(77<h_1))d,u(h)
= a, ([ o)) Ag(h ) 2du) Jedglo )
G

so that p.n = ¢(§) for
£~ [ annhoAG ) ().
G

We obtain that the completion of C.(X, A) is a right Hilbert C,(X, A) x,. G-module €A isomorphic to
Po(Co(X, A) %, G).

The left inner product is well-defined because of the properness of the action; cf [Bou04, Proposition
VIIL.27.2]. It is routine to check the linearity of the left inner product. Checking the imprimitivity
condition,

(16 | €)= / oy (€162 | £5)) A o) 2dp(g)
G

I
N

oy (18501 (63)A6(9)2) A (g7) 2 dp(g)

a,(§165)€3du(g)

(& | 52)53

For any a € A%, fG g(ac Ydug(g f aa, c?)dug(g) = a. For the left inner product to be full, it
then suffices for A%c? to be in the norm closure of A A%. But since A°C,(X/G) is dense in A, it
suffices for A°C,(X /G)c? to be in the norm closure of A_A*. For f € C,(X/G), we have supp fNsupp ¢
compact by definition of the cut-off function c. So, in fact, A°C,(X/G)c? C A,. O

I
QQ\

A
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We record two corollaries.

Corollary A.2.7. Let A be a C*-algebra with an action « of G and let G act properly on a locally
compact Hausdorff space X. Let ¢ be a cut-off function for the action of G on X and define the
projection p, € M(Cy(X,A) %, G) by (A.2.5). Give C,(X,A) the structure of a right module over
C.(Gx X, A) CCyX,A) %, G by

(€f)(z) = / ay (g2 f(g7h g7 w)) Aglg ) 2dulg) (€ € C.(X,A), f € C(G x X, A))
G
and a right C,(G x X, A)-valued inner product by
(€11 &)(g,2) = &(2) 0y (&g ) A (g7 )2 (61,6 € C(X, 4)).
The map ¢ : C,(X,A) - C.(Gx X,A) C Cy(X,A) %, G given by

$(€)(9,2) = ay(E(g7"z))c(z)Ag(g™")?
is right C,(G x X, A)-linear, has ¢(§)*¢(&y) = (& | &), and has range dense in p,(Cy(X,A) %, G).
Completing C.(X, A) gives a right Hilbert Cy(X, A)x,.G-module ©Cy(X, A) isomorphic to p.(Cy(X, A)x,.
G). There is a left module structure on C,(X, A) for the induced algebra Cy(X, A)¢ given by
and Cy(X, A)C -valued inner product given by
o, x,a)6 (61 | &) (z) = / ay (€1 (g7 )& (g ) )du(g) (€1,& € C.(X, 4)),

G

making ©Cy(X, A) = p(Cy(X, A) %, G) a partial imprimitivity Cy(X, A)%-Cy(X, A) X, G-bimodule,
full on the left.

A very special case of the above is A = C. We obtain a partial imprimitivity Cy(X/G)-Cy(X) %, G-
bimodule ¢Cy(X). If G acts freely on X, as well as properly, “Cy(X) is full on the right and so a
Morita equivalence bimodule. We will frequently make tacit use of the Morita equivalence of Cy(X/G)
and Cy(X) %, G in this case.

Corollary A.2.8. Let G act properly on a locally compact Hausdorff space X. Let B be a G-Cy(X)-
algebra with action B of G. Let E be a right Hilbert B-module, G-equivariant under an action U. Let c be a
cut-off function for the action of G on X and define the projection p, € M(End’(E)x,G) = End*(Ex,.G)
by (A.2.5). Give E, the structure of a right module over C.(G,B) C Bx, G by

& = [ U(era))els ™) Paulg) (€€ B, f € CGB)
G

and a right C.(G, B)-valued inner product by
<§1 | £2>(gax) = <€1 ‘ Ug(§2)>AG(g_1)1/2 (€1a€2 € Ec)
The map ¢ : E, — C.(G,E) C Ex,. G given by
$(€)(9) = Uy(§)cAg(g™)"?

is right C.(G, B)-linear, has (¢p(&;) | #(&5)) = (&1 | &), and has range dense in p.(E X, G). Completing
E, gives a right Hilbert B x, G-module ¢ E isomorphic to p (E x, G). The inclusion End®(E)¢ C
End*(E) gives E, a left End’(E)%-module structure. The End®(E)S -valued inner product given by

m«n@=/vﬁmmww@ (6.6 € E,),
G

makes ©°E = p_(E x, G) a partial imprimitivity End®(E)S-B x,. G-bimodule, full on the left.
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Again, if the action of G on X is free as well as proper, ¢ E is a Morita equivalence EndO(E)G-B X, G-
module.

Proof. Because B is a G-Cy(X)-algebra, End’(E) is also a G-C,(X)-algebra [Kas88, §1.5]. The
structural homomorphism C,(X) — M(End®(E)) = End*(E) is given by

J€= Tim €(FLE1€)(1/n+ (€))7

for f € Cy(X) and & € E. The linking algebra (E“%)*(E) g) of E, being the algebra of compact
endomorphisms of (E @ B)pg, is also a G-C,(X)-algebra. Remark also that

End’(E) E O End®(E)x, G Ex, G
E* B) "7 T E*x, G  Bx,G

and .
End”(E) E\ _ (End’(E)¢ E¢
E* B - E*G BG
(although beware that End’(E) is not necessarily isomorphic to End’(E®) unless the action of G on

X is free [Kas88, Lemma 3.2]). Putting A equal to the linking algebra of E in Theorem A.2.6 gives the
required result. ]

A.2.1 The unbounded assembly map
The following result has as a special case the Baum—Connes assembly map; see [Val02, §6.2] [Kuc03].

Proposition A.2.9. Let G be a locally compact group with a proper action 0 on a locally compact
Hausdorff space X. Let A be a G-Cy(X)-algebra and B a G-C*-algebra. Let (A,Eg,D) be an
isometrically G-equivariant unbounded Kasparov module with A represented nondegenerately on E.
Call the actions of G on A and E, a and U respectively.

Let @ A be the partial imprimitivity A®-A x,. G-bimodule of Theorem A.2.6. Define a right action
of C.(G,B) C Bx, G on C,(X)E by

(£f)(x) = / 9-Uy(€f (g7 )N Ac(g71) dulg) (€€ CX)E, f € C.(G, B))
G

and a C,(G, B)-valued inner product by
(€ 1&)(9) = (&1 | Uba)Aglg™)?  (&,& € C(X)E).

The completion of C,(X)E is a Hilbert B X, G-module C,(X)E.
Suppose that there exists a cut-off function for the action of G on X such that cdom D C dom D
and [D, c| extends to an adjointable operator. Define the subspace

= {/ 92-1(C)f(h‘l)Ac(h‘1)1/2du(h)’ fe CC(G)}
G

of continuous functions on X. The Kasparov product
[GA] ®A>4,G jg([(A7EB7 D)]) € KKn(AGa B Ay G)

is represented by

(AC, C(X)Eg, o D)

where we define D to be the closure of D on X dom D.
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Proof. First, the descent of (A, Eg, D) is

(A Ay G: (E Ay G)Bx]TGa D)

Let p. € M(Cy(X) x,. G) be the projection (A.2.5) associated with the cut-off function C. By Theorem
A.2.6, A=~ p(Ax,.G). Because A is represented nondegenerately on E, and so A X, G represented
nondegenerately on E X, G,

GA ®A><TG (E Ay G) = p(A Ay G) ®A><TG (E Ay G) = p(E Ay G)

For ¢ € C,(G, E),

(p£)(g) = / cap(€) D ()20, £(h g)du(h).
G

Because (A, Eg, D) is isometrically equivariant,

(D, pl€)(9) =/[D,cah(C)AG(h‘l)l/Q]Ugé(h‘lg)du(h)
G

= [ (IDslan(e) + can((D.c) Ag(h ™) 2Ue(h g)d(h)
G

and so [D,p,] extends to an adjointable operator.
There is a map ¢ : C,(X)E — C,(G, E) C E x, G given by

$(&)(g) = cU,(§)Ag(g1)'/?

whose range is dense in p(E x,. G). By similar computations to the Proof of Theorem A.2.6, one can
check that ¢ extends to a Hilbert B X, G-module isomorphism ¢ : C.(X)E — p(E x,. G). In particular,
for n € C.(G, E) we have

6~ (pen) = /G 05 () U, ((h 1)) A (1) 2dpu(h).

By [LRV12, §3.3], the Kasparov product
[“A] ® 4y ¢ 77 ([(A, Eg, D)) € KK, (A% Bx, G) (A.2.10)

is represented by
(AG’p(E Ay G)BNTG’pcbpc)'

For nf € dom(D)C.,(G) C dom(D),

o (p.(nf)) = / 92-1(C)f(}fl)Ag(hfl)l/zdu(h)n € Xdom D
G

Passing through the module identification,

also represents the product (A.2.10). O
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A.3 Fractional powers of positive operators on Hilbert C*-modules

The proof of Theorem A.3.4 below can be found for the Hilbert space case in [KZPS76, Theorem 12.5].
We include a proof in the generality of Hilbert modules, beginning with a few basic Lemmas.

Lemma A.3.1. Let A and B be closed densely defined operators on a Banach space X. If the product
AB with domain dom(AB) = {{ € dom B | B € dom A} is densely defined then AB is closed if either

e A has everywhere defined and bounded inverse, or

e B is everywhere defined and bounded.
Proof. Take the case that A is invertible, so that dom A = A™' X. Suppose that (£,,),cny € dom(AB) =
{x € dom B | Br € A~ X} such that £, — £ and AB¢,, — n as n — 0o. Because A~! is bounded,
B¢, = ATAB¢, — A7ln. As Bis closed, £ € dom B and B¢ = A7'n. So ¢ € dom(AB) and
AB¢ = AA~'n = 5 and we conclude that AB is closed.

Take the case that B is bounded. Suppose that (¢,),cxy € dom(AB) = {z € X | Bx € dom A}

such that £, — £ and AB¢,, — n as n — co. Because B is bounded, B¢, — B¢. As A is closed,
B¢ € dom A (meaning that £ € dom(AB)) and ABE = 7. Hence, AB is closed. O

Lemma A.3.2. Let A and B be closed densely defined operators on Banach spaces X, and X,. Let T
be a bounded operator from X, to X, with Tdom B C dom A. Suppose that B is invertible (so B~! is
everywhere-defined and bounded). Then ATB™! is everywhere-defined and bounded.

Proof. By construction, AT B! is defined everywhere. By the closed graph theorem, it is bounded if
and only if it is closed, which it is by Lemma A.3.1. O

We also recall a basic fact about the norm on a Hilbert module.

Lemma A.3.3. Let B be a C*-algebra and E a Hilbert B-module. For £ € E,

®
€l = sup sup 1€ ®nlpe_m_
mesned, Nl

where B is the set of equivalence classes of unitary representations of B. For T € Endy(E),

|T|enas(z) = sup |T ® 1 pes, u,)-
[rleB

Proof. By e.g. [RW98, Theorem A.14],

lel = g1 &1 = e 1 92 = sup It | 921
€onlcon'™ _ €@ nl

_ €12l _
= sup sup ——————— = Sup sup = sup sup
w ned, |l T meH, Il w ner, |1

Next, note that |T'® 1| gy g ) < |T|gna*(z)- On the other hand,

| T€@n]
1€l SUPx SUPyeh, ol IT€ @l
1T na () = sup T2 = e - < supsup sup < sup |7 ® U p(ze,n,)
gEE ”EHE ¢eE supﬂsupneH Tl ¢eE ™ neH, H§®77” ™

and we obtain the required equality. O
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Theorem A.3.4. c¢f. [KZPS76, Theorem 12.5] Let A and B be positive reqular operators on Hilbert B-
modules E| and E, respectively. Let T be an adjointable operator from E, to E;. If Tdom(B) C dom(A),
then Tdom(B®) C dom(A%) for any 0 < a < 1. If, in addition, there exists an M > 0 such that, for
all £ € dom(B),

|ATE) < M| BE], (A.3.5)

then
|A*TE| < M| T|' | B*¢].

In particular, if B is invertible,
|A*T B~ < [ATB~H|*| T~

Proof. By considering the direct sum E; @ E,, if necessary, we can without loss of generality assume
that £, = E, =: E.

We will begin with the case of A bounded and adjointable and B invertible. In this case, a bound
of the form (A.3.5) always holds, the best available bound being given by M = |ATB~!|. For any
0 < a <1, A* is adjointable and B® is invertible. Let 7 : B — B(H,) be an irreducible representation
of B and let £ € E, ®, H,.. Define the holomorphic function

frzm (BT (A 1)*(T®1)(Bel)*)E?
on the strip where 0 < R(z) < 1. We have
fR) <A (T®1)(B®L)FI(A®1)*(T®1)(B®1)~?|.

For 8 € R,
fL+8) < (A (T ®1)(B®1)|* < |ATB!|?

and

[f(B)] < T & 1> < [T
By Hadamard’s three-line theorem, we obtain that
[(A®1D)*(T @ 1)(B® 1)~ *E*I¢]7* = |f(a)] < [ATB~H|*|T|*~>

for 0 < a<1. Hence (A 1)*(T®1)(B®1)~%| < |ATB|*|T|'~. Assuming further that o # 0,
so that A“ and B~ are well-defined as adjointable operators on FE,

AT B~ |gna*(m) = sup |A*TB™* ® 1 p(pg, u,) < [ATB~H*|T]'7.
[r]eB

For ¢ € dom(B%),
|A°TE| < [A*TB*||B¢| < [ATB~ T~ B*¢]

as required.

Now consider the case of general A and B when the bound (A.3.5) applies. As in the previous
section, let (¢,,)nexy C C.(R) be a sequence of positive functions, bounded by 1 and converging
uniformly on compact subsets to the constant function 1. Let

1
A, =Ap, (A) Bn:B—i—ﬁ (n > 0).
The operators A,, are bounded and adjointable and B, are invertible. For n € dom A and £ € dom B,

|Apnl < A0l 1BE] < B,
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and so

14, 7€l < M| B,£].

As we have seen, for 0 < a < 1,
[ARTE] < M| T BRgl (& € dom(BY) = dom(B®)).
The sequence ¢,,(A)*TE¢ — TE as n — oo by Theorem IM.1.16. The bounded functions
z (z+1/n)* —x®
converge uniformly to zero as n — oo, hence BY¢ — B*¢, again by Theorem II.1.16. Then

sup |A%p,, (A)*T¢| = sup [AZTE| < sup M*|T['~| B3] < oo.

Because A® is a closed operator, T¢ € dom(A®) and ASTE = A%p, (A)*TE — ATE as n — oo.
Taking the limit as n — oo, we find that for £ € dom(B®)

| AT < M|T[' = B¢].

For the case of general A and B with T'dom(B) C dom(A) but without the bound (A.3.5), we let
B, = B+ 1. As B, is invertible, for £ € dom(B)

|ATE] < |AT B[ Bi€.-

We have shown that T'dom(B{*) C dom(A®) and, as dom(B;) = dom(B), we are done.

O

A.3.1 A nearly convex set from relatively bounded commutators

A subset S C R"™ is nearly convex if the_re ezists a convex subset C C R"™ such that C C S C C
[MMW16, Definition 2.1]. (Remark that S = C is convex.)

Theorem A.3.6. Let A and B be reqular operators on a Hilbert B-module E, such that A is self-adjoint,
B is positive and invertible, and A and B commute on a common core. Let T € Endz(E) and define
the subset S C R? as consisting of (o, B) € (0,00) x [0,00) such that T preserves dom A|A|~1* and

[AJA|7H+e, T]B~F

extends from dom A|ﬁl|f1+a to an adjointable operator on E. The subset S is nearly convexr. Provided
that S is nonempty, S contains {0} x [0, 00).

For the proof, we compile a couple of Lemmas.
Lemma A.3.7. ¢f. [GBVFO01, Lemma 10.17] Let A be a self-adjoint regular operator on a Hilbert
B-module E. Let T € Endp(E) preserve dom A and have [A,T] extend to an adjointable operator.
Then, for any a € (0,1) and y € R, T preserves dom A|A|1T* = dom A|A|71**¥" = dom |A|* and
[A|A|—1+a+yi, T]

extends to an adjointable operator and

sup | cse LT 14| A] 1ot T < oo,
yeR
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Proof. Let (A) = (1 4+ A*A)'/2 = (1 + |A|?)'/2 . First, note that
[(A)+91, ] = —( Ay [(A) o, T)( )i,
By the integral formula (I.0.5) and using [CP98, Lemma 2.3|, on dom A,

(actyi)

Ay T A = T [T A (o 1 A7) )
0
- (atyi)m oo )
S / NS4 (A4 1+ A2) LA, TI(A +1 4+ A2)1
0

+(A+ 1+ A2)7A, TJAN + 1+ A2)71) (A)*d).
The integral is norm-convergent and we obtain a bound

[t = el

(a z)7r
 lsin = _\/ A% (A + 1+ 4274, T+ 1+ 427
+H U+ 1+ A2 |4, T AgA) (A + 1+ 42) 71| ) d
. (atyi)w
o Isin =3 ‘2||AT||/ AE (A +1)-3+ad)

22 T(1—a)
mm”[ATM.

= y/cosh(yr) — cos(an)
Next, with F, = A(A)~1
[Fa(A)H, T = [Fy, TI(A)HY + Fy (A)> Vi [(A) o7, T)(A)>+v?

so that
[[Fa (A, 7| < [[[Fg, THA® | + [[(A)[(4) o, a(A)@ |

< C,(1+ | sin 22| ||[D, S|(D) |

for some constant C/,, using also Theorem 1.0.6. Hence [(A)**¥* T] extends to an adjointable operator.
Next,

—14+a+yi __ —1+a+ys
| z(z)

—14+a+yi __ —14+a+yi
| (z)

= |z|||z

< (Jol*| (2l (@) 1) = 1| + Jzl|lof 1o — (@)1 ) |2

< Jol*[1 = (Jal (@))% | + [oflo| -+ — (@)1,

’w\x

Now

= /(1 — cos(ylog(||(z)1)))? + sin(ylog(|z[(z)~1))?

= /2 — 2 cos(ylog(|z|(z)1))2
< |y|(log(z) — log|x|)

1= (lz|{z) ")

since |1 — cosd| < 362. One can check that there exist ¢, ¢, > 0 such that |z|*(log(z) — log|z|) < ¢;a
and \x|‘|m\*1+°‘ — (m)*”"‘ < cya. Hence

‘—1+a+yi _ x<x>—1+a+yi

<C"a(1+y|)

‘x|x



A.3. Fractional powers of positive operators on Hilbert C*-modules 207

for some C” > 0 and therefore

‘A|A|—1+a+yi _ FA<A>a+yi

< C"a(1+ Jy)).
Hence
[AJA] 1o ) < [y ()t |+|| A!Ar1+a+w—FA<A>a+m af
< 021+ 258219, 101 + 2071 + T

and [A]|A|71t2+¥¢ T] extends to an adjointable operator. We finally obtain that

SHPICSC‘”—MIII[A!AI Pty T < oo

yeR
as required. O
Proposition A.3.8. Let A and B be reqular operators on a Hilbert B-module E, such that A is

self-adjoint, B is positive and invertible, and A and B commute on a common core. Suppose that, for
some a; > 0, an element T € End};(E) preserves dom A|A|~1T*1 and that, for some B; > 0,

[AJA[" e, T B~

extends from dom A|A|~1T™1 to an adjointable operator on E. Then, for any 0 < ay < oy and
By > agfl , T preserves dom A|A|71*2 and

[AJA["1*e2, T]B~P

extends to an adjointable operator.
Suppose, further, that, for some ag > ay, T preserves dom A|A|~1*%s and that, for some 33 >0,

[A]A]7t*es, T B
extends to an adjointable operator on E. Then, for any o < ay < ag and

(a3 —ay)B + (g — ay) B3
182 > a3 - Oé]_ )

T preserves dom A|A|~1F*2 and
[A|A]7t e, T] B~

extends to an adjointable operator.

Proof. First, noting that dom A|A|~'T* = dom |A|* for all @ > 0, by Theorem A.3.4, T preserves
dom A|A|71 for all @ < ay. Second,

[AJA]7He, T] B0
is bounded for all 8 > ;. Third, since A and B commute on a common core,
[AJA[71+, T]B~Fr = [A|A|~H, TB~A]
extends to an adjointable operator. By Lemma A.3.7, the operator
[AJA| v T = [AA] Mk, T) B
is bounded for any o] € (0,1) and y € R, with

M, += sup| csc UL A A7, T < oc.
yeR



208 Appendiz A. Matched operators and other devices on Hilbert C*-modules

Fix o] € (0,a;). Let 7 : B — B(H,) be an irreducible representation of B and let n,{ € E®, H,
with £ € dom(A) ©® H,. Define the holomorphic function

[z esc 0‘/12” M [(A®1)|A® 1] (T @ 1)|(B® 1) F12¢)

on the strip where 0 < fR(z) < 1. We have
£(2)] < ese L In][[(A® 1)|A® 1|71+1*(T' ® 1)|(B ® 1)~"1%¢|.
For y € R,
F(L+yi)| < | ese T ) |([A|A]H+ei+eiviT| B-P1 @ 1) (B ® 1)~ Prvig| < M nll€l

and

[F i)l < 2[T[nllEl-

By Hadamard’s three-line theorem, we obtain, for a, < of that

esc 2% (n | [(A@1)|A@ 17T @ 1)](B@ 1) A1o2/2g)| = | f(22)] < M3 (2T]) 12/ ] ¢]

/7
2 g

for 0 < a < 1. Hence, putting n = [(A® 1)|A® 1|77 (T @ 1)|(B ® 1) Frez/aig,

(07

/ ’
Inl? < sin %Maf/al e 1

and so

2 [e7

Inll < sin 5= M2 7| =22/ g

By the density of dom(A) © H, in E®, H,_,
l(A®1)[A® 175+ (T @ 1)](B & 1)1/ < sin 247 M 2/ 4| T|1-e/ef
1

Restricting to 0 < ay < @} so that |[A|717%2 is a well-defined as adjointable operator on E,

[[AJA| e T) B2/ g 4o ) = sup [AJA] 2 T]B~%1%/* @ 1| pgg_n,)
[rleB

< gin 227 Z‘[az/a'l ”Tlll—az/ai
= 2 o )
By making a suitable choice of ], we obtain that

[AlA| e, T)B P

is bounded for any a, < o; and By, > Bi05/a;.
For the second part, fix o] € (0,a;) and aj € (0,a3). Let 7 : B — B(H,) be an irreducible
representation of B and let 7, € E ®, H, with £ € dom(A) © H,. Define the holomorphic function

[z ese LU | [(AQ 1) A @ 1|4 1-+edx(T @ 1)](B @ 1) A9 fazg)

on the strip where 0 < fR(z) < 1. By similar machinations to the ones above, we obtain that

(ah—cg)B1+(ag—a))Bs

[A|A|7*T|B o5-e]

is bounded for af < a, < aj. By making suitable choices of o] and «aj, we obtain that

[A|A]7t e, T] B~

0‘3*042)51+(042*a1)ﬂ3_ ]

. (
is bounded for any a; < ay < a3 and [y > p—
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Proof of Theorem A.3.6. Define the subset C of («, 8) € S such that, for all y € R,
[A‘A‘_1+O‘+iy, T]B—ﬁ
extends from dom |A|® to an adjointable operator on E and

sup | csc LT[ A] A] ety T < oo.
yeR

Then Lemma A.3.7 says that S C C. That C is convex follows from the Proof of Proposition A.3.8. [

A.3.2 A form condition for relatively bounded commutators on Hilbert C*-modules

Lemma A.3.9. Let D be a self-adjoint, regular operator on a right Hilbert B-module E and a € Endp(E).
Then adom D C dom D if and only if

X ={¢( €domD | a¢ € dom D}
is a core for D and, for some constant M > 0,
|Dag]| < M|(D)¢]|
forall £ € X.
Proof. Suppose that adom D C dom D. Then X = dom D is a core for D. For £ € X = dom D,
| Dag]| = | Fp(D)a(D)~(D)¢]l < [{D)a(D)~*[I(D)¢].

Suppose, on the other hand, that X is a core for D, and the bound applies. Let £ € dom D and
choose (¢,,)2°; C X converging to £ in the graph norm. This means that (£,,)5°; converges to £ and
(DE,)se, converges to D¢ in the norm on E. Because

|Dag,, — Dag,, || < M|(D)(&,, — &)l

and (a&,)5°, converges to a& in the norm on E, (a§,,)22; is Cauchy in the graph norm, converging to
aé € dom D. Hence, adom D C dom D as required. O

Proposition A.3.10. Let D be a self-adjoint, regular operator on a right Hilbert B-module E and a €
End3(E). Then adom D C dom D if and only if, for every irreducible representation w: B — B(H™),

a™ dom D™ C dom D™
and sup |D™a™(D™)7!| < oo.
Proof. By Lemma A.3.9, the subspace
X ={¢€domD |af € dom D}
is a core for D if and only if a dom D C dom D and for some constant M > 0,
IDag] < MI(D)e]

for all £ € X. By [KL12, Theorem 3.3] and [KL17, Theorem 2.1], X is a core for D if and only if, for
every irreducible representation 7 : B — B(H™), the algebraic tensor product X ©z H™ is a core for
D7. The subspace X ©g HT™ is equal to

XOopH " ={(®nedomDOH" | (a®1)(®nedomDOH_}
={({e€domDOH"|a"¢ €dom DO H"}.
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Suppose that adom D C dom D. Then X © 5 H™ is a core for D7, for all irreducible representations 7 of
B, and | Da&|| < M||(D)¢|. By Lemma A.3.9, a™ dom D™ C dom D™ and so (Da{D)~!)r = D"a™(D™)~!.
Furthermore, by Lemma A.3.3,

sup [D7a™ (D)~ = | Da(D)~| < oo
[rleB

as required.

On the other hand, suppose that a™ dom D™ C dom D™ and sup_ [(D™)a™(D™)"'| = M < cc. By
[Pie06, Lemme 1.15(1)], the graph &(D™) of D™ is equal to (D) @ g H™, where € (D) is the graph of
D. Hence, using also the regularity of D,

gD )N(EOpHT )@ (EOp H™)) =%(D)®p H"N((E® E) Op H™)
(D)®p H™N((9(D) 0 H™) & (¥(D)* ©p H™))
D

(D)o H™.

g
g

Projecting onto the first terms of €(D™) and & (D) in the direct sums E@® F and (E® E) @ H”, we
find that
dom D" N(E Gy H™) =domD Oz H™.

Noting that a"(E Qg H™) = (a® 1)(F ©g H™) C E©g H™, we find that
a™(dom D ©g H™) = a(dom D™ N (E O H™)) CdomD O H™

and
X@B Hﬂ' :dOIIlD@B Hﬂ-,

which is a core for D™. Hence, X is a core for D and so adom D C dom D. Furthermore,

D"
Dag] = sup sup 1277 E@ 0
™ neHT Il

D™a™ (DT —1 D™
 qup sup 127007 DT E @ )]
® meHT [l

D7T
< sup [D7a™ (D7) 1| sup LPUES W]
T neHr ul

< Msup sup IKDT)(E @ m)|
m meH" ]
= M|(D)¢|,

by Lemma A.3.3. O

Proposition A.3.11. c¢f. [BR87, Proposition 3.2.55] Let D be a self-adjoint, reqular operator on a
right Hilbert B-module E. Let 0 < a < 1. For a € End3(E), the following conditions are equivalent:

1. adom D C dom D and [D,a](D)~* is bounded on dom D(D)~® = (D)"1**E; and
2. the B-sesquilinear map ¢ : dom D X dom D(D)~“ — B given by
@ : (&) = (DE| a(D) ) g — (£ | aD{D)"*n)p

is bounded, meaning that sup, . W < 00.

When these conditions are satisfied, p(&,m) = (£ | [D,al(D)"*n) and sup, . W = |[D, a](D)~%|.
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Proof. That condition 1. = 2. is a consequence of the identity

(D€ | a(D)2n) | — (¢ | aD{D)~*n) , = (€ | [D,al(D)em)
when adom D C dom D. We have

. Tl H77|| €m I€ml
by the Ca,uchnychwarz 1nequa11ty.
For the other direction, 2. = 1., let 7 : B — B(H,) be an irreducible representation and consider
the Hilbert space E™ = E® g H, and the operators D™ = D®1 and a” = a® 1. There is a sesquilinear
map ¢, : dom D™ x dom D™(D™)~* — C given by

Prt (&m) = (D7 | a(D™)"n) — (£ | a"D™(D™) ") .
The sesquilinear map ¢, is bounded because of the density of dom D ©Og H,_ in dom D™ and of

™

dom D(D)~® ©p H, in dom D™(D™)~“. There must, therefore, be an operator b, € B(E™) for which
0 (&mn) = (| byn) for all £ € dom D™ and n € dom D™ (D™)~*. Then

(D7 | a™(D™)~n) = (& | a™D™(D™)"*n) + (£ | bm)

which demonstrates that

§ (D¢ | a™ (D))
is continuous for fixed n € dom D™(D™)~*. We find that a™(D™)"*n € dom(D")* = dom D”. Hence,
a™ dom D™ = a™(D™)~* dom D(D™)~® C dom D™
and [D™,a"|(D™)~® = b, is bounded by

sup {—”ﬁ&”i’ ” n)l ’ ¢ € dom D™, np € dom D™(D™)~ a}

= sup {%’ge dom D ©p H,,n € dom D(D)~* ®®BH7,}
n

< sup { Hsﬁéﬁ” 77” )| ‘ ¢ € dom D,n € dom D(D)~ } .

Now, taking the supremum over all irreducible representations = € B,

sup [(D™)a™ (D)~ = sup [[{D7),a"(D")~! +a”|

[7]eB [r]leB

< sup (J[(D™),a™(D™) | + [a”])

[r]eB
<laf + sup (|[(D7),a™|{(D™)~| + [a™])
[r]eB
&1
< laf + sup { "75”” i )| ‘ ¢ € dom D,y € dom D(D)~ }
< 0.

We may, therefore, apply Proposition A.3.10 to obtain that adom D C dom D. Then the boundedness
of

o(&;n) = (D¢ | a(D)"*n) g — (& | aD(D)"*n) g = (£ | [D,a](D)"*n) 5
makes [D, a](D)"“ bounded. By Lemma A.3.3,
o e(&,m)
IID.}(D) ) = sup [b] < sup LN
(x]eB -’
establishing the required equality of bounds. O
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A.4 Functional calculus for higher order Kasparov modules

A.4.1 Closure under the holomorphic functional calculus

We begin by recalling a few details in the abstract. For an open subset U C C, we denote by O(U)
the holomorphic complex valued functions on U. For any subset S C C, we denote by 0(S) all those
functions holomorphic on some open set containing S.

Definition A.4.1. e.g. [LMNO5, Definition 2.1] Let A be a unital Banach algebra. A unital subalgebra
B of A is closed under the holomorphic functional calculus of A if, for every b € B and f € O(c 4(b)),
f(b) € B.

Lemma A.4.2. [LMNO05, Remark 2.2(c)] Let A be a unital Banach algebra. Let B be a unital subalgebra
of A which is closed under the holomorphic functional calculus of A. Then

A 'NnB=B"1

i.e. the invertible elements of B are exactly those elements of A which are invertible and lie in B. As a
consequence, og(b) = 0 4(b) for all b € B.

Proof. Let b€ A~ N B. Since 0 ¢ 0,4(b) and the spectrum is closed, the function f: A — A7! is in
O(o4(b)). Then f(b) =b ! isin B and so A~' N B C B~!. The opposite inclusion, B~! C A~' N B,
holds because the inclusion B C A is unital. Finally, for any b € B,

o) ={AeC|A-beB1}={NeC|A-be At} =0,(h)
as required. O

Lemma A.4.3. c¢f. [LMNOS5, Proposition 2.4(d)] Let A be a unital Banach algebra. Let B be a unital
subalgebra of A which is a Banach algebra, not necessarily with the inherited norm. If

A'nB=B"
then B is closed under the holomorphic functional calculus of A.

Proof. Let b € B. As in the proof of the previous Lemma, o 4(b) = o5(b) and so O(c 4(c)) = O(o(c)).
Let f € O(o4(c)) = O(og(c)). Since B is a Banach algebra, we can employ its functional calculus and
write

f0) = 5 $ SO =B dr e B
v
as required. O

Next, we see that closure under the holomorphic functional calculus is a transitive property.

Lemma A.4.4. Let A be a unital Banach algebra. Let B be a unital subalgebra of A which is a Banach
algebra, not necessarily with the inherited norm, which is closed under the holomorphic functional
calculus of A. Let C be a unital subalgebra of B which is a Banach algebra, not necessarily with the
inherited norm. Then C is closed under the holomorphic functional calculus of B if and only if it is
closed under the holomorphic functional calculus of A.

Proof. Let ¢ € C. Since o4(b) = op(b) for all b € B, O(c4(c)) = O(og(c)). What it means for C
to be closed under the holomorphic functional calculus is the same for A and B, viz. that, for all

f€0(04(c)) = 0(0p(c)), flc) € C. m
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Lemma A.4.5. c¢f. [BC91, Proposition 3.12], [LMNO5, Lemma 2.7] Let A be a unital Banach algebra.
Let B be a unital subalgebra of A which is a Banach algebra, not necessarily with the inherited norm.
Suppose that B is dense in A and

rp(0) < [bll4

for all b € B, where rg denotes the spectral radius in B. Then
A'nB=B"
and B is closed under the holomorphic functional calculus of A.

Proof. Let a € A~ N B. By the density of B in A, we can find an element b € B such that |1—ab|, < 1.
By the assumption, 75(1 — ab) < 1, meaning that 1 ¢ o5(1 — ab). Then 0 ¢ o5(ab) so ab is invertible
in B and

al=blab)"' €B

Hence, A~ N B C B~!. Because the inclusion B C A is unital, the opposite inclusion is also true. [
We now come to the setting of higher order Kasparov modules.

Definition A.4.6. Let D be a self-adjoint, regular operator on a right Hilbert B-module E. For
0<a<,let
Lip_(D) C Endp(E)

be the subspace consisting of elements a € End(E) for which adom D C dom D and [D, a](D)™“ is
bounded on dom D(D)~®. Let Lip; (D) = Lip_(D) NLip_(D)* C Endjp(E).

Note that, because [(D)~'| <1, Lip_(D) C Lip (D) for any a < §.

Proposition A.4.7. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E and let
a € Endz(FE) preserve dom D. Suppose that

[D, al(D)™
is bounded for some 0 < a < 1. Then, for 0 <~y <1 and 0 < B, such that a — B+ v < 1,
(D), al(D)~#

is bounded by
C||[D,al(D)~|

for some constant C depending on o — 8 and 7.

Proof. First,
(D)7, a)(D)~# = —(D)"[(D)~7, a](D)~#+".

By the integral formula (I1.0.5), on dom D, using [CP98, Lemma 2.3],

(DYY[(D)™, al(D)~F+7 = smﬂ% /00 A2(D)a, (A + 1 + D2)1(D)~B+1dA
0
= Smﬁ /Oo AT2(D)Y (D()\ +14D*>)7'D,a](A+ 1+ D?)™!

+ (A+1+ D*)7[D,a]D(A + 1+ D?)7) (D)=#*7d)
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The integral is norm-convergent, with a bound
|(D)*[(D)=7, a(D) =5+

< sin 5 / \-/2
0

™

X (||(D)’YD()\+1+D2)*1H ID, a)(D)=| [(D)y*#+ (A + 1+ D)7

+ (DY (A + 14 D)7 ||[D, al(D)~ || [(D)*—#*YD(A + 1+ D?) 1||)

2% |ip.alpy| / N2\ 4 1)7/2+0=B) 20
0

n T (T 1—a+pB—y
e 2. al(p)<|

m (e

< o0
so [(D)7,a](D)~” has the required bound. O

Corollary A.4.8. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E. For
0<y<1L,0<B<y,anda—F+v<1,

Lip,, (D) C Lipy, ({D)7)
Similarly, with 0 <y <1,0<B8<vy,anda—p+y<1
Lip,, ((D)°) C Lip,, ({(D)")
Proof. Let a € Lip_ (D). Then, by Proposition A.4.7,
(D), al{D)~*

is bounded for 0 <y <1,0< 8 <+, and a — 8+ v < 1. The real function
8/2
N (1+22)52 1+ z? /
1+ Q42282 \ (14 (1+22)M)/

KDY (D)) PP <1

is bounded by 1, so

and
(D), a]((D)")~F/" = (D), a]{D)~#(D)#{(D)")~#/1

is bounded. 0

Lemma A.4.9. c¢f. [BMR10, Lemma 1], [GM15, Proposition A.5] Let D be a self-adjoint, regular
operator on a right Hilbert B-module E. For 0 < a <1, Lip_ (D) is closed under multiplication and
can be equipped with a norm

I Ip,a s @ = lal + K, [[D; a] (D)~

for some constant K, > 0, making it a unital Banach algebra.
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Proof. First, it is clear that Lipa(D) is closed under addition and multiplication by C and shares a
unit with Endg(E). Let a,b € Lip_ (D); then abdom D C adom D C dom D. By the Leibniz rule,

[D, abl(D)™ [D alb(D)~ + a[D, b|(D)™*
—[D, a][(D)~%,b] + [D, al(D)~*b + a[D, b|( D)~
[ al(D)~*[(D)*,b{D)~* + [D,a]{(D)"*b + a[D, b|(D)~*
By Proposition A.4.7,
(D)<, b(D)~| < C|[D, b){D)~*|

where

Let K, > C. (In fact, for the purposes of the Proposition A.4.12, we also insist that K, > 20‘/2.) Then
I[D, abl{D)~| < |[D, al(D)~*[[b] + all|[D, b]{D)~*| + C|[D, a](D)~*[[|[D, b]{(D) |
so ab € Lip (D) and

lablp,o = llab]l + C[[D, ab]{D)~|
< lalol + C(I[D, al(D)~*[b]l + lalI[D, bD)~*| + CI[D, a]{D)~*|I[D, b](D)~*) |
= (lal + CIID, a]|{D)~) (6] + CI[D, bI(D)~*])
= lalp,alblp,q
Hence, Lip_(D) is a normed algebra.
To check completeness, let (a,, )52, be a Cauchy sequence in Lip_(D) (for the norm |- |p ,). Since,

| l&nas, ) < 161p,a> (a,)52; is Cauchy in Endp(E), converging to some limit a € End(E). For fixed
¢ € dom D and n € dom D(D)~ ¢

(D¢ | (a—a,)(D)"*n)p — (£ | (a—a,)D{D)™*n)p

converges to zero as n — oo. Further,

(D€ | (a—a,) (D)= *n)p — (¢ | (a — a,) D(D)~n) |
= lim [(DE| (a,, — a,){D) *n)p — (€| (ay, — a,)D(D) “n)|

< I€lken] tim sup 1D, @, — a, J(D) |-
Applying Proposition A.3.11, we find that a — a,, € Lip (D) and so that |a —a,|p , — 0. Hence a,,
converges to a € Lip_(D) in the norm | - |p ,- O

Proposition A.4.10. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E. Any
element a of the Banach algebra Lip (D) has the bound on its spectral radius

. 1
PLipy(p)(@) = lim. a"| 1 < Ja].

Hence, Lip,(D) is closed under the holomorphic functional calculus of Endp(E).

Proof. First, note the algebraic identity

[D,a"] = Zn:akfl[D, ala k. (A4.11)
k=1
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From this, we estimate

1D, a1 < > lal* 1D, allllal™™* < nlla]™|[D, a]l,

giving us
la™lpo < la|™ +nla|* "t |[D, ]| = |a]™(1 + nlal~*|[D, d]l).
Finally,
Tim "]}y < lim a1+ nfa] (D, a] )" = |a]
and the conclusion follows by Lemma A.4.5. O

Proposition A.4.12. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E. An
element a of the Banach algebra Lip_ (D) has the bound on its spectral radius

riip,(p)(@) = lim Ja"| 3% < alpye s

for any 0 < B <1 such that 2 —a~! < . Hence, Lipa(D) is closed under the holomorphic functional
calculus of Lipﬁ((D)a).

Stmilarly, any element a of the Banach algebra Lipa((D)‘s) has the bound on its spectral radius

. 1
T, (019)(@) = Hm a5 o < alipyes

for any 0 < B < 1 such that 2—a ™! < B. Hence, Lipa(<D>5) is closed under the holomorphic functional
calculus of Lipﬁ((D)o“s).

Proof. First, using (A.4.11), we estimate

D, a"|(D)~=|| < Xn: la* | [[[D al(D)=| [[{D)*a"~*(D)=|
k=1

< ||[D, al{ a||Zuank t(Dya(D) "
= (D, a)(D)=| ” a” — la]”

|| Dy=<] — Jal
=01(II<D>°‘a<D =" —IIaII)

with ¢, = [[[D,al(D)~*| (|[(D)*a({D)~*] — ||a||)_1, provided that [(D)*a(D)~*| # ||a|. If, in fact,

[{D)*a(D)~*| = |al,
D, a" (D)~ || < [[[D, al{D)~* nfjal"~*

so that
. 1 _ _
Tim "]}l < lim a1+ nfa| (D, a] (D)= )/ = |al.

Otherwise,
la™p,a < lal™ + Koey ([(D)*a(D)=|" — a]™) = Kyey [[(D)*a(D)=||" + (1 = Kye)af™
If [(D)*a(D)~*| > |al, ¢, > 0 and

. n 1/n s @ —a||™ n\ — o —a
Tim a7 < lim (Kuey [(D)*a(D)= " + (1~ K,elal) = [(D)*a(D)~].
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If [(D)*a(D)~*| < |al, ¢, <0 and
: n|l/n : a —a||™ _ n\ _
Tim 0|7 < Tim (Ko, [(D)a(Dy " + (1 K,ep)lal”) = lal.
By definition,

la| <llalp)« s
for any a, 8. For 0 < 8 < 1, the real function

(1+ (1 + z2)>)p/2
(1 + x2)o/2

is bounded by 2°/2, so that
|((D))5(D)~=|| < 2°2
Then
[(D)*a(D)~| < [lall + [{D)*, a]{D)~
= lal + |(D)*, a]({D)*)~P((D)*)*(D)~*|
< lal + 2972 |[(D), a]{{D)*) 7|
< lla]l + K5l [(D)*, a]{((D)*)~?|
= ||a||<D>a,5
which is finite, by Corollary A.4.8, for « — af + o < 1 and a < 1. The conclusion follows by Lemma
A4,

For the second part, one can proceed in the same way, the only difference that being that one
should begin by estimating |[(D)?, a"](D)~|. O

Theorem A.4.13. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E. For any
0 <a <1, Lip_(D) is closed under the holomorphic functional calculus of Endp(E).

Proof. First, we shall construct a sequence (8,,)_; C [0,1) such that 3, = o, By = 0, and

2— 7:11 < Bn
Pick N > (1 —«a)~! and, with
(l—a)t-1
‘CTTN-1
let
5 —1_ 1 Z(l—a)’l—(n—l)c—l
" l—a)yt—(n—-1)c (1—a)t—(n—1)c
Because 0 < ¢ < 1,
1—a)t—(n—2)c
2 -2
Bnt l—a)t—(n—2)c—1
N l—a)yt—(n—1)c+(c—1)
1
1—
S T e —(n—1e
=B
Furthermore,
1 1
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as required. Now we have a chain of inclusions
i ~ B - BB i I, 8 *
Lip,, _, (D) C Lip, (D)%) C Lip, ((D)##) C - C Lip, _,((D) ) C End}y(B)
where each is closed under the holomorphic functional calculus of the next, by Propositions A.4.10 and
A.4.12. By Lemma A.4.4, we are done. O

A.4.2 Closure under the smooth functional calculus

The approach is originally due to [Pow75, Theorem 3], corrected by [BR76, §2], reproduced as [BR87,
Theorem 3.2.32]. An approach for dealing with higher derivatives is [BEJ84, Lemma 3.2].

Lemma A.4.14. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E. Let S be a
bounded operator such that Sdom D C dom D. Then e®dom D = dom D.

Proof. For a bounded operator T, the condition that T’dom D C dom D is equivalent to (D)T(D)~!
being everywhere-defined and bounded. Since e® = >_°° ¥ /k! converges everywhere,

eD)S(D) i (¢ D>S<D>—1)k /k! = (D) isk/k!w)—l = (D)e*(D)~!
k=0 k=0

is everywhere-defined and bounded, and e® dom D C dom D. Similarly,
eDY=SUD)H — (DYe~S (D)1
and e °dom D C dom D. Because e’e™° = 1,
dom D = e®e~®dom D C e dom D
and we obtain the required equality, e¥ dom D = dom D. O

Lemma A.4.15. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E. Let S = —S*
be a bounded operator such that Sdom D C dom D and [D, S] extends to a bounded operator. Then
[D, e’] has a norm bound H[D, eS]” < ||I[D, S|, so that |5 po < 1+]S|p.o-

Proof. We have
1 1
[D,e”] :/ ie(lgc)sDe””Sdac:/ e1=®)5[D, Se*du,
o 4z 0
which has norm bound

1 1
et < [ Jler=5] o, S]] da < [ 1D, 8)]l o = 1D, 5)]
0 0

as required. O

Lemma A.4.16. Let D be a self-adjoint, regular operator on a right Hilbert B-module E. Let S = —S*
be a bounded operator such that Sdom D C dom D and [D, S](D)~“ extends to a bounded operator for
some0<a<l For0<fg8<1,

I[D, eS)(D) | < |Slp.o sup |e*]|
z€[0,1] (

D)=,
and so e’ p , < (1+ ||S||D7a)supw€[071] ”6ESH<D>Q,B’ Furthermore,
o o< <15k s ],

and 50 | oy < (1+ ISl pp.a) 50Dy 1]
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Proof. We have
'd

dxe(l—w)SDezS<D>—adx

Q

(1=2)S[D, §]e*S (D)~ “dx
e1=®)5[D, S|(D)~*(D)*e* (D)~ “dx

el=98[D, S|(D)~ ([(D)*,eS|(D) = + €25 dx

This has norm bound

Vo= < [ o2 10,510y | (Jpre, es1epy] + =] )
< ||[D, S|(D)~| (1+/ |((D)*, e=5)(D ||da:)

< (D,5)(D)~| (Hsup (D), e=5)(D H)

[0,1]
< ||ID, SKD)~| (1+2ﬁ/2 sup H ) rS]((D)O‘)_6”> :
z€(0,1]
So, because of the choice Kz > 2012,
[e%p,0 = 5] + K, (D, e)(D)
<1+ K, ||[D,S|(D)~|| (1+Kﬁ sup ||[ ) ’”S](<D>">_ﬁH)
_1+K ” D S a” sup || ms”(D)aﬂ
<1+l sup e “’S||<D>aﬁ
< (14 18Ip.) sup le=ll
as required. Similarly,
[y, eS¢y~ | < [, eS| (D) =
< ||ipy, 83Dy (1 + sup (D “”7ewSJ<D>°”||>
< o, sioy=] (1+26/2 o 0.7
and
[ by, = €] + K, ||(D), e5]((D)7) |
<1+ K, (DY, S|(D)~| (1+Kﬁ N [ e$SJ<<D>M>ﬁH)

<A+ 0Skopa) sp =] .
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as required. O

Lemma A.4.17. Let D be a self-adjoint, reqular operator on a right Hilbert B-module E. Let S = —S*
be a bounded operator such that Sdom D C dom D and [D, S](D)~* extends to a bounded operator for
some 0 < a < 1. Then [D,e’](D)™* extends to a bounded operator.

Proof. Let N = |(1—«a)7'| + 1 and let (3,))_; C [0,1) be the sequence constructed in the Proof of
Theorem A.4.13, with 8; = a, By =0, and 2 — 3,1, < B,. As in the Proof of Theorem A.4.13, we
have a chain of inclusions

N-1
Lip, _, (D) C Lip, (D)) C Lip, (D)%) C - C Lip, _ (D)= %) C Endjy(B).

We now compute that

1e° .=,
<(1+|S sup e®15
(1 +1810,) sup [l 0,
<(1+]|S sup (14 z,|S|/pye e"1729
(1+181p5) _sup 1+ @Sk ) e
T1ToxT3S
< (1+41Sps,) xl,x;gi[o’”(l + 21 ]Sl pysr 5, ) (1 + 1 25| S ] pyousa 5, [|€72%2% H<D>mszss,g4
<@ +[Slp,g,) sup (14 z1[S[pysr, 5, ) (1 + @125[ S| pysez ) X
Tq1,&g,...T N_1€[0,1]
wn 1S
X (1 + L1Tg " Tn_2 ”S"<D>6162'"6N*2ﬂN71) ‘em1$2 e ‘(D)Blﬂz'-'ﬁwq,ﬁN:O
< (@+Slp,s,) sup (1 + 2]l (pyer g, ) (1 + 2172 S](pypaez g,) X -
T1,&g,...TN_1€[0,1]
X (142129 Ty ol Slipysrea-sn-2,p, )1+ 3129 TN 1S (D)sr162-85-1 ,—0)
= (1+[Slp,s, )+ ISlipyer ) (L + 1S (pyerea p,) X -
X (14 |S]pysrsz-on-2,gy )1+ |Slipysisz-snr gy—0)
N
= (1+1SIps,) [T+ 1Slipyer-5015,)
n=2
< o0
as required. O

Theorem A.4.18. cf. [BEJS}, Lemma 3.2] [BC91, Proposition 6.4] Let D be a self-adjoint, reqular
operator on a right Hilbert B-module E. Fiz 0 < a < 1 and let f be a |(1—a)~t| +2-times differentiable
function on R?® for some d > 1. (For a =0, we may take f to be only twice differentiable.) For any
pairwise commuting self-adjoint ay, ..., a4 € Lip_(D), we have f(ay,...,a,) € Lip (D).

Proof. Modifying f away from the joint spectrum of a4, ..., a,, without loss of generality, we assume
that fis compactly supported. With f the Fourier transform of f, we may write

flag,...,ay) = Gn)? / 6it1a1+"'+itdadf(t1, ey bg)dt™
]Rd

and
1

(D, f(ay, .., a9) (D)™ = W/Rd [D, eftrexttitasa (D)= f(ty, ... tg)dt"

Let N =|(1—a)"!]+1andlet (8,))_; C[0,1) be the sequence constructed in the Proof of Theorem
A.4.13. Because fis [(1 — a)~!] + 2-times differentiable, |¢,|* - |t |*a|f(¢;, ..., t,)| is integrable for
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ki +-+ky;<|[(1—a)™t|+2and so

If (a1, s aa)lp,a = 1f(a1, s ag)l + Ko D, f(ay, - s ag) (D)~

< o - |etraitFitaca|| £(t,, ... t,)|dt
1 [ e o
+Ka%/ H[D, elt1a1+ +ity d]<D> H‘f(tl”td)’dt
1 [® ' A
= % ||e7«t1041+--~+ztdad "D,a‘f(tl’ ’td)|dt
—0o0
1 [ d N J A
<gp |0 Dottt ) TIA+ 3 llghipyncnna )1, ol
—oo j=1 o =

< 00,

as required. O
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