
Groups and Their Actions in
Unbounded Kasparov Theory

Ada Masters

This thesis is presented
as part of the requirements
for the conferral of the degree:
Doctor of Philosophy (Mathematics)

Supervisor:
Prof. Adam Rennie

Co-supervisor:
Prof. Alan Carey

Associate supervisor:
Assoc. Prof. Anne Thomas (University of Sydney)

School of Mathematics and Applied Statistics
University of Wollongong

October 2025



Statement of originality

The greater part of the contents of §§I.1–3, Chapter III, and §A.1 has appeared in [MR25]. The greater
part of the contents of Chapter IV has appeared in [FGM25].

Declaration

I, Ada Masters, declare that this thesis, submitted in fulfilment of the requirements for the conferral
of the degree Doctor of Philosophy (Mathematics) from the University of Wollongong, is wholly my
own work unless otherwise referenced or acknowledged. This document has not been submitted for
qualifications at any other academic institution.

Ada Masters 1 October 2025

© 2025 Ada Masters. All rights reserved.



Contents

Introduction vii

I Pictures of KK-theory: what is known and a little more 1
I.1 Equivalence relations for KK-theory 4

I.1.1 Cobordism of higher order cycles and positive degeneracy . . . . . . . . . . . 6

I.2 Group-equivariant KK-theory 9
I.2.1 Uniform group equivariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I.2.2 Descent and the dual Green–Julg map . . . . . . . . . . . . . . . . . . . . . . 11

I.3 Quantum group–equivariant KK-theory 14
I.3.1 Uniform quantum group equivariance . . . . . . . . . . . . . . . . . . . . . . 16
I.3.2 Descent and the dual Green–Julg map . . . . . . . . . . . . . . . . . . . . . . 18

I.4 The Kasparov product 22

II Noncommutative-geometric group theory 27
II.1 KK-theory of group algebras 27

II.1.1 The Dirac, dual Dirac, and γ-elements . . . . . . . . . . . . . . . . . . . . . . 28
II.1.2 The Pimsner exact sequences for groups acting on trees . . . . . . . . . . . . 30
II.1.3 Induction from cocompact subgroups . . . . . . . . . . . . . . . . . . . . . . 32
II.1.4 Restriction to compact subgroups . . . . . . . . . . . . . . . . . . . . . . . . 35

II.2 Unbounded Kasparov modules from weights on groups 39
II.2.1 Length functions and weights on groups . . . . . . . . . . . . . . . . . . . . . 39
II.2.2 Fell bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
II.2.3 Two unbounded Kasparov modules from weights . . . . . . . . . . . . . . . . 50
II.2.4 Restriction and induction of weights . . . . . . . . . . . . . . . . . . . . . . . 54

II.3 Directed length functions from actions on CAT(0) spaces 57
II.3.1 Hadamard manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
II.3.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
II.3.3 CAT(0) cell complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
II.3.4 Pairing with a Dirac class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

II.4 The Kasparov product for group extensions 80
II.4.1 A family of semidirect products . . . . . . . . . . . . . . . . . . . . . . . . . . 87
II.4.2 The Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

III Conformal noncommutative geometry 93
III.1 Conformal transformations from a multiplicative perturbation theory 93

III.1.1 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
III.1.2 Technical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

iii



iv Contents

III.1.3 A multiplicative perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 101
III.1.4 The logarithmic transform: multiplicative to additive . . . . . . . . . . . . . 108
III.1.5 The singular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

III.2 Conformal group equivariance 111
III.2.1 The γ-element for the real and complex Lorentz groups . . . . . . . . . . . . 115

III.3 Conformal quantum group equivariance 120
III.3.1 The Podleś sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

III.4 Conformally generated cycles and twisted spectral triples 128
III.4.1 Descent and the dual Green–Julg map for conformal equivariance . . . . . . 133
III.4.2 An equivalence relation on conformally generated cycles . . . . . . . . . . . . 137

IV Parabolic noncommutative geometry 141
IV.1 Strictly tangled cycles 141

IV.1.1 Three motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
IV.1.2 Assembling a strictly tangled cycle into a higher order cycle . . . . . . . . . . 148
IV.1.3 Finite summability of strictly tangled spectral triples . . . . . . . . . . . . . 152
IV.1.4 Equivariance of strictly tangled spectral triples . . . . . . . . . . . . . . . . . 153

IV.2 Examples arising from differential complexes 155
IV.2.1 Hilbert complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IV.2.2 The Heisenberg calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
IV.2.3 Strictly tangled spectral triples for Rockland complexes . . . . . . . . . . . . 161
IV.2.4 The Rumin complex on contact manifolds . . . . . . . . . . . . . . . . . . . . 166

IV.3 Examples arising from the Kasparov product 170
IV.3.1 Group C*-algebras of nilpotent groups . . . . . . . . . . . . . . . . . . . . . . 170
IV.3.2 Spectral triples for crossed product C*-algebras and parabolic dynamics . . . 179

A Matched operators and other devices on Hilbert C*-modules 187
A.1 Hilbert C*-modules over spaces and algebras 188

A.1.1 Hilbert C*-modules over topological spaces . . . . . . . . . . . . . . . . . . . 188
A.1.2 Matched operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.1.3 Compactly supported states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.2 Proper actions, cut-off functions, and a partial imprimitivity bimodule 196
A.2.1 The unbounded assembly map . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.3 Fractional powers of positive operators on Hilbert C*-modules 203
A.3.1 A nearly convex set from relatively bounded commutators . . . . . . . . . . . 205
A.3.2 A form condition for relatively bounded commutators on Hilbert C*-modules 209

A.4 Functional calculus for higher order Kasparov modules 212
A.4.1 Closure under the holomorphic functional calculus . . . . . . . . . . . . . . . 212
A.4.2 Closure under the smooth functional calculus . . . . . . . . . . . . . . . . . . 218

Bibliography 223



Abstract
This thesis presents a number of new approaches to the treatment of group actions in unbounded

Kasparov theory. Its results are motivated by the desire to incorporate into spectral noncommutative
geometry several formerly problematic examples. We extend unbounded Kasparov theory to

encompass conformal group and quantum group equivariance. We use this, along with tools from
geometric group theory, to study the geometry of group C*-algebras and Fell bundles. We prove a

nontriviality result for Kasparov modules built from group actions on CAT(0) spaces. We also study
the geometry of group extensions using the unbounded Kasparov product.

We introduce a new multiplicative perturbation theory that enables us to treat conformal actions on
both manifolds and noncommutative spaces. As examples, we present unbounded representatives of

Kasparov’s γ-element for the real and complex Lorentz groups and display the conformal
𝑆𝐿𝑞(2)-equivariance of the standard spectral triple of the Podleś sphere. In pursuing descent for

conformally equivariant cycles, we are led to a new framework for representing Kasparov classes. Our
new representatives, conformally generated cycles, are unbounded, possess a dynamical quality, and

also include known twisted spectral triples. We define an equivalence relation on these new
representatives whose classes form an abelian group surjecting onto KK-theory.

We also develop a new framework for the treatment of parabolic features in noncommutative geometry,
in the form of the notion of tangled cycle. Tangled cycles incorporate anisotropy by replacing the
unbounded operator in a higher order cycle that mimics a Dirac operator with several unbounded
operators mimicking directional Dirac operators, allowing for varying and dependent orders in

different directions, controlled by a weighted graph. Our main examples of tangled cycles fit into two
classes: hypoelliptic spectral triples constructed from Rockland complexes on parabolic geometries and
Kasparov product spectral triples for nilpotent group C*-algebras and crossed product C*-algebras of

parabolic dynamical systems.
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Introduction

In this thesis we take as our starting point Connes’s programme for spectral noncommutative geometry
[Con94]. We focus on the unbounded picture of Kasparov’s bivariant K-theory, which we regard as the
backbone of noncommutative geometry. We resolve a number of previously outstanding conundrums
relating mainly to group actions. In pursuit of this we generalise the unbounded picture [BJ83] of Baaj
and Julg in a number of ways. An underlying motivation for the work in this thesis is the unbounded
Kasparov product [Kuc97] on which great progress has been made in approximately the past decade
by a number of authors, e.g. [Mes12, KL13, MR16, LM19, Dun22]. In particular, a starting aim of
this work was to understand the Kasparov product for badly behaved dynamical systems, a problem
arising in [BMR10]. In this we have been partially successful and we turn to it in the final section of
Chapter IV. Many of the techniques used in this thesis are applicable to the understanding of the
problem and we hope they will contribute to its broader solution.

Let 𝐺 be a locally compact group acting on a C*-algebra 𝐴. A primary goal of this thesis is to
understand the noncommutative geometry of the crossed product 𝐴 ⋊ 𝐺. One means of doing this
is to study the 𝐺-equivariant KK-theory of 𝐴 and then to apply Kasparov’s descent map [Kas88] or
the Green–Julg or dual Green–Julg maps. In following this thread we are led to a new understanding
of group equivariance in the unbounded picture. Equivariant unbounded KK-theory was studied
by Kucerovsky in his thesis [Kuc94] in the mid-1990s but has remained largely unexplored in the
intervening years. One reason for this is that Kucerovsky’s definition, although natural, fails to capture
all the degrees of freedom available in Kasparov’s bounded picture. Perhaps the easiest illustration of
the discrepancy is the Dirac spectral triple on a Riemannian manifold, equipped with the action of a
group. If the action is isometric, the Dirac operator is invariant. If the action is a conformal one, the
Fredholm module defined by the bounded transform yields a bounded equivariant Fredholm module,
but the corresponding spectral triple fails to be equivariant in the sense of Kucerovsky. The allowance
of conformal actions is a crucial feature of Kasparov’s equivariant KK-theory; for example, it was used
by Kasparov [Kas84], Chen [Che96], and Julg and Kasparov [JK95] to study the γ-element of the real
and complex Lorentz groups.

We address this puzzle in Chapter III with a new general framework which we refer to as conformal
equivariance. We do this by means of a novel multiplicative perturbation theory for abstract differential
operators. We also define conformal equivariance for the actions of locally compact quantum groups,
lifting the bounded picture due to Baaj and Skandalis [BS89]. This allows us to display the 𝑆𝐿𝑞(2)-
equivariance of the Podleś sphere, lifting a construction of Nest and Voigt [NV10]. Our techniques lead
to a new class of representatives of Kasparov classes which we call conformally generated cycles. These
new representatives include known examples of twisted spectral triples. In particular, the descent
map, when applied to conformally equivariant unbounded Kasparov modules, in general produces
conformally generated cycles instead of unbounded Kasparov modules. This applies to both group and
quantum group equivariance.

For the case of a compact manifold, conformally equivalent Dirac operators have been addressed
in the context of noncommutative geometry by Bär [Bär07]. A conformal change of metric has the
effect /𝐷  𝑘−1/2 /𝐷𝑘−1/2 on the Atiyah–Singer Dirac operator. By considering principal symbols,
the bounded transform /𝐷(1 + /𝐷2)−1/2 changes only by a compact operator. In §III.1, we give new
tools to identify two self-adjoint regular operators as having ‘close’ bounded transforms in much

vii
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more general circumstances. One interpretation of conformal actions and changes of metric is via
Connes and Moscovici’s twisted spectral triples [CM08]. One of the two main examples [CM08, §2.2]
of twisted spectral triples given by Connes and Moscovici is built from a multiplicative perturbation
𝐷 𝑘𝐷𝑘. The other main example [CM08, §2.3] [Mos10, §3.1] is built from a Dirac spectral triple
(𝐶0(𝑋), 𝐿2(𝑋, 𝑆), /𝐷) on a Riemannian manifold 𝑋, equipped with the conformal action of a discrete
group 𝐺. One extends the algebra 𝐶0(𝑋) to the crossed product 𝐶0(𝑋) ⋊ 𝐺 and

(𝐶0(𝑋) ⋊ 𝐺,𝐿2(𝑋, 𝑆), /𝐷)

becomes a Lipschitz regular twisted spectral triple. In §III.4.1, we will interpret this as the dual
Green–Julg map of a conformally equivariant unbounded cycle and show that such examples possess
well-defined bounded transforms without recourse to the Lipschitz regularity condition of [CM08,
Definition 3.1].

Another way of analysing the crossed product 𝐴 ⋊ 𝐺 is to view it as a quantum principal bundle
over the dual quantum group 𝐺̂. The vertical geometry of the bundle can be given as an unbounded
Kasparov 𝐴 ⋊ 𝐺-𝐴-module. A case where this is well understood is that of the group ℤ for which the
cross-product is a quantum circle bundle. Quantum circle bundles have been studied by a number of
authors and fitted into unbounded KK-theory in generality by Carey, Neshveyev, Nest, and Rennie
[CNNR11]. At the level of KK-theory, the vertical geometry of 𝐴⋊ℤ is given by the Pimsner–Voiculescu
extension class. For other discrete groups 𝐺 there is a well-known method for constructing a vertical
geometry for 𝐴 ⋊ 𝐺, originating in an idea of Connes. In [Con89], Connes builds a spectral triple for
the group C*-algebra 𝐶∗(𝐺) from the data of a length function on the group. Such a spectral triple
can be upgraded to an unbounded Kasparov module for the cross product 𝐴 ⋊ 𝐺. Although it has
been studied by many authors, this construction suffers from the serious drawback that because the
length function is defined to be positive, any resulting Kasparov module will always have trivial class in
KK-theory. Further, except perhaps in the case of the Connes–Thom isomorphism, the construction has
not been generalised to non-discrete groups. These are problems we resolve in considerable generality in
Chapter II. We work with matrix-valued weights on locally compact group 𝐺. Let ℬ be a Fell bundle
over 𝐺 which is fissured, a weakening of the saturation condition, generalising the spectral subspace
assumption of [CNNR11]. From a weight which is self-adjoint, proper, and translation-bounded, we
obtain a vertical geometry for ℬ in the form of an unbounded Kasparov module for the cross-sectional
C*-algebra 𝐶∗(ℬ) over the unit fibre 𝐵𝑒. 

In Chapter II we also provide a general method for constructing weights for a locally compact group
𝐺 from its action on a CAT(0) space. The weight is given by a directed length function. The CAT(0)
condition is a generalisation of non-positive curvature to geodesic metric spaces. Examples of CAT(0)
spaces include simply connected Riemannian manifolds of non-positive sectional curvature and trees,
buildings, and certain other cell complexes. The appearance of non-positive curvature in equivariant
index theory is credited to Miščenko [Miš74]; another early appearance is in the work of Luke [Luk77].
Kasparov made use of this idea in his construction of the dual Dirac and γ-elements for an almost
connected group [Kas88, Kas95]. An analogous construction was made for groups acting on trees and
buildings by Julg and Valette [JV84, JV87, Jul89] and Kasparov and Skandalis [KS91]. We discuss the
relationship of our construction of weights to this earlier work. We prove a quite general nontriviality
result for the Kasparov modules obtained from such weights which is applicable to manifolds, trees,
and complexes.

In Chapter II we also consider the building of a weight for a group extension from weights on the
constituent groups. This is a microcosm of the problem of the unbounded Kasparov product. For
some group extensions such as the universal cover of 𝑆𝐿(2,ℝ), the constructive unbounded Kasparov
product works well. Generically, however, the constructive product fails. We give two examples where
this occurs, in different ways, one a family of semidirect products, the other the Heisenberg group 𝖧3.
With some effort, for both of these the Kasparov product can be represented, using different techniques.
In the case of the Heisenberg group, we encounter a phenomenon reminiscent of sub-Riemannian
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geometry: the Kasparov product can be repaired by ‘squaring’ in one direction and thereby obtaining
a second order operator. This turns out to be an instance of a much more general phenomenon, which
we explore in Chapter IV. This order-2 spectral triple for the Heisenberg group 𝖧3 plays the rôle of
Chekov’s rifle in this thesis. We study its conformal properties in Example III.2.10, contextualise it in
Example IV.1.13, and finally generalise it to all nilpotent Lie groups in §IV.3.1.

In Chapter IV we extend noncommutative geometry to situations which have parabolic features.
We use the term parabolic to encompass both parabolic geometry of filtered manifolds [ČS09] and
parabolic dynamical systems [HK02, Chapter 8]. The key concept introduced in Chapter IV is the
strictly tangled cycle which is a new kind of representative for KK-theory. The idea is to replace the
Dirac operator in an unbounded Kasparov module with a finite collection of mutually anticommuting
self-adjoint regular operators. This allows us to treat situations where there may be different directions
with drastically different kinds of behaviour. We replace the usual bounded (or relatively bounded)
commutator condition with a collection of conditions determined by a bounding matrix 𝝐. Providing
that the bounding matrix satisfies the decreasing cycle condition, a higher order Kasparov module
can be constructed by adding the operators according to certain powers, giving the strictly tangled
cycle a well-defined class in KK-theory. Our definition of strictly tangled cycles was motivated in
the first instance by our desire to incorporate the Rumin complex of a contact manifold into spectral
noncommutative geometry, in which we have been successful.

Our examples of strictly tangled cycles come from two main sources: from Hilbert complexes, which
include Rockland complexes on filtered manifolds and the aforementioned Rumin complex, and from
unbounded Kasparov products, including for nilpotent groups, generalising the construction for 𝖧3
already mentioned, and for crossed products of parabolic dynamical systems.

In parabolic geometry [ČS09], the tangent bundle is filtered and the different tangent directions
capture different geometric features. One encodes the geometry through the structure of a graded
nilpotent Lie group on each tangent space. Analytically one can study a parabolic geometry through a
BGG complex [ČSS01, DH22] that replaces the de Rham complex. While the de Rham complex and
associated Dirac operators are well understood, and even form prototypical examples in noncommutative
geometry, BGG complexes are still not well understood analytically. The study of BGG complexes
is motivated by recent work [GH25] implying that the known natural candidates for general classes
of Heisenberg elliptic differential operators with interesting spectral noncommutative geometry have
trivial index theory. The analytic foundations for BGG complexes were developed by Dave and
Haller [DH19, DH22] building on ideas of Rumin [Rum94] on contact manifolds. At the level of
noncommutative topology, i.e. index theory, BGG complexes were recently studied by Goffeng [Gof24].
Understanding the spectral noncommutative geometry of parabolic geometries is of interest in order to
organise efficiently the differential geometric machinery into a global theory well adapted for studying
global invariants. A problem motivating such a machinery is that of finding non-trivial global invariants
of parabolic geometries. In fact, already for CR-manifolds this problem is non-trivial; see the prominent
work of Fefferman [Fef79]. For more general parabolic geometries, Haller [Hal22] has studied analytic
torsion building on the work of Rumin and Seshadri [RS12] for contact manifolds.

The unbounded Kasparov product was studied by Kucerovsky [Kuc94, Kuc97] and later phrased
constructively by Mesland [Mes12]. We give further details in §I.4. In somewhat technical terms, the
unbounded Kasparov product of an unbounded 𝐴-𝐵-cycle (𝐴,𝐸1,𝐵, 𝑆) with a 𝐵-𝐶-cycle (𝐴,𝐸2,𝐵, 𝑇 )
along a connection ∇ is the data (𝐴, (𝐸1⊗𝐵𝐸2)𝐶, 𝑆⊗1+1⊗∇𝑇 ) which under favourable circumstances
form an unbounded 𝐴-𝐶-cycle. There are functional analytic issues with 𝑆 ⊗ 1 + 1 ⊗∇ 𝑇 forming a
self-adjoint operator, which additionally needs to be regular in the Hilbert C*-module sense. Such
questions were addressed in [Mes12] under some technical restrictions which have since matured in the
important work of Kaad and Lesch [KL12, KL13] and Lesch and Mesland [LM19]. An issue that is
more delicate and has evaded a proper axiomatisation in unbounded KK-theory concerns the condition
of bounded commutators in the unbounded Kasparov product. There are natural examples arising
from dynamics [GRU19, GMR19] where 1 ⊗∇ 𝑇 does not have bounded commutators with a dense
subspace of 𝐴. Rather 1 ⊗∇ 𝑇 ends up being of ‘higher order’ in contrast to 𝑆 ⊗ 1 in the sense that
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commutators with 1⊗∇ 𝑇 are relatively bounded by (1+𝑆2)−1/2+1/2𝑚 for an 𝑚 ≥ 1 playing the role of
an order. This phenomenon occurs for Kasparov products arising from parabolic dynamics. An ad hoc
solution would be to inflate the spectrum of 𝑆 ⊗ 1 or dampen the spectrum of 1 ⊗∇ 𝑇 to compensate.
The aim of Chapter IV is to widen our view on spectral noncommutative geometry to allow for varying
orders of operators and potential anisotropies to persevere as a feature rather than as a bug.

A related issue stems from the early years of noncommutative geometry, when there was optimism
that quantum groups would be particularly well suited for noncommutative geometry [Con04, KRS12,
NT10]. The Podleś sphere, for example, is a quantum homogenous space with a well-studied standard
spectral triple [DS03]. We show it to be conformally equivariant in §III.3.1, building on the work of
Nest and Voigt [NV10]. While much progress has been made in low dimension, little is known in
higher dimension despite algebraic versions of BGG complexes [HK07] that have been studied in a
noncommutative geometry context by Wagner, Díaz-García, and O’Buachalla [WDGO22] and Voigt
and Yuncken [VY15, Yun18]. The fundamental problem lies precisely in the complications found in the
algebraic relations between the various ‘directions’ in a quantum group, a statement made precise in
the work of Krähmer, Rennie, and Senior [KRS12]. In fact, the problems arising in Krähmer, Rennie,
and Senior’s work relate to the Kasparov product, as discussed above. The methods of Chapter IV do
not directly apply since the above alluded to parabolic behaviour does not capture the wild, hyperbolic
features seen for quantum groups. We mention the connection, nevertheless, since our main definition
drew inspiration from the noncommutative geometry of quantum groups in the work of Kaad and
Kyed [KK25], and as a source for future investigations.

In a number of examples, strictly tangled cycles have a conformally equivariant behaviour. Unfortu-
nately, we have been unable to develop a satisfactory abstract formulation of conformal equivariance for
strictly tangled cycles. In particular, a refinement of the multiplicative perturbation theory of Chapter
III would be necessary to allow for power rescaling of abstract differential operators. Nonetheless, we
give a partial result and consider conformal equivariance in a number of examples.

The technical innovation which underpins Chapter III is a multiplicative perturbation theory for
self-adjoint regular operators on Hilbert modules. This perturbation theory relates the bounded
transforms 𝐷(1 +𝐷2)−1/2 and 𝜇𝐷𝜇∗(1 + (𝜇𝐷𝜇∗)2)−1/2 of 𝐷 and its multiplicative perturbation 𝜇𝐷𝜇∗,
for suitable 𝜇. Together with the well-known additive perturbation theory 𝐷 𝐷+𝐴 for (relatively)
bounded 𝐴, Theorem III.1.34 says, roughly, that any perturbation preserving the KK-class of the
bounded transform takes the form 𝜇𝐷𝜇∗ + 𝐴. We introduce several concepts making use of this
multiplicative perturbation theory, among which are:

• Conformal transformations between unbounded Kasparov modules, Definition III.1.2, and a
singular version, Definition III.1.38;

• Conformal group equivariance for unbounded Kasparov modules, Definition III.2.2;
• Conformal quantum group equivariance for unbounded Kasparov modules, Definition III.3.1;
• Conformally generated cycles, Definition III.4.1, providing a new picture of KK-theory, generalising

unbounded KK-theory.

Conformally generated cycles have a dynamical aspect in addition to a geometrical one. To capture
this, we use the idea of matched operators on Hilbert C*-modules, defined and studied in §A.1.2.
We show that this framework is adapted to all known examples of twisted spectral triples with well-
defined bounded transforms. Key features of our approach are the lack of a ‘twist’, in the sense of an
algebra automorphism, and a bounded transform which does not depend on any additional smoothness
condition such as Lipschitz regularity. We show in §III.4.1 that Kasparov’s descent map (and the dual
Green–Julg map) applied to group and quantum group conformally equivariant unbounded Kasparov
modules give rise to conformally generated cycles whose bounded transforms define the same classes as
the descent map (dual Green–Julg map) applied to the bounded transforms of the original modules.

A theme hovering in the background of this thesis, although not completely fulfilled, is the building
of spectral triples for dynamical systems in full generality. We do however make a significant step
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in this direction in §IV.3.2. A miniature version of this problem is presented and solved, if not in
the most elegant way, in §II.4.1. An aim for future work is to employ the machinery of conformally
generated cycles to this end.

✠ ✠ ✠

The building blocks of spectral noncommutative geometry are unbounded Kasparov modules, including
spectral triples. We begin Chapter I with the definition of bounded and unbounded Kasparov modules,
which latter we give in the generality of higher order Kasparov modules. In §I.1, we generalise
cobordism of bounded Kasparov modules, as defined by Cuntz and Skandalis [CS86], to unbounded
Kasparov modules. We show in Theorem I.1.15 that cobordism classes of unbounded Kasparov modules
form a ℤ/2ℤ-graded abelian group which surjects onto the usual KK-groups. In §I.2, we outline group
equivariance in the bounded and unbounded pictures, the former due to Kasparov [Kas88] and the
latter to Kucerovsky [Kuc94]. We mildly generalise Kucerovsky’s definition to our setting, and refer to
it as uniform equivariance; see Definition I.2.7. The terminology is to contrast with the conformal
equivariance of Chapter III. We show how the descent and dual Green–Julg maps work in the setting
of uniform equivariance. In §I.3 we study C*-bialgebra equivariance, following the treatment in the
bounded picture by Baaj and Skandalis [BS89]. We give a definition for uniform equivariance of
unbounded Kasparov modules which, to our knowledge, has not previously appeared in the literature
(except in the isometric case [GB16]). We again show how the descent and dual Green–Julg maps
work in the setting of uniform equivariance. In §I.4, we discuss the Kasparov product, presenting the
Connes–Skandalis conditions [CS84] for the bounded picture as well as the current state of the art
of the Kucerovsky conditions [Kuc97] for the unbounded picture. We also point out that the same
conditions suffice for the product in equivariant KK-theory.

In Chapter II, we build and analyse unbounded Kasparov modules from matrix-valued weights
on locally compact groups. In §II.1, as a preparation, we study the KK-groups 𝐾𝐾𝐺(𝐴,𝐶0(𝐺,𝐵)),
𝐾𝐾𝐺(𝐴 ⋊𝑟 𝐺,𝐵), and 𝐾𝐾(𝐴 ⋊𝑟 𝐺,𝐵) for a locally compact group 𝐺 and 𝐺-C*-algebras 𝐴 and
𝐵. We review Kasparov’s Dirac and dual Dirac elements for almost connected groups as well as
Pimsner’s six-term exact sequences for groups acting on trees. We also examine KK-theoretic Frobenius
reciprocity for cocompact subgroups. Finally, we point out a contrast between almost connected groups
and groups whose identity component is compact in how KK-theory behaves under restriction to a
compact subgroup. As a consequence, the groups 𝐾𝐾𝐺(𝐴 ⋊𝑟 𝐺,𝐵) and 𝐾𝐾(𝐴 ⋊𝑟 𝐺,𝐵) can behave
very differently.

In §II.2, we present our construction of spectral triples for group C*-algebras from matrix-valued
weights. After an initial study of such weights, we give an introduction to Fell bundles. For the
construction of unbounded Kasparov modules for Fell bundles, we introduce the fissuration condition,
which generalises saturation and the spectral subspace condition of [CNNR11]. We then exhibit two
constructions of Kasparov modules using these weights, related to one another by Baaj–Skandalis
duality. In Theorems II.2.24 and II.2.25, we prove

Theorem 1. Let 𝐺 be a locally compact group, 𝑉 a finite-dimensional complex vector space, and
ℓ ∶ 𝐺 → End𝑉 a self-adjoint, proper, translation-bounded weight. Let ℬ be a Fell bundle over 𝐺. If ℬ
is fissured,

(𝐶∗
𝑟 (ℬ), 𝐿2(ℬ) ⊗ 𝑉 ,𝑀ℓ)

is an isometrically 𝐺̂-equivariant unbounded Kasparov 𝐶∗
𝑟 (ℬ)-𝐵𝑒-module. Let 𝐴 be a 𝐺-C*-algebra.

Then
(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉 )𝐶0(𝐺,𝐴), ℓ)

is a uniformly 𝐺-equivariant unbounded Kasparov 𝐴-𝐶0(𝐺,𝐴)-module.

In particular, for ℬ the group bundle, we obtain a spectral triple for 𝐶∗
𝑟 (𝐺). In §II.2.4, we explain

how weights can be restricted to or induced from cocompact subgroups, partly in preparation for §II.4.
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In §II.3, we give an explicit construction of weights for CAT(0) groups. For points 𝑥 and 𝑦 of a
geodesic metric space 𝑋, we denote by 𝑣(𝑥, 𝑦) ∈ 𝑆𝑦(𝑋) the direction of the geodesic from 𝑥 to 𝑦 as it
reaches 𝑦, where 𝑆𝑦(𝑋) is the space of directions. In Proposition II.3.4, we prove

Theorem 2. Let 𝐺 be a locally compact group acting isometrically on a CAT(0) space (𝑋, 𝑑). Suppose
that at a point 𝑥0 ∈ 𝑋, the space of directions 𝑆𝑥0

(𝑋) is isometric to a sphere 𝐒𝑛−1 ⊆ ℝ𝑛. Let 𝑉 be a
Clifford module for the Clifford algebra 𝒞𝓁𝑛. Define the function ℓ ∶ 𝐺 → End𝑉 by

ℓ(𝑔) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0)𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0)

where 𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0) ∈ 𝑆𝑥0
(𝑋) ≅ 𝐒𝑛−1 ⊆ ℝ𝑛 ⊆ 𝒞𝓁𝑛 acts by Clifford multiplication on 𝑉. Then ℓ is

self-adjoint and translation bounded. If 𝐺 acts properly on 𝑋, ℓ is proper.

We also prove a nontriviality result for the resulting KK-classes by pairing them with a suitable
Dirac class. In Theorem II.3.7 we prove

Theorem 3. Let 𝐺 be a locally compact group acting properly and isometrically on a CAT(0) space
(𝑋, 𝑑). Let 𝐴 be a 𝐺-C*-algebra. Suppose that there is a complete subspace 𝑌 of 𝑋 such that

• every path component of 𝑌 is a convex subset of 𝑋 (𝑌 may have infinitely many path components.);
• 𝑌 is isometric to a spin𝑐 Riemannian 𝑛-manifold; and
• 𝑌 contains a neighbourhood of a point 𝑥0 ∈ 𝑋.

Let 𝑥1 ∈ 𝑋 be a point not in 𝑌 but with 𝑆𝑥1
(𝑋) isometric to a sphere 𝐒𝑚−1 ⊆ ℝ𝑚. Let 𝑉0 and 𝑉1 be

Clifford modules for 𝒞𝓁𝑛 and 𝒞𝓁𝑚 respectively, with 𝑉0 irreducible. Define the weights

ℓ0 ∶ 𝐺 → End𝑉0 ℓ1 ∶ 𝐺 → End𝑉
𝑔 ↦ 𝑑(𝑔−1𝑥0, 𝑥0)𝑣(𝑔−1𝑥0, 𝑥0) 𝑔 ↦ 𝑑(𝑔−1 ⋅ 𝑥1, 𝑥1)𝑣(𝑔−1 ⋅ 𝑥1, 𝑥1),

representing classes 𝜎𝐴([ℓ0]), 𝜎𝐴([ℓ1]) ∈ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)) and [𝑀ℓ0 ], [𝑀ℓ1 ] ∈ 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐴).
For any closed subgroup 𝐻 of 𝐺 preserving 𝑌, let 𝜂𝐻 ∶ 𝐶0(𝑌 ,𝐴)𝐻 → 𝐴 be the ∗-homomorphism given

by evaluating at 𝑥0, giving a class [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐻, 𝐴). For 𝐴 = ℂ, [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 /𝐻),ℂ)
is nonzero if and only if 𝐻 acts cocompactly on 𝑌.

If there exists a closed subgroup 𝐻 of 𝐺 such that 𝐻 preserves 𝑌 and acts by pin𝑐 automorphisms
and [𝜂𝐻] is nonzero then 𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺

𝑛 (ℂ,𝐶0(𝐺)) is nonzero and not equal to 𝜎𝐴([ℓ1]).
If 𝐺 itself preserves 𝑌, acts by spin𝑐 automorphisms, and [𝜂𝐺] is nonzero then 𝑟𝐺,1([𝑀ℓ0 ]) ∈

𝐾𝐾𝑛(𝐴 ⋊𝑟 𝐺,𝐴) is nonzero and not equal to 𝑟𝐺,1([𝑀ℓ1 ]).

We treat several examples, including Hadamard manifolds, trees and CAT(0) cell complexes,
illustrating the scope of our result. We relate our construction to Kasparov’s dual Dirac element for
almost connected groups and to the extension classes of Pimsner’s exact sequences for groups acting
on trees.

In §II.4, we discuss the problem of generalising the above constructions to group extensions. We
prove a general result and present one setting in which the unbounded Kasparov product succeeds
immediately, the universal cover of 𝑆𝐿(2,ℝ). We also exhibit two cases where the naïve unbounded
product fails but can nevertheless be repaired by different technical manoeuvres: the semidirect product
ℝ𝑛 ⋊ ℝ and the three-dimensional Heisenberg group 𝖧3. This latter example we return to in both
Chapters III and IV.

We begin Chapter III by considering conformal transformations between (higher order) unbounded
Kasparov modules in §III.1. The motivation for such a framework is conformal changes of metric of
Riemannian manifolds and the noncommutative torus, of which we give some details in §III.1.1. In the
simplest instance for unbounded Kasparov modules (𝐴,𝐸,𝐷1) and (𝐴,𝐸′, 𝐷2), these transformations
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are a pair (𝑈, 𝜇) with 𝑈 ∶ 𝐸 → 𝐸′ unitary and 𝜇 a bounded invertible endomorphism (which is even if
the module is graded) such that, for all 𝑎 in a dense subset of 𝐴,

𝑈 ∗𝐷2𝑈𝑎 − 𝑎𝜇𝐷1𝜇∗ (1)

is bounded. The Leibniz rule shows that those 𝑎 for which (1) is bounded naturally form a (not
norm-closed) ternary ring of operators, rather than a ∗-algebra. The implicit presence of ternary rings
of operators will be a feature of many of our definitions. For the technical results in §III.1.3, we require
that the ‘conformal factor’ 𝜇 be a bounded and invertible operator, although it need not have a globally
bounded derivative. We prove the following as Theorem III.1.4.

Theorem 4. Let (𝑈, 𝜇) be a conformal transformation from the order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷1) to the

order- 1
1−𝛼 cycle (𝐴,𝐸′

𝐵, 𝐷2). Then the bounded transforms (𝐴,𝐸𝐵, 𝐹𝐷1
) and (𝐴,𝐸′

𝐵, 𝐹𝐷2
) are unitarily

equivalent up to locally compact perturbation via the unitary 𝑈; that is

(𝑈∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎 ∈ End0(𝐸)

for all 𝑎 ∈ 𝐴. Hence [(𝐴,𝐸𝐵, 𝐹𝐷1
)] = [(𝐴,𝐸′

𝐵, 𝐹𝐷2
)] ∈ 𝐾𝐾(𝐴,𝐵).

On a noncompact manifold, this is not sufficient to describe all conformal changes of metric. One
technical issue which arises is that a complete Riemannian manifold, such as the hyperbolic plane,
may be conformally equivalent to an incomplete manifold, such as the unit disc, and therefore the
self-adjointness of a Dirac operator may not be preserved. With this caveat, we give in §III.1.5 a
framework modelled abstractly on the idea of an open cover extending the idea in (1).

We also show in §III.1.4 that the logarithmic transform 𝐷 → 𝐿𝐷 = 𝐹𝐷 log((1 + 𝐷2)1/2), due to
Goffeng, Mesland, and Rennie [GMR19], turns multiplicative perturbations into additive ones. In
Theorem III.1.37 we prove

Theorem 5. Let (𝑈, 𝜇) be a conformal transformation from the order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷1) to the

order- 1
1−𝛼 cycle (𝐴,𝐸′

𝐵, 𝐷2). Then the logarithmic transforms (𝐴,𝐸𝐵, 𝐿𝐷1
) and (𝐴,𝐸′

𝐵, 𝐿𝐷2
) are

related by the unitary 𝑈, up to locally bounded perturbation; in particular, 𝐴 is contained in the closure
of the set of 𝑎 ∈ End∗(𝐸) such that

(𝑈∗𝐿𝐷2
𝑈 − 𝐿𝐷1

)𝑎 [𝐿𝐷1
, 𝑎]

is bounded.

We then, in §III.2 extend the uniform group equivariance of §I.2 to encompass conformal actions,
based on the idea of conformal transformation in (1). This is necessary to include the full range of
equivariance encoded for bounded Kasparov modules, as indicated by the results of Bär [Bär07] and
explained using the example of the 𝑎𝑥 + 𝑏 group acting on ℝ. In Theorem III.2.4 we prove

Theorem 6. The bounded transform of a conformally equivariant higher order Kasparov module is an
equivariant bounded Kasparov module.

The logarithmic transform again changes multiplicative perturbations coming from conformal
actions to additive perturbations. In Theorem III.2.11 we prove

Theorem 7. The logarithmic transform of a conformally equivariant higher order Kasparov module is
a uniformly equivariant unbounded Kasparov module.

These results allow us to represent the γ-elements of Kasparov and Chen for the Lorentz groups
and of Julg and Kasparov for the complex Lorentz groups, in §III.2.1. We also give a genuinely
noncommutative example, the second order spectral triple for the C*-algebra of the Heisenberg group,
mentioned earlier, is equivariant for the dilation action.

In §III.3 we define conformal quantum group equivariance for unbounded Kasparov modules. The
main example to which we apply this framework is the action of 𝑆𝐿𝑞(2) on the Podleś sphere. In
Theorems III.3.3 and III.3.5 we prove
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Theorem 8. The bounded transform of a conformally quantum group equivariant unbounded Kasparov
module is a quantum group equivariant bounded Kasparov module.

Theorem 9. The logarithmic transform of a conformally quantum group equivariant unbounded
Kasparov module is a uniformly quantum group equivariant unbounded Kasparov module.

All of the generalisations we have considered so far are brought together in §III.4 wherein we
introduce conformally generated cycles. These unbounded representatives of Kasparov classes are
general enough to include known examples of twisted spectral triples, as we outline at the beginning
of §III.4, as well as the result of applying descent and dual Green–Julg maps to group and quantum
group conformally equivariant Kasparov modules as we see in §III.4.1, generalising the constructions
for uniform equivariance given in §I.2.2, in the group case, and §I.3.2, in the quantum group case.

Finally, in §III.4.2, we show that cobordism extends to an equivalence relation on conformally
generated cycles, and the cobordism classes of such cycles form an abelian group which surjects onto
the usual KK-group. As a special case, we define conformism of unbounded Kasparov modules, using
the framework of cobordism to turn the conformal transformations of §III.1 and singular conformal
transformations of §III.1.5 into an equivalence relation. We show also that conformism classes of
unbounded Kasparov modules are an abelian group which surjects onto the usual KK-group.

In Chapter IV, we generalise the unbounded picture of KK-theory in a different direction. We
extend the notion of a higher order Kasparov module to that of a strictly tangled cycle in Definition
IV.1.7 where the Dirac operator is replaced with a finite collection 𝑫 = (𝐷𝑗)𝑗∈𝐼 of self-adjoint operators
which satisfies an analogue of a mild ellipticity condition and an anticommutation relation. Our
generalisation of spectral triples we refer to as strictly tangled spectral triples or ST2s, and we focus
mainly on this case. The adjective strictly is to indicate that we assume the elements in the collection
to anticommute. We expect our results to hold under more general assumptions, e.g. when the
anticommutators are relatively small (see Remarks IV.1.9 and IV.1.19), but to reduce the technical
burden in Chapter IV we focus on the simpler case, which already enables the treatment of a number
of interesting examples. As mentioned above, a similar idea has appeared in the work of Kaad and
Kyed [KK20, KK25]. The these works respectively describe the metric geometry of crossed products
by ℤ and of 𝑆𝑈𝑞(2). Our main results are the following.

Theorem 10. Let (𝐴,𝐻,𝑫) be an ST2 with 𝑫 = (𝐷𝑗)𝑗∈𝐼 the finite collection of self-adjoint operators
and bounding matrix 𝝐 ∈ 𝑀𝐼([0,∞)). Consider the non-empty set

Ω(𝝐) ∶= {𝒕 = (𝑡𝑗) ∈ (0,∞)𝑛 ∶ 𝜖𝑖𝑗𝑡𝑖 < 𝑡𝑗 ∀𝑖, 𝑗}.

For 𝒕 ∈ Ω(𝝐), we define the operator

𝐷𝒕 ∶=
𝑛
∑
𝑗=1

sgn(𝐷𝑗)|𝐷𝑗|𝑡𝑗 .

If 𝒕 ∈ Ω(𝝐) ∩ (0, 1]𝑛, the triple (𝐴,𝐻,𝐷𝒕) defines a higher order spectral triple. If additionally the ST2

is (∞)𝑗∈𝐽-preserving, then the same holds for any 𝒕 ∈ Ω(𝝐).

The reader can find Theorem 10 as Theorem IV.1.16 below. We provide a number of examples of
ST2s throughout Chapter IV and study the role of the transform (𝐴,𝐻,𝑫) ↦ (𝐴,𝐻,𝐷𝒕). In §IV.1.1,
we give a flavour of our main examples, the Rumin complex on the Heisenberg group, and two ‘bad
Kasparov products’ involving the group C*-algebra of the Heisenberg group and a dynamical system on
the torus. These examples are revisited in further detail and generality in §§IV.2.4, IV.3.1, and IV.3.2.
We then proceed to study the finer analytical properties of ST2s, for instance finite summability and
equivariance properties. A number of interesting examples carry conformal actions. In the absence of
a well-behaved general framework, we discuss a ‘guess-and-check’ method for conformal equivariance
of ST2 in §IV.1.4, which we later see in play in §§IV.2, IV.2.4, and IV.3.1.
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Strictly tangled spectral triples also arise from Hilbert complexes [BL92]. We study ST2s arising
from Hilbert complexes in some detail in §IV.2, where the main example is that of Rockland complexes
on filtered manifolds. Describing the noncommutative geometry of filtered manifolds is a non-trivial
problem [Has14]. Of particular interest is to associate higher order spectral triples possessing further
properties with Rockland complexes. By choosing 𝒕 in Theorem 10 appropriately we can produce higher
order spectral triples from Rockland complexes either that are 𝐻-elliptic elements in the Heisenberg
calculus or that are differential operators. We summarize the results of §IV.2 in a Theorem.

Theorem 11. Consider a compact filtered manifold 𝑋 equipped with a volume density and hermitian vec-
tor bundles 𝐸𝑗 → 𝑋, 𝑗 = 0, ..., 𝑛. Assume that (𝐶∞(𝑋;𝐸•), d•) is a Rockland complex with all differen-
tials being differential operators. Then there is an associated ST2 (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝑫 = (d𝑗+d∗𝑗)𝑗)
as in Theorem IV.2.17. Moreover, for any 𝜏 > 0, 𝑫 assembles into an 𝐻-elliptic pseudodifferential
operator 𝐷𝜏 on ⨁𝑗 𝐸𝑗 of order 𝜏, defining a higher order spectral triple (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝜏).

In fact, the reader can find a version of Theorem 11 stated with conformally equivariant actions
as Proposition IV.2.25 below. To be somewhat more precise, assume that 𝐺 is a locally compact
group acting as filtered automorphisms on 𝑋 and that (𝐶∞(𝑋;𝐸•), d•) is Rockland and 𝐺-equivariant
with the action of 𝐺 on each 𝐸𝑗 being conformal (with respect to the volume density on 𝑋 and the
hermitian structure on 𝐸𝑗). In Proposition IV.2.25 below we show that if the conformal factors in
the different degrees are multiplicatively dependent (with respect to powers from Ω(𝝐)) then we can
assemble the associated ST2 (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝑫) into a conformally equivariant higher order
spectral triple.

A sobering observation is that, in practice, Rockland complexes equivariant for semisimple Lie
groups of rank > 1 will not have a scalar conformal factor for the action on each degree in the complex.
Our framework cannot be applicable to semisimple Lie groups 𝐺 of rank > 1. Indeed, by Theorem
III.2.12, Proposition IV.2.25 would give a 𝐺-equivariant finitely summable bounded Fredholm module,
which is impossible for a Lie group of rank > 1, as shown by Puschnigg [Pus11]. The obstructions in
higher rank are discussed in further detail in Remarks III.2.12 and IV.2.27.

Let us also mention another natural example of an ST2 built from the dual Dirac element of a
nilpotent group. If 𝐺 is a simply connected nilpotent Lie group, the image of the dual Dirac element
under the descent map 𝐾𝐾𝐺

∗ (ℂ,𝐶0(𝐺)) → 𝐾𝐾∗(𝐶∗(𝐺),ℂ) produces a K-homology class on the group
C*-algebra. We discuss in §IV.3.1 how computing this element explicitly at the unbounded level
produces an ST2. We summarize the result as follows.

Theorem 12. Let 𝐺 be a simply connected nilpotent Lie group of depth 𝑠 and 𝐻 be a cocompact, closed
subgroup (possibly 𝐺 itself). Choose a Malcev basis ((𝑒𝑗,𝑘)

dim𝔤𝑗/𝔤𝑗+1
𝑘=1 )𝑠𝑗=1 of 𝔤 through the lower central

series 𝔤1 = 𝔤, 𝔤2 = [𝔤, 𝔤],… , 𝔤𝑠. Let 𝐸 be an irreducible Clifford module for 𝒞𝓁dim𝔤, whose generators
we label ((𝛾𝑗,𝑘)

dim𝔤𝑗
𝑘=1 )𝑠𝑗=1. Then the collection (ℓ𝑗)𝑠𝑗=1 ∶ 𝐺 → Endℂ(𝐸) of matrix-valued weights given by

ℓ𝑗 ∶ exp𝔤
⎛⎜
⎝

𝑠
∑
𝑖=1

dim𝔤𝑖/𝔤𝑖+1

∑
𝑘=1

𝑥𝑖,𝑘𝑒𝑖,𝑘⎞⎟
⎠

↦
dim𝔤𝑗/𝔤𝑗+1

∑
𝑘=1

𝑥𝑗,𝑘𝛾𝑗,𝑘

gives rise to a strictly tangled spectral triple

(𝐶∗(𝐻), 𝐿2(𝐻,𝐸), (𝑀ℓ𝑛)
𝑠
𝑛=1)

with nontrivial class in 𝐾𝐾dim𝔤(𝐶∗(𝐻),ℂ) and bounding matrix 𝜖𝑖𝑗 = max{𝑖 − 𝑗, 0}. Moreover,
the dual Dirac element of a cocompact closed subgroup of a nilpotent Lie group can be realized the
Baaj–Skandalis dual of a strictly tangled spectral triple of the form above.

If the group 𝐺 is Carnot, it is possible to obtain a higher order spectral triple for 𝐶∗(𝐺) which is
conformally equivariant under the dilation action.
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In §IV.3.2, we show that parabolic dynamical systems [HK02, Chapter 8] give rise to crossed product
ST2s, generalising the constructions of [CMRV08, BMR10, HSWZ13, Pat14] for elliptic dynamical
systems. The following result appears as Corollary IV.3.18.

Theorem 13. Let (𝐶∞
𝑐 (𝑋), 𝐿2(𝑋, 𝑆),𝐷) be the Atiyah–Singer or Hodge–de Rham Dirac spectral triple

on a complete Riemannian manifold (𝑋, 𝐠). Let 𝜑 be an action of a locally compact group 𝐺 by
diffeomorphisms on 𝑋. Let ℓ ∶ 𝐺 → End𝐸 be a self-adjoint, proper, translation-bounded weight where
𝐸 is some finite-dimensional vector space. Suppose that 𝜑 is parabolic in the sense that for some 𝑠 ≥ 0,
the matrix inequality

‖𝑑𝜑𝑔‖∞ ≤ 𝐶(1 + |ℓ(𝑔)|𝑠)

holds for some constant 𝐶 > 0. Then

(𝐶∞
𝑐 (𝑋) ⋊ 𝐺,𝐿2(𝐺,𝐸) ⊗̃ 𝐿2(𝑋, 𝑆), (𝑀ℓ ⊗̃ 1, 1 ⊗̃ 𝐷)

is a strictly tangled spectral triple representing the Kasparov product of

(𝐶∞
𝑐 (𝑋) ⋊ 𝐺,𝐿2(𝐺,𝐸) ⊗ 𝐶0(𝑋)𝐶0(𝑋),𝑀ℓ ⊗ 1)

and (𝐶∞
𝑐 (𝑋), 𝐿2(𝑋, 𝑆),𝐷).

For group equivariance, we require certain identifications of Hilbert modules over locally compact
Hausdorff spaces and their operators, which we cover in §A.1.1, based on the approach of Kucerovsky
[Kuc94]. For conformal quantum group equivariance and conformally generated cycles, we use the
ideas of matched operators and compactly supported states. These generalise the multipliers of the
Pedersen ideal of a C*-algebra and their positive continuous dual. Given a C*-algebra 𝐶 acting on
the right of a Hilbert 𝐵-module via a nondegenerate ∗-homomorphism 𝐶 → 𝑀(𝐵), the 𝐶-matched
operators on 𝐸 are a subset of the regular operators which form a ∗-algebra (in fact, a pro-C*-algebra),
as we show in §A.1.2. In §A.1.3, we characterise compactly supported states [Har23] on a C*-algebra
in terms of the Pedersen ideal and show that they are weak-∗-dense in all states.

For the multiplicative perturbation theory of §III.1.3, we require certain bounds and domain
relationships involving fractional powers of positive regular operators on Hilbert modules. Although
these are well known in the Hilbert space case, we provide a complete proof in the Hilbert module
case in §A.3. In order to obtain a higher order cycle from a strictly tangled cycle, we require an
understanding of how power scaling a self-adjoint regular operator affects commutators with it; in
§A.3.1, we provide a general result, formalised in terms of the idea of a nearly convex set. In §A.3.2,
we give a form condition for relatively bounded commutators on Hilbert C*-modules, generalising the
well-known characterisation [BR87, Proposition 3.2.55] in the Hilbert space case.

In §A.4, we show how the holomorphic and continuous functional calculi interact with higher order
Kasparov modules.

Conventions

The Clifford algebras 𝒞𝓁𝑛 are complex ℤ/2ℤ-graded algebras, whose generators are self-adjoint and
square to 1.
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In this Chapter, we set the technical stage for this thesis. We include a combination of existing and
new results; most of these latter are mild generalisations of known results.

In 1957, Grothendieck proved an extensive generalisation of the Riemann–Roch theorem and, in
doing so, invented K-theory. He constructed an abelian group 𝐾(𝑋) to count the locally free sheaves
on an algebraic variety 𝑋. In 1959, Atiyah and Hirzebruch [AH59, AH61] began the study of topological
K-theory, defining 𝐾0(𝑋) to count the vector bundles on a compact Hausdorff space 𝑋. Generalising
topological K-theory, the K-theory of unital C*-algebras counts finitely generated projective modules,
informed by Serre–Swan duality [Swa62]. The search for a dual theory, K-homology, began with
Atiyah’s introduction in 1969 of the Fredholm module, defined below, which gives an abstract definition
of an elliptic operator [Ati69]. In the early 1970s, Brown, Douglas, and Fillmore [BDF73] encountered
the odd K-homology of certain spaces by classifying extensions of C*-algebras. In the succeeding
years, Kasparov [Kas75] took both threads and wove them into the modern theory of K-homology. A
standard reference on K-homology is [HR00].

KK-theory was introduced into the world by Kasparov in 1980, with the publication of [Kas81] and
the distribution of the Conspectus (later published as [Kas95]). KK-theory is bivariant, taking as inputs
two C*-algebras, and including K-theory and K-homology as special cases. A standard reference on
KK-theory is [Bla98]. Unbounded KK-theory, although in some sense implicit in Kasparov’s bounded
KK-theory, was formally introduced by Baaj and Julg in 1983 [BJ83]. Recently, a number of technical
refinements of the formalism of unbounded KK-theory have been made [DM20, Kaa20]. Connes and
Moscovici [CM95] introduced the term spectral triple, to refer to unbounded cycles for K-homology,
with the view to encapsulating other geometrical information, such as a metric or measure structure or
even a physics. A recent survey on unbounded KK-theory is [Mes24].
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2 Chapter I. Pictures of KK-theory: what is known and a little more

For us, Kasparov cycles and their generalisations will be over ungraded ℂ-algebras. When we
consider Kasparov classes, we will often write 𝐾𝐾 generically for classes of even or odd cycles, and
unless mentioned all C*-algebras will be trivially graded. We refer to Appendix A for our conventions
for Hilbert C*-modules; we write End0(𝐸) to refer to the compact operators on a Hilbert module 𝐸.

Definition I.0.1. [Kas81, Definition 4.1] [Kas88, Definition 2.2] A bounded Kasparov 𝐴-𝐵-module
consists of an 𝐴-𝐵-correspondence 𝐸 and a bounded operator 𝐹 on 𝐸 such that, for all 𝑎 ∈ 𝐴, the
operators

(𝐹 ∗ − 𝐹)𝑎 (1 − 𝐹 2)𝑎 [𝐹 , 𝑎]
are compact. If 𝐸 is a ℤ/2ℤ-graded 𝐴-𝐵-correspondence (that is, with 𝐴 acting by even operators),
we require that 𝐹 be an odd operator and call (𝐴,𝐸𝐵, 𝐹 ) an even bounded Kasparov module. If 𝐸 is
ungraded, (𝐴,𝐸𝐵, 𝐹 ) is odd. If 𝐵 = ℂ, so that 𝐸 is a Hilbert space, (𝐴,𝐸, 𝐹) is a Fredholm module.

We will mostly work in the generality of higher order unbounded Kasparov modules, due to Wahl
[Wah07]. We refer to [Wor91, Lan95] for the theory of regular operators on Hilbert C*-modules.
Throughout we use the notations ⟨𝐷⟩ = (1 + 𝐷2)1/2 and 𝐹𝐷 = 𝐷⟨𝐷⟩−1 = 𝐷(1 + 𝐷2)−1/2 for a
self-adjoint regular operator 𝐷 on a Hilbert module.

Definition I.0.2. cf. [GM15, Definition A.1] Let 𝐷 be a self-adjoint regular operator on a right Hilbert
𝐵-module 𝐸. For 0 ≤ 𝛼 ≤ 1, let

Lip∗𝛼(𝐷) ⊆ End∗𝐵(𝐸)
be the subspace consisting of elements 𝑎 ∈ End∗𝐵(𝐸) for which 𝑎 dom𝐷 ⊆ dom𝐷 and [𝐷, 𝑎]⟨𝐷⟩−𝛼

and ⟨𝐷⟩−𝛼[𝐷, 𝑎] extend to bounded adjointable operators. By [GM15, Proposition A.5], Lip∗𝛼(𝐷) is a
∗-algebra.

It is shown in §A.4.1 that Lip∗𝛼(𝐷) is a Banach ∗-algebra under an appropriate norm and is closed
under the holomorphic functional calculus, but we do not use this here. We will also weaken our
definition of unbounded cycles along the lines of [DM20, Definition 1.1] since morphisms between cycles
may not naturally preserve a given smooth subalgebra.

Definition I.0.3. cf. [Wah07, Definition 2.4] [GM15, Definition A.2] [DM20, Definition 1.1] Let
0 ≤ 𝛼 < 1. An order- 1

1−𝛼 𝐴-𝐵-cycle consists of an 𝐴-𝐵-correspondence 𝐸 and a regular operator 𝐷 on
𝐸 such that:

1. 𝐷 is self-adjoint;
2. (1 + 𝐷2)−1𝑎 is compact for all 𝑎 ∈ 𝐴; and
3. 𝐴 is contained in the operator norm closure of Lip∗𝛼(𝐷).

If 𝐸 is a ℤ/2ℤ-graded 𝐴-𝐵-correspondence (that is, with 𝐴 acting by even operators), we require that
𝐷 be an odd operator and call (𝐴,𝐸𝐵, 𝐷) an even cycle. If 𝐸 is ungraded, (𝐴,𝐸𝐵, 𝐷) is odd.

If we have a dense subalgebra 𝒜 of 𝐴 which is contained in Lip∗𝛼(𝐷), we will call the cycle an
order- 1

1−𝛼 𝒜-𝐵-cycle. If 𝛼 = 0 then we refer to order-1 cycles as unbounded Kasparov modules, and if
𝐵 = ℂ, so that 𝐸 is a Hilbert space, we call these cycles spectral triples.

Example I.0.4. [GM15, Remark A.0.3] Let 𝑋 be a complete Riemannian manifold and 𝑉 a vector
bundle over 𝑋. If 𝐷 is a self-adjoint elliptic pseudodifferential operator of order 𝑚 > 0 acting on
sections of 𝑉 then (𝐶0(𝑋), 𝐿2(𝑋, 𝑉 ),𝐷) is an order-𝑚 spectral triple.

The generalisation to ‘higher order operators’ does not interfere with the main topological result
for unbounded Kasparov modules. The main tool in the proof is the integral formula†

(1 + 𝐷2)−𝛼 = sin(𝛼𝜋)
𝜋

∫
∞

0
𝜆−𝛼(𝜆 + 1 +𝐷2)−1𝑑𝜆, (I.0.5)

†Referred to by some as the ‘magic integral formula’.
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norm-convergent for 0 < ℜ(𝛼) < 1. Its use in noncommutative geometry is due to Baaj and Julg
[BJ83]; for more details we refer to [CP98, Lemma A.4]. We quote the following refinement of Baaj
and Julg’s bounded transform result which follows easily from the results of [Wah07, §2.1], [Gre12, §7],
[GM15, Appendix A].

Theorem I.0.6. Let 𝐷 be a self-adjoint regular operator on a right Hilbert 𝐵-module 𝐸. Let 𝑆 be an
adjointable operator such that 𝑆dom𝐷 ⊆ dom𝐷 and [𝐷, 𝑆]⟨𝐷⟩−𝛼 extends to a bounded operator for
some 0 ≤ 𝛼 < 1. Then

[𝐹𝐷, 𝑆]⟨𝐷⟩𝛽

is bounded for 𝛽 < 1 − 𝛼, with a bound 𝐶𝛼+𝛽∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥ where 𝐶𝛼+𝛽 > 0 depends only on 𝛼 + 𝛽.

Corollary I.0.7. cf. [Wah07, Definition 2.4] [GM15, Theorem A.6] [DM20, Proposition 1.7] Let
(𝐴,𝐸𝐵, 𝐷) be an order 1

1−𝛼 𝐴-𝐵-cycle. Then the bounded transform 𝐷 ↦ 𝐹𝐷 ∶= 𝐷(1 + 𝐷2)−1/2 gives
a bounded Kasparov module (𝐴,𝐸𝐵, 𝐹𝐷) of the same parity.

We will also make occasional reference to the summability of Fredholm modules and spectral triples,
confining ourselves to the case of unital C*-algebras. For this, we use the Schatten ideals

ℒ𝑝(𝐻) ∶= {𝑇 ∈ 𝐾(𝐻) ∣ Tr(|𝑇 |𝑝) < ∞}

with exponent 𝑝 > 0 for a Hilbert space 𝐻. For any 𝑝 > 0‚ ℒ𝑝(𝐻) is a symmetrically quasinormed
ideal in the bounded operators and, for 𝑝 ≥ 1, it is a symmetrically normed ideal.

Definition I.0.8. If 𝐴 is unital, we say that a Fredholm module (𝐴,𝐻, 𝐹) is 𝑝-summable if

𝐹 ∗ − 𝐹,𝐹 2 − 1 ∈ ℒ𝑝/2(𝐻) and [𝐹 , 𝑎] ∈ ℒ𝑝(𝐻)

for 𝑎 in a dense ∗-subalgebra 𝒜 of 𝐴.
If 𝒜 is unital, we say that a higher order spectral triple (𝒜,𝐻,𝐷) is 𝑝-summable if (1 +𝐷2)−1/2 ∈

ℒ𝑝(𝐻).

Proposition I.0.9. [FGM25, Theorem 2.2] cf. [SWW98, Proposition 1] With 𝒜 unital, let (𝒜,𝐻,𝐷)
be a 𝑝-summable order 𝑚 spectral triple. Writing 𝐴 for the C*-algebra closure of 𝒜, the Fredholm
module (𝐴,𝐻, 𝐹𝐷) is 𝑚𝑝-summable over 𝒜.

In the context of the above Proposition, 𝑞-summability of the Fredholm module for 𝑞 > 𝑚𝑝 follows
immediately from Theorem I.0.6; to take 𝑞 = 𝑚𝑝 requires the careful use of an operator inequality.
Remark I.0.10. In this thesis, we have chosen to work only with ungraded C*-algebras. We therefore
work with even and odd Kasparov modules, about which a small remark is in order. Let 𝐴 and
𝐵 be ungraded C*-algebras. By definition [Kas88, §2.22], 𝐾𝐾1(𝐴,𝐵) = 𝐾𝐾0(𝐴,𝐵 ⊗ 𝒞𝓁1), where
𝒞𝓁1 is treated as a graded C*-algebra. The following is well known; variations can be found in
[Con94, Proposition IV.A.13(b)] and [HR00, (8.1.10)]. A more sophisticated discussion could involve
multigradings [HR00, Definition 8.1.11, §A.3].

If (𝐴,𝐸𝐵, 𝐹 ) is an odd bounded Kasparov module, we can build a bounded Kasparov 𝐴-𝐵 ⊗𝒞𝓁1-
module

(𝐴, (𝐸 ⊕ 𝐸)𝐵⊗𝒞𝓁1
,( 𝐹

𝐹 ))

where 𝐵 ⊗𝒞𝓁1 acts on the right of 𝐸 ⊕𝐸 by

(𝜉 𝜂) (𝑏 + 𝑐𝛾1) = (𝜉 𝜂)(𝑏 𝑐
𝑐 𝑏) = (𝜉𝑏 + 𝜂𝑐 𝜉𝑐 + 𝜂𝑏) (𝜉, 𝜂 ∈ 𝐸, 𝑏 + 𝑐𝛾1 ∈ 𝐵 ⊗𝒞𝓁1), (I.0.11)

and the grading on 𝐸 ⊕𝐸 is given by ( 1
−1 ); cf. [HR00, (8.1.10)].
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This process is completely reversible. Given a bounded Kasparov module (𝐴,𝐸′
𝐵⊗𝒞𝓁1

, 𝐹 ′), the
action of 𝛾1 ∈ 𝒞𝓁1 on the right of 𝐸′ identifies the even and odd parts of 𝐸′. Writing, therefore,
𝐸′ = 𝐸 ⊕𝐸 for 𝐸 = 𝐸′ev = 𝐸′odd, we write (𝐴,𝐸′

𝐵⊗𝒞𝓁1
, 𝐹 ′) as

(𝐴, (𝐸 ⊕ 𝐸)𝐵⊗𝒞𝓁1
,( 𝑉

𝑈 )),

where the action of 𝐵 ⊗𝒞𝓁1 on the right of 𝐸 ⊕𝐸 is given by (I.0.11). The off-diagonal form of the
operator is a consequence of the requirement that 𝐹 ′ is odd. Since 𝐹 ′ must also be linear in the action
of 𝒞𝓁1, we must have 𝑈 = 𝑉. We thus obtain an odd bounded Kasparov 𝐴-𝐵-module (𝐴,𝐸𝐵, 𝑈).

The same discussion applies equally to odd unbounded cycles.

I.1 Equivalence relations for KK-theory

Let 𝐴 and 𝐵 be C*-algebras. A homotopy between two bounded Kasparov 𝐴-𝐵-modules is a Kas-
parov 𝐴-𝐶([0, 1], 𝐵)-module whose evaluations at 0, 1 ∈ [0, 1] recover them [Kas81, Definition 4.2.2].
Homotopy is an equivalence relation and compatible with direct sums. The homotopy classes of
bounded Kasparov 𝐴-𝐵-modules, together with the direct sum, form a ℤ/2ℤ-graded abelian group
𝐾𝐾∗(𝐴,𝐵) = 𝐾𝐾0(𝐴,𝐵) ⊕ 𝐾𝐾1(𝐴,𝐵), contravariant in 𝐴 and covariant in 𝐵 [Kas81, Theorem
4.1, Definition 4.4]. Another relation on bounded Kasparov modules is operator homotopy [Kas81,
Definition 4.2.2]. If the C*-algebra 𝐴 is separable, then operator homotopy, together with the addition
of degenerate modules, is equivalent to homotopy. The details of homotopy for unbounded Kasparov
modules have only recently been worked out [DM20, Kaa20]. It turns that out that, provided that 𝐴 is
separable, one can indeed obtain 𝐾𝐾∗(𝐴,𝐵) from homotopy classes of unbounded Kasparov modules.

On the other hand, the strongest reasonable equivalence relation in the bounded picture of
KK-theory (apart from unitary equivalence) is locally compact perturbation. If (𝐴,𝐸𝐵, 𝐹 ) is a
bounded Kasparov module and 𝑇 ∈ End∗(𝐸) is such that 𝑇𝑎, 𝑎𝑇 ∈ End0(𝐸) for all 𝑎 ∈ 𝐴, then
(𝐴,𝐸𝐵, 𝐹 + 𝑇) will still be a bounded Kasparov module. The only condition which is not immediate
is that ((𝐹 + 𝑇)2 − 1)𝑎 ∈ End0(𝐸), demonstrated by the computation

((𝐹 + 𝑇)2 − 1)𝑎 = (𝐹 2 − 1)𝑎 + (𝐹 + 𝑇)𝑇𝑎 + 𝑇𝐹𝑎 = (𝐹 2 − 1)𝑎 + (𝐹 + 𝑇)𝑇𝑎 + 𝑇 [𝐹 , 𝑎] + 𝑇𝑎𝐹 .

It is perhaps unclear, in the unbounded picture of KK-theory, what should stand in for equivalence up
to locally compact perturbation. The most immediate relation that suggests itself is equivalence up
to bounded perturbation. If (𝐴,𝐸𝐵, 𝐷) is an unbounded Kasparov module and 𝑇 = 𝑇 ∗ ∈ End∗(𝐸),
then (𝐴,𝐸𝐵, 𝐷 + 𝑇) will still be an unbounded Kasparov module. The local compactness of the
resolvent takes a little work, see e.g. [CP98, Lemma B.6]. One can similarly consider locally bounded
perturbations, at least in the presence of an adequate approximate unit [Dun18, §4].

By applying Theorem I.0.6, we can study additive perturbations of higher order cycles in the
following sense; cf. [CP98, Lemmas B.6–7].

Proposition I.1.1. Let 𝐷0 and 𝐷1 be self-adjoint regular operators on right Hilbert 𝐵-modules 𝐸0 and
𝐸1. Suppose that there is an operator 𝑎 ∈ Hom∗

𝐵(𝐸0, 𝐸1) such that 𝑎 dom𝐷0 ⊆ dom𝐷1 and

(𝐷1𝑎 − 𝑎𝐷0)⟨𝐷0⟩−𝛼

extends to an adjointable operator for some 0 ≤ 𝛼 < 1. Then, fixing 𝛽 < 1 − 𝛼,

(𝐹𝐷1
𝑎 − 𝑎𝐹𝐷0

)⟨𝐷0⟩𝛽

is bounded.



I.1. Equivalence relations for KK-theory 5

Proof. Consider the operators

𝐷 = (𝐷0
𝐷1

) 𝑆 = ( 0
𝑎 )

on 𝐸0 ⊕𝐸1. Then

𝑆dom𝐷 = ( 0
𝑎dom𝐷0

) ⊆ (dom𝐷0
dom𝐷1

) = dom𝐷

and

[𝐷, 𝑆]⟨𝐷⟩−𝛼 = ( 0
(𝐷1𝑎 − 𝑎𝐷0)⟨𝐷0⟩−𝛼 ).

By Theorem I.0.6,

[𝐹𝐷, 𝑆]⟨𝐷⟩𝛽 = ( 0
(𝐹𝐷1

𝑎 − 𝑎𝐹𝐷0
)⟨𝐷0⟩𝛽

)

is bounded for 𝛽 < 1 − 𝛼, as required.

Corollary I.1.2. Let 𝐷0 and 𝐷1 be self-adjoint regular operators on a right Hilbert 𝐵-module 𝐸
with densely intersecting domains. Suppose that there is a bounded operator 𝑎 such that 𝑎 dom𝐷0 ⊆
dom𝐷0 ∩ dom𝐷1 and

(𝐷1 −𝐷0)𝑎⟨𝐷0⟩−𝛼 [𝐷0, 𝑎]⟨𝐷0⟩−𝛼

extend to bounded operators for some 0 ≤ 𝛼 < 1. Then, fixing 𝛽 < 1 − 𝛼,

(𝐹𝐷1
− 𝐹𝐷0

)𝑎⟨𝐷0⟩𝛽

is bounded.

Proof. We have
(𝐷1𝑎 − 𝑎𝐷0)⟨𝐷0⟩−𝛼 = (𝐷1 −𝐷0)𝑎⟨𝐷0⟩−𝛼 + [𝐷0, 𝑎]⟨𝐷0⟩−𝛼

and
(𝐹𝐷1

𝑎 − 𝑎𝐹𝐷0
)⟨𝐷0⟩𝛽 = (𝐹𝐷1

− 𝐹𝐷0
)𝑎⟨𝐷0⟩𝛽 + [𝐹𝐷0

, 𝑎]⟨𝐷0⟩𝛽.

By Theorem I.0.6, [𝐹𝐷0
, 𝑎]⟨𝐷0⟩𝛽 is bounded, so (𝐹𝐷1

− 𝐹𝐷0
)𝑎⟨𝐷0⟩𝛽 is also, as required.

In [CS86, §3], cobordism is introduced as another equivalence relation on bounded Kasparov
modules; slightly weakening locally compact perturbation. (We remark that the similarly named
equivalence relation of bordism of unbounded Kasparov modules [Hil10, DGM18] is unrelated and will
not appear in this thesis.) First, we require a small Lemma.

Lemma I.1.3. [CS86, §3] If (𝐴,𝐸𝐵, 𝐹 ) is a bounded Kasparov module and 𝑝 ∈ End∗(𝐸) is an even
projection commuting with the representation of 𝐴 such that [𝐹 , 𝑝]𝑎 is compact for all 𝑎 ∈ 𝐴, then
(𝐴, 𝑝𝐸𝐵, 𝑝𝐹𝑝) is a Kasparov module.

Definition I.1.4. [CS86, Definition 3.1] Two bounded Kasparov modules (𝐴,𝐸′
𝐵, 𝐹1) and (𝐴,𝐸″

𝐵, 𝐹2)
of the same parity are cobordant if there exists a Kasparov module (𝐴,𝐸𝐵, 𝐹 ) of that parity and an
partial isometry 𝑣 ∈ End∗(𝐸) (even if the parity is even), such that

• 𝑣 commutes with (the representation of) 𝐴;
• [𝐹 , 𝑣]𝑎 is compact for all 𝑎 ∈ 𝐴;
• (𝐴, (1 − 𝑣𝑣∗)𝐸𝐵, (1 − 𝑣𝑣∗)𝐹(1 − 𝑣𝑣∗)) is unitarily equivalent to (𝐴,𝐸′

𝐵, 𝐹1); and
• (𝐴, (1 − 𝑣∗𝑣)𝐸𝐵, (1 − 𝑣∗𝑣)𝐹(1 − 𝑣∗𝑣)) is unitarily equivalent to (𝐴,𝐸″

𝐵, 𝐹2).
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We call (𝐴,𝐸𝐵, 𝐹 ; 𝑣) a cobordism.

It turns out that cobordism is an equivalence relation, and is compatible with direct sums [CS86,
Lemma 3.3]. Even though apparently much stronger than homotopy, cobordism gives rise to the same
KK-groups, provided 𝐴 is separable [CS86, Theorem 3.7]. (Our definition differs slightly from that of
[CS86, Definition 3.1], in that we deal only with trivially graded C*-algebras and work with odd as
well as even Kasparov modules. By Remark I.0.10, it is straighforward to check that [CS86, Lemma
3.6, Theorem 3.7] are still valid.)

Example I.1.5. Suppose that two bounded Kasparov modules (𝐴,𝐸′
𝐵, 𝐹1) and (𝐴,𝐸″

𝐵, 𝐹2) of the
same parity are unitarily equivalent, up to a locally compact perturbation, that is, there exists a
unitary 𝑈 ∶ 𝐸′

𝐵 → 𝐸″
𝐵 (even if the parity is even), intertwining the representations of 𝐴, such that

(𝑈∗𝐹2𝑈 − 𝐹1)𝑎 ∈ End0(𝐸) for all 𝑎 ∈ 𝐴. Then

⎛⎜
⎝
𝐴, (𝐸′ ⊕𝐸″)𝐵,(

𝐹1
𝐹2
)⎞⎟
⎠

𝑣 = ( 0
𝑈 )

constitute a cobordism between the two modules.

Lemma I.1.6. If two bounded Kasparov modules (𝐴,𝐸1,𝐵, 𝐹1) and (𝐴,𝐸2,𝐵, 𝐹2) are cobordant, there
exists a cobordism (𝐴,𝐸𝐵, 𝐹 ; 𝑣) such that 𝑣𝑣∗, 𝑣∗𝑣, and 𝐹 mutually commute.

Proof. Let (𝐴,𝐸′
𝐵, 𝐹 ′; 𝑣′) be any cobordism between (𝐴,𝐸1,𝐵, 𝐹1) and (𝐴,𝐸2,𝐵, 𝐹2). Let 𝑤1 ∶ 𝐸1 →

(1 − 𝑣′𝑣′∗)𝐸′ and 𝑤2 ∶ 𝐸2 → (1 − 𝑣′∗𝑣′)𝐸′ be the unitaries of the cobordism. Then

(𝐴,𝐸1 ⊕𝐸′ ⊕𝐸2, 𝐹1 ⊕ 𝐹 ′ ⊕ 𝐹2; 𝑤∗
1 + 𝑣′ +𝑤2)

is a cobordism between (𝐴,𝐸1,𝐵, 𝐹1) and (𝐴,𝐸2,𝐵, 𝐹2). We have

(𝑤∗
1 + 𝑣′ +𝑤2)∗(𝑤∗

1 + 𝑣′ +𝑤2) = 0 ⊕ 1 ⊕ 1 (𝑤∗
1 + 𝑣′ +𝑤2)(𝑤∗

1 + 𝑣′ +𝑤2)∗ = 1 ⊕ 1 ⊕ 0.

We can check that

[𝐹1 ⊕ 𝐹 ′ ⊕ 𝐹2, 𝑤∗
1 + 𝑣′ +𝑤2]𝑎 = (𝐹1𝑤∗

1 + 𝐹 ′(𝑣′ +𝑤2) − (𝑤∗
1 + 𝑣′)𝐹 ′ −𝑤2𝐹2) 𝑎

= ([𝐹 ′, 𝑣′] + 𝐹1𝑤∗
1 + 𝐹 ′𝑤2 −𝑤∗

1𝐹 ′ −𝑤2𝐹2) 𝑎
= ([𝐹 ′, 𝑣′] + 𝑤∗

1𝐹 ′(1 − 𝑣′𝑣′∗) + 𝐹 ′𝑤2 −𝑤∗
1𝐹 ′ − (1 − 𝑣′∗𝑣′)𝐹 ′𝑤2) 𝑎

= ([𝐹 ′, 𝑣′] − 𝑤∗
1𝐹 ′𝑣′𝑣′∗ + 𝑣′∗𝑣′𝐹 ′𝑤2) 𝑎

= [𝐹 ′, 𝑣′]𝑎 − 𝑤∗
1[𝐹 ′, 𝑣′]𝑎𝑣′∗ − 𝑣′∗[𝐹 ′, 𝑣′]𝑎𝑤2

is compact for all 𝑎 ∈ 𝐴, as required.

I.1.1 Cobordism of higher order cycles and positive degeneracy

We shall make a natural generalisation of cobordism to unbounded cycles but, first, a Lemma.

Lemma I.1.7. Let (𝐴,𝐸𝐵, 𝐷) be an order- 1
1−𝛼 cycle and 𝑝 ∈ End∗(𝐸) a projection (even if the cycle

is of even parity) such that 𝑝 commutes with 𝐴 and 𝐷. Then (𝐴, 𝑝𝐸𝐵, 𝑝𝐷𝑝) is an order- 1
1−𝛼 cycle and,

furthermore, 𝐹𝑝𝐷𝑝 = 𝑝𝐹𝐷𝑝 on 𝑝𝐸.

A similar result to Lemma I.1.7 would follow from weaker assumptions than that 𝑝 and 𝐷 commute
but we do without.

Definition I.1.8. Two order- 1
1−𝛼 cycles (𝐴,𝐸′

𝐵, 𝐷1) and (𝐴,𝐸″
𝐵, 𝐷2) of the same parity are cobordant

if there exist an order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷) of that parity and a partial isometry 𝑣 ∈ End∗(𝐸) (even if

the parity is even), such that
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• 𝑣 commutes with (the representation of) 𝐴, and 𝑣𝑣∗ and 𝑣∗𝑣 commute with 𝐷;
• 𝑣𝐴 ⊆ Lip∗𝛼(𝐷);
• (𝐴, (1 − 𝑣𝑣∗)𝐸𝐵, (1 − 𝑣𝑣∗)𝐷(1 − 𝑣𝑣∗)) is unitarily equivalent to (𝐴,𝐸′

𝐵, 𝐷1); and
• (𝐴, (1 − 𝑣∗𝑣)𝐸𝐵, (1 − 𝑣∗𝑣)𝐷(1 − 𝑣∗𝑣)) is unitarily equivalent to (𝐴,𝐸″

𝐵, 𝐷2).

For a dense ∗-subalgebra 𝒜 ⊆ 𝐴, (𝒜, 𝐸𝐵, 𝐷; 𝑣) is a cobordism between (𝒜, 𝐸′
𝐵, 𝐷1) and (𝒜, 𝐸″

𝐵, 𝐷2) if
𝑣∗𝑣𝒜 ⊆ 𝒬.

At the cost of further technicalities, we could proceed with weaker assumptions than that 𝐷
commute with 𝑣𝑣∗ and 𝑣∗𝑣. However, by a similar argument to Lemma I.1.6, this would not be worth
the cost.

Proposition I.1.9. cf. [CS86, Lemma 3.3] Cobordism of higher order cycles is an equivalence relation
and is compatible with direct sums.

Proof. For reflexivity, we take 𝑣 = 0 ∈ End∗(𝐸) to see that (𝐴,𝐸𝐵, 𝐷) is cobordant to itself.
For symmetry, note that 𝑣∗𝐴 = (𝑣𝐴)∗ ⊆ Lip∗𝛼(𝐷) so that making the substitution of 𝑣∗ for 𝑣

reverses the roles of (𝐴,𝐸′
𝐵, 𝐷1) and (𝐴,𝐸″

𝐵, 𝐷2).
For transitivity, suppose that (𝐴,𝐸𝐵, 𝐷; 𝑣) is a cobordism between the cycles (𝐴,𝐸1,𝐵, 𝐷1) and

(𝐴,𝐸2,𝐵, 𝐷2), and that (𝐴,𝐸′
𝐵, 𝐷′; 𝑣′) is a cobordism between (𝐴,𝐸2,𝐵, 𝐷2) and (𝐴,𝐸3,𝐵, 𝐷3). Let

𝑈 ∶ (1 − 𝑣∗𝑣)𝐸 → 𝐸2 and 𝑈 ′ ∶ (1 − 𝑣′𝑣′∗)𝐸 → 𝐸2 be the unitary equivalences between the cycles

(𝐴, (1 − 𝑣∗𝑣)𝐸𝐵, (1 − 𝑣∗𝑣)𝐷(1 − 𝑣∗𝑣)) (𝐴, (1 − 𝑣′𝑣′∗)𝐸′
𝐵, (1 − 𝑣′𝑣′∗)𝐷′(1 − 𝑣′𝑣′∗))

and the cycle (𝐴,𝐸2,𝐵, 𝐷2), respectively. Then

(𝐴, (𝐸 ⊕ 𝐸′)𝐵, 𝐷 ⊕𝐷′; 𝑣 + 𝑈 ′∗𝑈 + 𝑣′)

is a cobordism between (𝐴,𝐸1,𝐵, 𝐷1) and (𝐴,𝐸3,𝐵, 𝐷3). We have

(𝑣 + 𝑈 ′∗𝑈 + 𝑣′)(𝑣 + 𝑈 ′∗𝑈 + 𝑣′)∗ = 𝑣𝑣∗ ⊕ 1 (𝑣 + 𝑈 ′∗𝑈 + 𝑣′)∗(𝑣 + 𝑈 ′∗𝑈 + 𝑣′) = 1 ⊕ 𝑣′∗𝑣′.

Furthermore,
Lip∗𝛼(𝐷) ⊕ Lip∗𝛼(𝐷

′) ⊆ Lip∗𝛼(𝐷 ⊕𝐷′),

so that (𝑣 + 𝑣′)𝐴 ⊆ Lip∗𝛼(𝐷 ⊕𝐷′). Because 𝐷 commutes with (1 − 𝑣∗𝑣) and 𝐷′ commutes with
(1 − 𝑣′𝑣′∗), 𝐷′𝑈 ′∗𝑈 = 𝑈 ′∗𝐷2𝑈 = 𝑈 ′∗𝑈𝐷 on 𝐸 ⊕𝐸′. Hence

𝑈 ′∗ Lip∗𝛼(𝐷2)𝑈 ⊆ Lip∗𝛼(𝐷 ⊕𝐷′)

and so 𝑈 ′∗𝑈𝐴 = 𝑈 ′∗𝐴𝑈 ⊆ 𝑈 ′∗Lip∗𝛼(𝐷2)𝑈 ⊆ Lip∗𝛼(𝐷 ⊕𝐷′) as required.
Finally, it is straightforward to check that direct sums of cobordisms are cobordisms of direct sums

in an obvious way.

Example I.1.10. Let (𝐴,𝐸′
𝐵, 𝐷1) and (𝐴,𝐸″

𝐵, 𝐷2) be two order- 1
1−𝛼 cycles of the same parity. Suppose

that there exists a unitary 𝑈 ∶ 𝐸′
𝐵 → 𝐸″

𝐵 (even if the parity is even), intertwining the representations
of 𝐴, such that 𝐴 is contained in the closure of the set of 𝑎 ∈ End∗(𝐸′) for which 𝑈𝑎dom𝐷1 ⊆ dom𝐷2
and

(𝑈∗𝐷2𝑈𝑎 − 𝑎𝐷1)⟨𝐷1⟩−𝛼 𝑈⟨𝐷2⟩−𝛼𝑈(𝑈∗𝐷2𝑈𝑎 − 𝑎𝐷1)

extend to adjointable operators on 𝐸′. Then

⎛⎜
⎝
𝐴, (𝐸′ ⊕𝐸″)𝐵,(

𝐷1
𝐷2

)⎞⎟
⎠

𝑣 = ( 0
𝑈 )

constitute a cobordism between the two cycles.
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Proposition I.1.11. Given two cobordant order- 1
1−𝛼 cycles (𝐴,𝐸′

𝐵, 𝐷1) and (𝐴,𝐸″
𝐵, 𝐷2), their bounded

transforms (𝐴,𝐸′
𝐵, 𝐹𝐷1

) and (𝐴,𝐸″
𝐵, 𝐹𝐷2

) are cobordant and so they define the same element in
𝐾𝐾∗(𝐴,𝐵).

Proof. Let (𝐴,𝐸𝐵, 𝐷; 𝑣) be a cobordism between (𝐴,𝐸′
𝐵, 𝐷1) and (𝐴,𝐸″

𝐵, 𝐷2). By Lemma I.1.7,
(𝐴,𝐸𝐵, 𝐹𝐷; 𝑣) is a bounded cobordism between (𝐴,𝐸′

𝐵, 𝐹𝐷1
) and (𝐴,𝐸″

𝐵, 𝐹𝐷2
).

A natural question to ask is whether one can identify unbounded cycles cobordant to the zero
module. In [DM20, §3–4], several notions of degenerate module are surveyed and shown to be homotopic
to zero. Instead of making a similar survey, we shall make the following definition, in the safety of
the knowledge that it contains as special cases the spectrally degenerate cycles of [DM20, Definition
3.5], the spectrally symmetric cycles of [DM20, Definition 4.6] (which, in turn, include the spectrally
decomposable cycles of [Kaa20, Definition 4.1]), the Clifford symmetric cycles of [DM20, Definition
4.13], and the weakly degenerate cycles of [DGM18, Definition 3.1].

Definition I.1.12. An order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷) is positively degenerate if there exists a self-adjoint

unitary 𝑠 ∈ End∗(𝐸) (odd if the cycle is of even parity), preserving the domain of 𝐷, such that

• As operators on dom𝐷, 𝐷𝑠 + 𝑠𝐷 ≥ −𝑐⟨𝐷⟩𝛼 for some constant 𝑐 ≥ 0 and
• 𝐴 ⊆ 𝒫, where 𝒫 is the set of 𝑎 ∈ Lip∗𝛼(𝐷) such that [𝑠, 𝑎] = 0.

Proposition I.1.13. A positively degenerate order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷) is cobordant to (𝐴, 0𝐵, 0).

Proof. Let 𝑠 ∈ End∗(𝐸) be a symmetry implementing the degeneracy. Let 𝑁 be the number operator
and 𝑆 the unilateral shift on ℓ2(ℕ≥0). Then (𝐴,𝐸𝐵 ⊗ ℓ2(ℕ≥0),𝐷 ⊗ 1 + 𝑠 ⊗𝑁) is an order- 1

1−𝛼 cycle.
The main point to check is the local compactness of the resolvent, for which we compute

(𝐷 ⊗ 1 + 𝑠 ⊗𝑁)2 = 𝐷2 ⊗ 1 + 1 ⊗𝑁2 + (𝐷𝑠 + 𝑠𝐷) ⊗ 𝑁 ≥ 𝐷2 ⊗ 1 + 1 ⊗𝑁2 − 𝑐⟨𝐷⟩𝛼 ⊗𝑁.

Fix 𝜀 ∈ (0, 1). The function 𝑓 ∶ ℝ2 → ℝ given by

𝑓 ∶ (𝑥, 𝑦) ↦ 𝜀(𝑥2 + 𝑦2) − 𝑐(1 + 𝑥2)𝛼/2𝑦

has a global minimum. Hence, for large enough 𝜆 > 0,

𝜆 + (𝐷 ⊗ 1 + 𝑠 ⊗𝑁)2 ≥ (1 − 𝜖)(𝐷2 ⊗ 1 + 1 ⊗𝑁2)

and so
𝑎(𝜆 + 1 + (𝐷 ⊗ 1 + 𝑠 ⊗ 𝜅𝑁)2)−1

is compact. The constructed order- 1
1−𝛼 cycle, together with the isometry 1⊗𝑆, implements the required

cobordism. Using the relation 𝑁𝑆 = 𝑆(𝑁 + 1), we check that

[𝐷 ⊗ 1 + 𝑠 ⊗𝑁, (1 ⊗ 𝑆)𝑎] = 𝑠 ⊗ [𝑁, 𝑆]𝑎 = 𝑠 ⊗ 𝑆𝑎

is bounded for 𝑎 ∈ 𝒫.

We can now show that higher order cycles, subject to the equivalence relation of cobordism, form a
group under direct sum.

Corollary I.1.14. Given an order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷),

(𝐴,𝐸𝐵, 𝐷) ⊕ (𝐴,𝐸(op)
𝐵 , −𝐷) = ⎛⎜

⎝
𝐴, (𝐸 ⊕ 𝐸)(op))𝐵,(

𝐷
−𝐷)⎞⎟

⎠
,

where 𝐸(op) is 𝐸 with the opposite grading if 𝐸 is graded, is cobordant to (𝐴, 0𝐵, 0).
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Proof. The symmetry 𝑠 = ( 1
1 ) makes the direct sum cycle positively degenerate.

Combining Propositions I.1.9, I.1.11 and Corollary I.1.14 proves

Theorem I.1.15. Let 0 ≤ 𝛼 < 1. Cobordism classes of order- 1
1−𝛼 𝐴-𝐵-cycles form a ℤ/2ℤ-graded

abelian group which surjects onto 𝐾𝐾∗(𝐴,𝐵). Further, cobordism classes of higher order 𝐴-𝐵-cycles
(without a constraint on their order) form a ℤ/2ℤ-graded abelian group which surjects onto 𝐾𝐾∗(𝐴,𝐵).

For the final statement, we note than any order- 1
1−𝛼 cycle can be considered to be an order- 1

1−𝛽
cycle for 𝛼 ≤ 𝛽 < 1. It is presumably the case that cobordism of higher order cycles is strictly stronger
than homotopy. It is possible that the addition of the functional dampening of [DM20] could make
cobordism equivalent to homotopy. This remains a matter for future investigation.

I.2 Group-equivariant KK-theory
In this section we begin by recalling the definitions of equivariant KK-theory and the descent map, due
to Kasparov [Kas88]. The first attempt to generalise equivariance to unbounded KK-theory is [JV87,
§1], for the case of 𝐾𝐾𝐺(ℂ,ℂ). The first detailed treatment is by Kucerovsky [Kuc94, §8], which we
mildly generalise in §I.2.1 to apply to the higher order case and allow for local boundedness in the
definition. We refer to §A.1.1 for some technical preliminaries about Hilbert C*-modules over locally
compact Hausdorff spaces, mostly following [Kuc94, Appendix A].

The case of compact groups is much easier to handle in both the bounded and unbounded settings.
This is because, given the action of a compact group on a Kasparov module, one can integrate using
the Haar measure to produce a module for which the operator is actually invariant under the action of
the group. This fact has led to the definition of unbounded equivariant KK-theory in the case of a
compact group as unbounded Kasparov modules with group actions for which the operator is invariant
under the action. Alas, this does not represent the full range of geometrical situations available under
equivariant KK-theory.

The following definition introduces notation for tracking the action of operators implementing
equivariance. Throughout this section, 𝐺 is a locally compact group.

Definition I.2.1. Let 𝐸 be a right Hilbert 𝐵-module and 𝜏 ∈ Aut𝐵. We define End∗,𝜏𝐵 (𝐸) to be the
set of ℂ-linear maps 𝑇 ∶ 𝐸 → 𝐸 for which there exists a map 𝑇 ∗ ∶ 𝐸 → 𝐸 such that

⟨𝑇 (𝑥) ∣ 𝑦⟩𝐵 = 𝜏(⟨𝑥 ∣ 𝑇 ∗(𝑦)⟩𝐵).

These maps are not 𝐵-linear; however they satisfy 𝑇 (𝑥𝑏) = 𝑇 (𝑥)𝜏(𝑏) since

⟨𝑇 (𝑥𝑏) ∣ 𝑦⟩𝐵 = 𝜏(⟨𝑥𝑏 ∣ 𝑇 ∗(𝑦)⟩𝐵) = 𝜏(𝑏∗)𝜏(⟨𝑥 ∣ 𝑇 ∗(𝑦)⟩𝐵) = 𝜏(𝑏∗)⟨𝑇 (𝑥) ∣ 𝑦⟩𝐵 = ⟨𝑇 (𝑥)𝜏(𝑏) ∣ 𝑦⟩𝐵.

This gives an identification of End∗,𝜏𝐵 (𝐸) with Hom∗
𝐵(𝐸,𝐸 ⊗𝜏 𝐵), where 𝐸 ⊗𝜏 𝐵 is the internal tensor

product of 𝐸 with 𝜏𝐵. The adjoint 𝑇 ∗ ∈ End∗,𝜏
−1

𝐵 (𝐸), since

⟨𝑇 ∗(𝑥) ∣ 𝑦⟩𝐵 = ⟨𝑦 ∣ 𝑇 ∗(𝑥)⟩∗𝐵 = 𝜏−1(⟨𝑇 (𝑦) ∣ 𝑥⟩∗𝐵) = 𝜏−1(⟨𝑥 ∣ 𝑇 (𝑦)⟩𝐵).

The composition of 𝑆 ∈ End∗,𝜎𝐵 (𝐸) and 𝑇 ∈ End∗,𝜏𝐵 (𝐸) is 𝑆𝑇 ∈ End∗,𝜎◦𝜏𝐵 (𝐸). In particular, if 𝜏 = 𝜎−1

then 𝑆𝑇 is an adjointable operator.

Definition I.2.2. e.g. [Kas88, §1.2] Let 𝛽 ∶ 𝐺 → Aut𝐵 be an action of a group 𝐺 on a C*-algebra 𝐵.
A 𝐺-equivariant Hilbert 𝐵-module 𝐸 is a Hilbert 𝐵-module equipped with a continuous ℂ-linear map
𝑈 ∶ 𝐺 × 𝐸 → 𝐸 such that

𝑈𝑔ℎ = 𝑈𝑔𝑈ℎ 𝑈𝑔(𝑥𝑏) = 𝑈𝑔(𝑥)𝛽𝑔(𝑏) 𝛽𝑔(⟨𝑥 ∣ 𝑦⟩𝐵) = ⟨𝑈𝑔(𝑥) ∣ 𝑈𝑔(𝑦)⟩𝐵
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for 𝑔, ℎ ∈ 𝐺, 𝑥, 𝑦 ∈ 𝐸, and 𝑏 ∈ 𝐵. We may equivalently say that 𝑈𝑔 ∈ End∗,𝛽𝑔
𝐵 (𝐸) with the conditions

𝑈𝑔ℎ = 𝑈𝑔𝑈ℎ 𝑈𝑔−1 = 𝑈−1
𝑔 = 𝑈 ∗

𝑔

for all 𝑔, ℎ ∈ 𝐺.

Definition I.2.3. Let 𝛼 ∶ 𝐺 → Aut𝐴 be an action of a group 𝐺 on a C*-algebra 𝐴. An 𝐴-𝐵-
correspondence 𝐸 is 𝐺-equivariant if it is a 𝐺-equivariant Hilbert 𝐵-module and

𝑈𝑔(𝑎𝑥) = 𝛼𝑔(𝑎)𝑈𝑔(𝑥)

for all 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝐸.

Definition I.2.4. [Kas88, Definition 2.2] cf. [Kuc94, Definition 8.5, Remark] A bounded Kasparov
𝐴-𝐵-module (𝐴,𝐸𝐵, 𝐹 ) is 𝐺-equivariant if 𝐸 is a 𝐺-equivariant 𝐴-𝐵-correspondence and, for all 𝑎 ∈ 𝐴,
the map 𝑔 ↦ (𝑈𝑔𝐹𝑈 ∗

𝑔 − 𝐹)𝑎 is norm-continuous from 𝐺 into End0(𝐸).

Remark I.2.5. cf. [Kuc94, Definition 8.5, Remark] By Lemma A.1.8, the norm continuity of the map
𝑔 ↦ (𝑈𝑔𝐹𝑈 ∗

𝑔 − 𝐹)𝑎 into End0(𝐸) is equivalent to the condition that, when restricted to any compact
subset 𝐾 ⊆ 𝐺, the function 𝑔 ↦ (𝑈𝑔𝐹𝑈 ∗

𝑔 − 𝐹)𝑎 is in End0(𝐶(𝐾,𝐸)).
We also record the following Definition.

Definition I.2.6. cf. [Pus11, Definition 2.7]. If 𝐴 is a unital C*-algebra, we say that (𝐴,𝐻, 𝐹) is
a 𝑝-summable 𝐺-equivariant Fredholm module if (𝐴,𝐻, 𝐹) is a Fredholm module, 𝑝-summable and
𝐺-equivariant, and 𝑈𝑔𝐹𝑈 ∗

𝑔 − 𝐹 ∈ ℒ𝑝(𝐻) for all 𝑔 ∈ 𝐺 .

I.2.1 Uniform group equivariance

Again, throughout this section, 𝐺 is a locally compact group. The following definition mildly generalises
that of Kucerovsky, in that we allow for higher order Kasparov modules and for the equivariance to be
checked locally in the algebra.

Definition I.2.7. cf. [Kuc94, Definition 8.7] Let (𝐴,𝐸𝐵, 𝐷) be an order- 1
1−𝛼 𝐴-𝐵-cycle with 𝐸 a

𝐺-equivariant 𝐴-𝐵-correspondence. We say that (𝐴,𝐸𝐵, 𝐷) is uniformly 𝐺-equivariant if 𝐴 is contained
in the closure of 𝒬, the set of 𝑎 ∈ End∗(𝐸) such that 𝑎 dom𝐷 ⊆ 𝑈𝑔 dom𝐷 for all 𝑔 ∈ 𝐺 and the maps

𝑔 ↦ (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝐷)⟨𝐷⟩−𝛼 𝑔 ↦ 𝑈𝑔⟨𝐷⟩−𝛼𝑈∗

𝑔 (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝐷)

are ∗-strongly continuous as maps from 𝐺 into End∗𝐵(𝐸). If 𝑈𝑔𝐷𝑈∗
𝑔 = 𝐷 for all 𝑔 ∈ 𝐺, we say that

the cycle is isometrically equivariant. If 𝒜 is a dense ∗-subalgebra of 𝐴 contained in 𝒬, we say that
(𝒜, 𝐸𝐵, 𝐷) is a uniformly 𝐺-equivariant order- 1

1−𝛼 𝒜-𝐵-cycle.

An example where the extra freedom in our definition, as compared to [Kuc94, Definition 8.7], is
needed is given in Proposition II.4.1.
Remarks I.2.8.

1. We remark that 𝒬 ⊆ Lip∗𝛼(𝐷) by considering the conditions at 𝑔 = 𝑒, the identity of the group.
Indeed, 𝒬 is a right ideal of Lip∗𝛼(𝐷).

2. By Lemma A.1.12, the conditions on 𝑎 ∈ 𝒬 are equivalent to the condition that 𝑎 dom𝐷 ⊆
𝑈𝑔 dom𝐷 and, when restricted to any compact subset 𝐾 ⊆ 𝐺, the functions

𝑔 ↦ (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝐷)⟨𝐷⟩−𝛼 𝑔 ↦ 𝑈𝑔⟨𝐷⟩−𝛼𝑈 ∗

𝑔 (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝐷)

be in End∗(𝐶(𝐾,𝐸)).



I.2. Group-equivariant KK-theory 11

3. When 𝛼 = 0, the conditions on 𝑎 ∈ 𝒬 are equivalent to requiring that [𝐷, 𝑎] extend to an
adjointable operator and

𝑔 ↦ (𝑈𝑔𝐷𝑈∗
𝑔 −𝐷)𝑎

be ∗-strongly continuous as a map from 𝐺 into bounded operators. The higher order generalisation
allows for higher order differential operators on manifolds, for example.

To prove that the bounded transform is well-defined, we use the results of §A.1.1, based on the
approach of Kucerovsky [Kuc94, Chapter 8, Appendix A]; see also [AK23, Appendix A].

Theorem I.2.9. [Kuc94, Proposition 8.11] Let (𝐴,𝐸𝐵, 𝐷) be a uniformly 𝐺-equivariant order- 1
1−𝛼

cycle. Then (𝐴,𝐸𝐵, 𝐹𝐷) is a 𝐺-equivariant bounded Kasparov module.

Proof. The only difference from the non-equivariant case is the need to show that, for every 𝑎 ∈ 𝐴,
𝑔 ↦ (𝐹𝐷 − 𝑈𝑔𝐹𝐷𝑈∗

𝑔 )𝑎 is norm-continuous as a map from 𝐺 into End0(𝐸).
Fix 𝑏 ∈ 𝒬, where 𝒬 is as in Definition I.2.7. By definition, the map 𝑓 ∶ 𝑔 ↦ (𝑈𝑔𝐷𝑈 ∗

𝑔 𝑏 − 𝑏𝐷)⟨𝐷⟩−𝛼

is ∗-strongly continuous as a map from 𝐺 into End∗(𝐸). By Lemma A.1.12, this is equivalent to 𝑓|𝐾
residing in End∗(𝐶(𝐾,𝐸)) for every compact subset 𝐾 ⊆ 𝐺.

Fix a compact subset 𝐾 ⊆ 𝐺 and let 𝐸 = 𝐶(𝐾,𝐸). Define 𝐷̃ to be the self-adjoint regular operator
on 𝐸 given by 𝐷 at each point of 𝐾. Similarly, let 𝑏̃ ∈ End∗(𝐸) be given by 𝑏 at each point of 𝐾. Let
𝑈 denote the ℂ-linear map from 𝐸 to itself given by (𝑈𝜉)(𝑔) = 𝑈𝑔𝜉(𝑔). Then

(𝑈𝐷̃𝑈 ∗𝑏̃ − 𝑏̃𝐷̃)⟨𝐷̃⟩−𝛼

is bounded. Applying Proposition I.1.1, the operator (𝐹𝑈𝐷̃𝑈∗ −𝐹𝐷̃)̃𝑏⟨𝐷̃⟩𝛽 is bounded for all 𝛽 < 1−𝛼.
By the functional calculus, 𝐹𝑈𝐷̃𝑈∗ = 𝑈𝐹𝐷̃𝑈∗. Fixing an element 𝑐 ∈ 𝐴, let 𝑐 denote the operator on 𝐸
given by 𝑐 ∈ End∗(𝐸) at every point of 𝐾. Since ⟨𝐷⟩−𝛽𝑐 ∈ End0(𝐸),

⟨𝐷̃⟩−𝛽𝑐 ∈ 𝐶(𝐾,End0(𝐸)) = End0(𝐸).

Hence
(𝑈𝐹𝐷̃𝑈∗ − 𝐹𝐷̃)̃𝑏𝑐 = (𝐹𝑈𝐷̃𝑈∗ − 𝐹𝐷̃)̃𝑏⟨𝐷̃⟩𝛽⟨𝐷̃⟩−𝛽𝑐

is in End0(𝐸) = End0(𝐶(𝐾,𝐸)).
Define the map 𝑓 ′ ∶ 𝑔 ↦ (𝐹𝐷 −𝑈𝑔𝐹𝐷𝑈 ∗

𝑔 )𝑏𝑐 from 𝐺 into bounded operators on 𝐸. By Lemma A.1.8,
the norm-continuity of 𝑓 ′ is equivalent to the condition that 𝑓 ′|𝐾 be in End0(𝐶(𝐾,𝐸)) for every
compact subset 𝐾 ⊆ 𝐺. By the inclusion of 𝐴 ⊆ 𝒬𝐴, we are done.

Remark I.2.10. Let 𝐴 be a unital C*-algebra and 𝒜 a dense unital ∗-subalgebra of 𝐴. Let (𝒜,𝐻,𝐷)
be a uniformly 𝐺-equivariant 𝑝-summable order 𝑚 spectral triple. Because (𝑈𝑔𝐹𝐷𝑈∗

𝑔 −𝐹𝐷)(1 +𝐷2)𝛽/2
is bounded for 𝛽 < 𝑚−1, the 𝐺-equivariant Fredholm module (𝐴,𝐻, 𝐹𝐷) is 𝑞-summable over 𝒜 for any
𝑞 > 𝑚𝑝 (see Definition I.2.6).

I.2.2 Descent and the dual Green–Julg map

An important feature of equivariant KK-theory is Kasparov’s descent map

𝑗𝐺𝑡 ∶ 𝐾𝐾𝐺(𝐴,𝐵) → 𝐾𝐾(𝐴 ⋊𝑡 𝐺,𝐵 ⋊𝑡 𝐺)

for either topology 𝑡 ∈ {𝑢, 𝑟}, universal or reduced [Kas88, Theorem 3.11]. There can be other, exotic,
topologies 𝑡 for which there is a descent map [BEW15, §6] but we will not pursue this.
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Definition I.2.11. [Kas88, Definition 3.8], [Bla98, Definition 20.6.1] Let 𝐸 be a 𝐺-equivariant 𝐴-𝐵-
correspondence. The algebra 𝐶𝑐(𝐺,𝐵) acts on the right of 𝐶𝑐(𝐺,𝐸) by

(𝜉𝑓)(𝑔) = ∫
𝐺
𝜉(ℎ)𝛽ℎ(𝑓(ℎ−1𝑔))𝑑𝜇(ℎ) (𝜉 ∈ 𝐶𝑐(𝐺,𝐸), 𝑓 ∈ 𝐶𝑐(𝐺,𝐵))

where 𝛽 is the action of 𝐺 on 𝐵. We define a right 𝐶𝑐(𝐺,𝐵)-valued inner product on 𝐶𝑐(𝐺,𝐸) by

⟨𝜉|𝜂⟩𝐶𝑐(𝐺,𝐵)(𝑔) = ∫
𝐺
𝛽ℎ−1(⟨𝜉(ℎ)|𝜂(ℎ𝑔)⟩𝐵)𝑑𝜇(ℎ) (𝜉, 𝜂 ∈ 𝐶𝑐(𝐺,𝐸)).

The algebra 𝐶𝑐(𝐺,𝐴) acts on the left of 𝐶𝑐(𝐺,𝐸) by

(𝑓𝜉)(𝑔) = ∫
𝐺
𝑓(ℎ)𝑈ℎ𝜉(ℎ−1𝑔)𝑑𝜇(ℎ) (𝑓 ∈ 𝐶𝑐(𝐺,𝐴), 𝜉 ∈ 𝐶𝑐(𝐺,𝐸))

where 𝑈 is the representation of 𝐺 on 𝐸. For 𝑡 ∈ {𝑢, 𝑟}, we denote by 𝐸 ⋊𝑡 𝐺 the 𝐴 ⋊𝑡 𝐺-𝐵 ⋊𝑡 𝐺-
correspondence obtained by completing 𝐶𝑐(𝐺,𝐸) in the 𝐶𝑐(𝐺,𝐵)-valued inner product. We may also
realise 𝐸 ⋊𝑡 𝐺 as the internal tensor product 𝐸 ⊗𝐵 (𝐵 ⋊𝑡 𝐺), but the left action of 𝐴⋊𝑡 𝐺 is difficult to
see in this picture.

Proposition I.2.12. [Kas88, Theorem 3.11] Let (𝐴,𝐸𝐵, 𝐹 ) be a 𝐺-equivariant bounded Kasparov
module. Then, for 𝑡 ∈ {𝑢, 𝑟}, (𝐴 ⋊𝑡 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐹 ) is a bounded Kasparov module, where 𝐹 is the
operator given on 𝜉 ∈ 𝐶𝑐(𝐺,𝐸) ⊆ 𝐸 ⋊𝑡 𝐺 by (𝐹𝜉)(𝑔) = 𝐹(𝜉(𝑔)).

If 𝐺 is a compact group and acts trivially on 𝐴 there is the Green–Julg isomorphism

Φ𝐺 ∶ 𝐾𝐾𝐺(𝐴,𝐵) → 𝐾𝐾(𝐴,𝐵 ⋊ 𝐺);

see [Bla98, 20.2.7(b)]. On the other hand, when 𝐺 acts trivially on 𝐵, there is the dual Green–Julg
map

Ψ𝐺 ∶ 𝐾𝐾𝐺(𝐴,𝐵) → 𝐾𝐾(𝐴 ⋊𝑢 𝐺,𝐵)
which is an isomorphism when 𝐺 is discrete [Bla98, 20.2.7(b)]. The existence of Ψ𝐺 is proved in the
next proposition, and then we present the isomorphism for discrete groups. The universal crossed
product is needed because it is universal for covariant representations.

Proposition I.2.13. Let (𝐴,𝐸𝐵, 𝐹 ) be a 𝐺-equivariant bounded Kasparov module, with 𝐺 acting
trivially on 𝐵. Then (𝐴 ⋊𝑢 𝐺,𝐸𝐵, 𝐹 ) is a bounded Kasparov module, with the integrated representation
of 𝐴 ⋊𝑢 𝐺.

Proof. With 𝛼 the action of 𝐺 on 𝐴, 𝜋 the representation of 𝐴 on 𝐸, and 𝑈 the representation of 𝐺 on
𝐸, the pair (𝜋, 𝑈) is a covariant representation of the C*-dynamical system (𝐴,𝐺, 𝛼). We obtain by
[EKQR06, §A.2] the integrated representation 𝜋 ⋊ 𝑈 of 𝐴 ⋊𝑢 𝐺 on 𝐸, and it is here that the universal
crossed product is needed. We will consider the dense subalgebra 𝐶𝑐(𝐺,𝐴) ⊆ 𝐴 ⋊𝑢 𝐺. For an element
𝑓 ∈ 𝐶𝑐(𝐺,𝐴),

(𝐹 ∗ − 𝐹)(𝜋 ⋊ 𝑈)(𝑓) = ∫
𝐺
(𝐹 ∗ − 𝐹)𝜋(𝑓(𝑔))𝑈𝑔𝑑𝜇(𝑔).

Because 𝑓 is compactly supported and the integrand norm continuous, the integral converges. The
integrand being valued in compact operators, the result is also compact. In the same way,

(𝐹 2 − 1)(𝜋 ⋊ 𝑈)(𝑓) = ∫
𝐺
(𝐹 2 − 1)𝜋(𝑓(𝑔))𝑈𝑔𝑑𝜇(𝑔)

and

[𝐹 , (𝜋 ⋊ 𝑈)(𝑓)] = ∫
𝐺
[𝐹 , 𝜋(𝑓(𝑔))𝑈𝑔]𝑑𝜇(𝑔) = ∫

𝐺
([𝐹 , 𝜋(𝑓(𝑔))]𝑈𝑔 + 𝜋(𝑓(𝑔))(𝐹 − 𝑈𝑔𝐹𝑈∗

𝑔 )𝑈𝑔) 𝑑𝜇(𝑔)

are compact. By the density of 𝐶𝑐(𝐺,𝐴) ⊆ 𝐴 ⋊𝑢 𝐺 we are done.
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Proposition I.2.14. Let (𝐴 ⋊𝑢 𝐺,𝐸𝐵, 𝐹 ) be a bounded Kasparov module, with 𝐺 a discrete group
and 𝐴 ⋊𝑢 𝐺 represented nondegenerately on 𝐸. Then (𝐴,𝐸𝐵, 𝐹 ) is a 𝐺-equivariant bounded Kasparov
module, with the group action given by (𝑈𝑔)𝑔∈𝐺 ⊆ 𝐶∗

𝑢(𝐺) ⊆ 𝑀(𝐴 ⋊𝑢 𝐺), acting trivially on 𝐵.

Proof. Because 𝐺 is discrete, 𝐴 is included in 𝐴 ⋊𝑢 𝐺. Hence,

(𝐹 ∗ − 𝐹)𝑎 (𝐹 2 − 1)𝑎 [𝐹 , 𝑎]

are compact for all 𝑎 ∈ 𝐴. Inside 𝑀(𝐴 ⋊𝑢 𝐺) are unitary elements (𝑈𝑔)𝑔∈𝐺 representing 𝐺, such that
𝑎𝑈𝑔 ∈ 𝐴 ⋊𝑢 𝐺 for all 𝑎 ∈ 𝐴 and 𝑔 ∈ 𝐺. Then

(𝐹 − 𝑈𝑔𝐹𝑈∗
𝑔 )𝑎 = [𝐹 , 𝑈𝑔]𝑈∗

𝑔 𝑎 = [𝐹 , 𝑎] − [𝐹 , 𝑈 ∗
𝑔 𝑎] = [𝐹 , 𝑎] + [𝐹 , 𝑎𝑈𝑔]∗

is compact, as required.

Before we define the descent map for uniformly equivariant cycles, let us introduce some notation.

Definition I.2.15. Let 𝒜 be a dense ∗-subalgebra of a C*-algebra 𝐴. Let 𝛼 be an action of a locally
compact group 𝐺 on 𝐴 which preserves 𝒜. If 𝐺 is discrete, we write 𝒜 ⋊ 𝐺 for the algebraic crossed
product, which is dense in 𝐴 ⋊𝑡 𝐺. For a non-discrete group, we will generalise this by defining
𝒜 ⋊𝐺 ⊆ 𝐴 ⋊𝑡 𝐺 as the (dense) ∗-subalgebra generated by 𝒜 and 𝐶𝑐(𝐺) under the canonical inclusions
𝒜 ⊆ 𝐴 ⊆ 𝑀(𝐴 ⋊𝑡 𝐺) and 𝐶𝑐(𝐺) ⊆ 𝐶∗(𝐺) ⊆ 𝑀(𝐴 ⋊𝑡 𝐺).

Proposition I.2.16. Let (𝐴,𝐸𝐵, 𝐷) be a uniformly 𝐺-equivariant order- 1
1−𝛼 cycle. Then for either

topology 𝑡 ∈ {𝑢, 𝑟}, (𝐴 ⋊𝑡 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐷̃) is an order- 1
1−𝛼 cycle, where 𝐷̃ is the regular operator

given on 𝜉 ∈ 𝐶𝑐(𝐺,𝐸) ⊆ 𝐸 ⋊𝑡 𝐺 by (𝐷̃𝜉)(𝑔) = 𝐷(𝜉(𝑔)).
If, for a dense ∗-subalgebra 𝒜 ⊆ 𝐴, (𝒜, 𝐸𝐵, 𝐷) is a uniformly 𝐺-equivariant order- 1

1−𝛼 cycle,
(𝒜 ⋊ 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐷̃) is an order- 1

1−𝛼 cycle.

Proof. We have, for 𝑓 ∈ 𝐶𝑐(𝐺,𝐴) and 𝜉 ∈ 𝐶𝑐(𝐺,𝐸)

((1 + 𝐷̃2)−1𝑓𝜉)(𝑔) = ∫
𝐺
(1 + 𝐷2)−1𝑓(ℎ)𝑈ℎ𝜉(ℎ−1𝑔)𝑑𝜇(ℎ).

As 𝑓 is compactly supported and the integrand continuous, the integral converges. Observe that
(1 + 𝐷̃2)−1𝑓 is an element of 𝐶𝑐(𝐺,End

0(𝐸)), given by 𝑔 ↦ (1 + 𝐷2)−1𝑓(𝑔). By [Kas88, Proof of
Theorem 3.11], 𝐶𝑐(𝐺,End

0(𝐸)) ⊆ End0(𝐸 ⋊𝑡 𝐺), so (1 + 𝐷̃2)−1𝑓 is compact.
Next, note that the closure of 𝒬𝐶𝑐(𝐺) includes 𝐴 ⋊𝑡 𝐺. Let 𝑎 ∈ 𝒬, 𝑓 ∈ 𝐶𝑐(𝐺), and 𝜉 ∈

span(𝐶𝑐(𝐺) dom𝐷) ⊆ 𝐶𝑐(𝐺, dom𝐷). Then we find that

([𝐷̃, 𝑎𝑓]⟨𝐷̃⟩−𝛼𝜉)(𝑔) = ∫
𝐺
[𝐷, 𝑎𝑈ℎ]⟨𝐷̃⟩−𝛼𝑓(ℎ)𝜉(ℎ−1𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
(𝐷𝑎 − 𝑎𝑈ℎ𝐷𝑈∗

ℎ)𝑈ℎ⟨𝐷̃⟩−𝛼𝑈∗
ℎ𝑈ℎ𝑓(ℎ)𝜉(ℎ−1𝑔)𝑑𝜇(ℎ).

As 𝑓 is compactly supported and the integrand is continuous, the integral converges. Observe that the
closure of [𝐷̃, 𝑎𝑓]⟨𝐷̃⟩−𝛼 is an element of 𝐶𝑐(𝐺,End

∗(𝐸)∗−𝑠) given by

𝑔 ↦ 𝑓(𝑔)(𝐷𝑎 − 𝑎𝑈𝑔𝐷𝑈 ∗
𝑔 )𝑈𝑔⟨𝐷⟩−𝛼𝑈∗

𝑔 .

As 𝐶𝑐(𝐺,End
∗(𝐸)∗−𝑠) ⊆ End∗(𝐸 ⋊𝑡 𝐺) (see [Rae88, Lemma 7]), [𝐷̃, 𝑎𝑓]⟨𝐷̃⟩−𝛼 is bounded. Similarly,

⟨𝐷̃⟩−𝛼[𝐷̃, 𝑎𝑓] is bounded. Hence for 𝑏 ∈ 𝒜 ⋊𝐺, [𝐷̃, 𝑏]⟨𝐷̃⟩−𝛼 and ⟨𝐷̃⟩−𝛼[𝐷̃, 𝑏] are bounded, proving the
second statement.

For uniformly equivariant cycles, we have a dual Green–Julg map for the universal crossed product.
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Proposition I.2.17. Let (𝐴,𝐸𝐵, 𝐷) be a uniformly 𝐺-equivariant order- 1
1−𝛼 cycle, with 𝐺 acting

trivially on 𝐵. Then (𝐴 ⋊𝑢 𝐺,𝐸𝐵, 𝐷) is an order- 1
1−𝛼 cycle, with the integrated representation of

𝐴 ⋊𝑢 𝐺.
If, for a dense ∗-subalgebra 𝒜 ⊆ 𝐴, (𝒜, 𝐸𝐵, 𝐷) is a uniformly 𝐺-equivariant order- 1

1−𝛼 cycle, with
𝐺 acting trivially on 𝐵, (𝒜 ⋊ 𝐺,𝐸𝐵, 𝐷) is an order- 1

1−𝛼 cycle.

Proof. With 𝛼 the action of 𝐺 on 𝐴, 𝜋 the representation of 𝐴 on 𝐸, and 𝑈 the representation of 𝐺 on
𝐸, the pair (𝜋, 𝑈) is a covariant representation of the C*-dynamical system (𝐴,𝐺, 𝛼) and we obtain
the integrated representation 𝜋 ⋊ 𝑈 of 𝐴 ⋊𝑢 𝐺 on 𝐸. For an element 𝑓 ∈ 𝐶𝑐(𝐺,𝐴),

(1 + 𝐷2)−1(𝜋 ⋊ 𝑈)(𝑓) = ∫
𝐺
(1 + 𝐷2)−1𝜋(𝑓(𝑔))𝑈𝑔𝑑𝜇(𝑔).

As 𝑓 is compactly supported and the integrand norm-continuous, the integral converges, and as the
integrand is valued in compact operators, the integral is also compact. As in the proof of Proposition
I.2.16, we note that the closure of 𝒬𝐶𝑐(𝐺) includes 𝐴 ⋊𝑢 𝐺. Let 𝑎 ∈ 𝒬, 𝑓 ∈ 𝐶𝑐(𝐺), and 𝜉 ∈ dom𝐷;
then

[𝐷, (𝜋 ⋊ 𝑈)(𝑎𝑓)]⟨𝐷⟩−𝛼𝜉 = ∫
𝐺
𝑓(𝑔)[𝐷, 𝜋(𝑎)𝑈𝑔]⟨𝐷⟩−𝛼𝜉𝑑𝜇(𝑔)

= ∫
𝐺
𝑓(𝑔)(𝐷𝜋(𝑎) − 𝜋(𝑎)𝑈𝑔𝐷𝑈∗

𝑔 )𝑈𝑔⟨𝐷⟩−𝛼𝜉𝑑𝜇(𝑔).

As 𝑓 is compactly supported and the integrand is continuous, the integral converges. By Corollary
A.1.10, [𝐷, (𝜋 ⋊ 𝑈)(𝑎𝑓)]⟨𝐷⟩−𝛼 extends to an adjointable operator, as does ⟨𝐷⟩−𝛼[𝐷, (𝜋 ⋊ 𝑈)(𝑎𝑓)].

In order to display the inverse of the dual Green-Julg map for discrete groups, a dense subalgebra
𝒜 of 𝐴 is required.

Proposition I.2.18. Let (𝒜 ⋊ 𝐺,𝐸𝐵, 𝐷) be an order- 1
1−𝛼 cycle, with 𝐺 a discrete group and the

representation of 𝒜⋊𝐺 on 𝐸 nondegenerate. Then (𝒜, 𝐸𝐵, 𝐷) is a uniformly 𝐺-equivariant order- 1
1−𝛼

cycle, with group action given by (𝑈𝑔)𝑔∈𝐺 ⊆ 𝐶∗
𝑢(𝐺) ⊆ 𝑀(𝐴 ⋊𝑢 𝐺), acting trivially on 𝐵.

Proof. Because 𝐺 is discrete, 𝒜 is included in 𝒜 ⋊ 𝐺. Hence, (1 + 𝐷2)−1𝑎 is compact and [𝐷, 𝑎] is
bounded for all 𝑎 ∈ 𝒜. Inside 𝑀(𝐴 ⋊𝑢 𝐺) are unitary elements (𝑈𝑔)𝑔∈𝐺 representing 𝐺, such that
𝑎𝑈𝑔 ∈ 𝒜 ⋊ 𝐺 for all 𝑎 ∈ 𝒜 and 𝑔 ∈ 𝐺. Then

𝑈𝑔𝐷𝑈∗
𝑔 𝑎 − 𝑎𝐷 = 𝑈𝑔[𝐷, 𝑈 ∗

𝑔 𝑎]

so that (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝐷)⟨𝐷⟩−𝛼 and ⟨𝐷⟩−𝛼𝑈∗

𝑔 (𝑈𝑔𝐷𝑈∗
𝑔 𝑎 − 𝑎𝐷) are bounded, as required.

Remark I.2.19. It is immediate that the bounded transform (𝐴 ⋊𝑡 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐹𝐷̃ = 𝐹𝐷) of the
descent (𝐴 ⋊𝑡 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐷̃) of a uniformly 𝐺-equivariant cycle (𝐴,𝐸𝐵, 𝐷) is exactly the descent
of the bounded transform (𝐴,𝐸𝐵, 𝐹𝐷). The same is true for the dual Green–Julg map.

I.3 Quantum group–equivariant KK-theory

Quantum group–equivariant KK-theory, in the bounded picture, is due to Baaj and Skandalis [BS89].
A detailed account can be found in [Ver02]. We first recall the notions of a C*-bialgebra and a locally
compact quantum group.
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Definition I.3.1. e.g. [Tim08, Definitions 4.1.1,3] A C*-bialgebra is a C*-algebra 𝑆 equipped with a
comultiplication map, a coassociative, nondegenerate ∗-homomorphism Δ ∶ 𝑆 → 𝑀(𝑆 ⊗ 𝑆) such that
Δ(𝑆)(𝑆 ⊗ 1) and (1 ⊗ 𝑆)Δ(𝑆) are contained in 𝑆 ⊗ 𝑆. A C*-bialgebra 𝑆 is simplifiable if

span(Δ(𝑆)(𝑆 ⊗ 1)) = 𝑆 ⊗ 𝑆 = span((1 ⊗ 𝑆)Δ(𝑆)).

A von Neumann bialgebra is a von Neumann algebra 𝑀 with a comultiplication map, a coassociative,
unital, normal ∗-homomorphism Δ ∶ 𝑀 → 𝑀 ⊗𝑀, the von Neumann tensor product.

Commutative C*-bialgebras are in duality with certain locally compact semigroups; see [Val85, §3]
for precise statements.

Definition I.3.2. e.g. [Tim08, Chapter 8] A locally compact quantum group 𝔾 is given by the equivalent
data of either:

• A simplifiable C*-bialgebra 𝐶𝑟
0 (𝔾) with left- and right-invariant, KMS, faithful weights; or

• A von Neumann bialgebra 𝐿∞(𝔾) with left- and right-invariant, normal, semifinite, faithful
weights.

For the precise meaning of the adjectives on the weights, see e.g. [Tim08, §8.1.1-2], but we will not use
these details. From such data, one obtains:

• The Hilbert space 𝐿2(𝔾), on which 𝐿∞(𝔾) and 𝐶𝑟
0 (𝔾) are represented, obtained by the GNS

construction from the left Haar weight (of either algebra);
• The universal function algebra 𝐶𝑢

0 (𝔾), which surjects onto 𝐶𝑟
0 (𝔾);

• The dual locally compact quantum group 𝔾̂, for which 𝐿2(𝔾̂) ≅ 𝐿2(𝔾), and the C*-algebras
𝐶∗
𝑟 (𝔾) ∶= 𝐶𝑟

0 (𝔾̂) and 𝐶∗
𝑢(𝔾) ∶= 𝐶𝑢

0 (𝔾̂);
• The multiplicative unitary 𝑊 ∈ 𝑀(𝐶𝑟

0 (𝔾)⊗𝐶𝑟
0 (𝔾̂)) ⊆ 𝐵(𝐿2(𝔾)⊗𝐿2(𝔾)) satisfying the equation

𝑊12𝑊13𝑊23 = 𝑊23𝑊12 and, for 𝑎 ∈ 𝐶𝑟
0 (𝔾), Δ(𝑎) = 𝑊 ∗(1 ⊗ 𝑎)𝑊 on 𝐿2(𝔾) ⊗ 𝐿2(𝔾); and

• A Banach algebra 𝐿1(𝔾) ∶= 𝐿∞(𝔾)∗, the predual of 𝐿∞(𝔾).

We next recall the details of C*-bialgebra-coactions on C*-algebras and Hilbert modules.

Definition I.3.3. [EKQR06, Definitions 1.39, A.3] Let 𝐵 and 𝐶 be C*-algebras. The 𝐶-multiplier
algebra of 𝐵 ⊗𝐶 is

𝑀𝐶(𝐵 ⊗ 𝐶) = {𝑚 ∈ 𝑀(𝐵 ⊗ 𝐶) ∣ 𝑚(1 ⊗ 𝐶) ∪ (1 ⊗ 𝐶)𝑚 ∈ 𝐵 ⊗ 𝐶}.

If 𝐸 is a Hilbert 𝐵-module, the 𝐶-multiplier module of 𝐸 ⊗ 𝐶𝐵⊗𝐶 is the Hilbert 𝑀𝐶(𝐵 ⊗ 𝐶)-module

𝑀𝐶(𝐸 ⊗ 𝐶) = {𝑚 ∈ Hom∗
𝐵⊗𝐶(𝐵 ⊗ 𝐶,𝐸 ⊗ 𝐶)|𝑚(1 ⊗ 𝐶) ∪ (1 ⊗ 𝐶)𝑚 ∈ 𝐸 ⊗ 𝐶}.

Definition I.3.4. [BS89, §2], [Ver02, §3.1] A coaction of a C*-bialgebra 𝑆 on a C*-algebra 𝐵 is a
coassociative nondegenerate ∗-homomorphism 𝛿𝐵 ∶ 𝐵 → 𝑀𝑆(𝐵 ⊗ 𝑆). A coaction of 𝑆 on a Hilbert
𝐵-module 𝐸 is a coassociative ℂ-linear map 𝛿𝐸 ∶ 𝐸 → 𝑀𝑆(𝐸 ⊗ 𝑆) such that

• 𝛿𝐸(𝜉)𝛿𝐵(𝑏) = 𝛿𝐸(𝜉𝑏) and ⟨𝛿𝐸(𝜉) ∣ 𝛿𝐸(𝜂)⟩𝑀𝑆(𝐵⊗𝑆) = 𝛿𝐵(⟨𝜉 ∣ 𝜂⟩𝐵) for all 𝜉, 𝜂 ∈ 𝐸 and 𝑏 ∈ 𝐵; and
• 𝛿𝐸(𝐸)(𝐵 ⊗ 𝑆) is dense in 𝐸 ⊗ 𝑆.

Let 𝐸 ⊗𝛿𝐵(𝐵 ⊗ 𝑆) be the internal tensor product of Hilbert modules where the left action of 𝐵 on
𝐵 ⊗ 𝑆 is given by 𝛿𝐵. For an element 𝜉 ∈ 𝐸, denote by 𝑇𝜉 ∈ Hom∗

𝐵⊗𝑆(𝐵 ⊗ 𝑆,𝐸 ⊗𝛿𝐵(𝐵 ⊗ 𝑆)) the map
𝑏 ⊗ 𝑠 ↦ 𝜉 ⊗𝛿𝐵 (𝑏 ⊗ 𝑠). A unitary 𝑉𝐸 ∈ Hom∗

𝐵⊗𝑆(𝐸 ⊗𝛿𝐵(𝐵 ⊗ 𝑆),𝐸 ⊗ 𝑆) is admissible if

• 𝑉𝐸𝑇𝜉 ∈ 𝑀𝑆(𝐸 ⊗ 𝑆) for all 𝜉 ∈ 𝐸; and
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• (𝑉𝐸 ⊗ℂ 1)(𝑉𝐸 ⊗𝛿𝐵⊗id𝑆
1) = (𝑉𝐸 ⊗id𝐵⊗Δ𝑆

1) ∈ Hom∗
𝐵⊗𝑆⊗𝑆(𝐸 ⊗𝛿2𝐵(𝐵 ⊗ 𝑆 ⊗ 𝑆),𝐸 ⊗ 𝑆 ⊗ 𝑆), where

𝛿2𝐵 = (𝛿𝐵 ⊗ id𝑆)𝛿𝐵 = (id𝐵 ⊗Δ𝑆)𝛿𝐵.

The data of a coaction on 𝐸 is equivalent to the data of an admissible unitary 𝑉𝐸, by the identity
𝑉𝐸𝑇𝜉 = 𝛿𝐸(𝜉) for 𝜉 ∈ 𝐸.

If 𝐴 is a C*-algebra with an 𝑆-coaction 𝛿𝐴, an 𝐴-𝐵-correspondence 𝐸 is 𝑆-equivariant if it possesses
a Hilbert 𝐵-module coaction 𝛿𝐸 such that

𝛿𝐴(𝑎)𝛿𝐸(𝜉) = 𝛿𝐸(𝑎𝜉)

for all 𝑎 ∈ 𝐴 and 𝜉 ∈ 𝐸. In terms of the admissible unitary, this is equivalent to 𝑉𝐸(𝑎 ⊗ 1)𝑉 ∗
𝐸 = 𝛿𝐴(𝑎).

Definition I.3.5. cf. [Pod95, Definition 1.4(b)], [BSV03, §5.2] Let 𝑆 be a C*-bialgebra. An 𝑆-
coaction 𝛿𝐵 on a C*-algebra 𝐵 satisfies the Podleś condition (sometimes called simply continuity) if
span(𝛿𝐵(𝐵)(1 ⊗ 𝑆)) = 𝐵 ⊗ 𝑆. An 𝑆-coaction 𝛿𝐸 on a Hilbert 𝐵-module 𝐸 then automatically satisfies

span(𝛿𝐸(𝐸)(1 ⊗ 𝑆)) = span(𝛿𝐸(𝐸)𝛿𝐵(𝐵)(1 ⊗ 𝑆)) = span(𝛿𝐸(𝐸)(𝐵 ⊗ 𝑆)) = 𝐸 ⊗ 𝑆

and 𝑉𝐸(𝐸 ⊗𝛿𝐵(1 ⊗ 𝑆)) is dense in 𝐸 ⊗ 𝑆.

Definition I.3.6. An action of a locally compact quantum group 𝔾 on a C*-algebra 𝐵 is a 𝐶𝑟
0 (𝔾)-

coaction on 𝐵 satisfying the Podleś condition. A 𝔾-action on a Hilbert 𝐵-module 𝐸 is a 𝐶𝑟
0 (𝔾)-coaction

on 𝐸.

In the above Definition, the reduced C*-algebra is used following [Ver02] and [NV10, §4]. One
could perhaps define the action of a quantum group 𝔾 as a 𝐶𝑢

0 (𝔾)-coaction instead, as is done in
[EKQR06], although it is unclear what the consequences of this would be, particularly for the descent
map.

Definition I.3.7. [BS89, Définition 3.1] cf. [NV10, §4] Let 𝐴 and 𝐵 be C*-algebras equipped with
coactions of a C*-bialgebra 𝑆. A bounded Kasparov 𝐴-𝐵-module (𝐴,𝐸𝐵, 𝐹 ) is 𝑆-equivariant if 𝐸 is
an 𝑆-equivariant 𝐴-𝐵-correspondence and for all 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆

(𝑉𝐸(𝐹 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐹 ⊗ 1)𝑎 ⊗ 𝑠

is compact. If 𝐴 and 𝐵 are C*-algebras with 𝔾-actions, a bounded Kasparov module (𝐴,𝐸𝐵, 𝐹 ) is
𝔾-equivariant if it is 𝐶𝑟

0 (𝔾)-equivariant.

I.3.1 Uniform quantum group equivariance

We make the following definition in the unbounded setting. To our knowledge, except in the case of
the isometric coaction of a compact quantum group (see e.g. [GB16, Definition 2.3.1]), such a definiton
has not appeared in the published literature (but see [Gof09, Definition 3.3.1]).

Definition I.3.8. Let 𝐴 and 𝐵 be C*-algebras equipped with coactions of a C*-bialgebra 𝑆. Fix
0 ≤ 𝛼 < 1. For 𝑎 ∈ Lip∗𝛼(𝐷) let 𝒮𝑎 be the set of 𝑠 ∈ 𝑆 such that 𝑎 ⊗ 𝑠dom(𝐷⊗ 1) ⊆ 𝑉𝐸 dom(𝐷⊗𝛿𝐵 1)
and

(𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)(𝐷 ⊗ 1))⟨𝐷 ⊗ 1⟩−𝛼

and 𝑉𝐸⟨𝐷 ⊗𝛿𝐵1⟩
−𝛼𝑉 ∗

𝐸(𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)(𝐷 ⊗ 1))

extend to adjointable operators on 𝐸⊗𝑆. An order- 1
1−𝛼 𝐴-𝐵-cycle (𝐴,𝐸𝐵, 𝐷) is uniformly 𝑆-equivariant

if 𝐸 is an 𝑆-equivariant 𝐴-𝐵-correspondence and 𝐴 is contained in the closure of

𝒬 = {𝑎 ∈ Lip∗𝛼(𝐷)∣𝒮𝑎 = 𝑆} .
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If 𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 = 𝐷⊗ 1, we say that the cycle is isometrically equivariant.

If 𝐴 and 𝐵 are C*-algebras with 𝔾-actions, a cycle (𝐴,𝐸𝐵, 𝐷) is uniformly 𝔾-equivariant if it is
uniformly 𝐶𝑟

0 (𝔾)-equivariant.
If 𝒜 is a dense ∗-subalgebra of 𝐴 such that 𝒜 ⊆ 𝒬, we say that (𝒜, 𝐸𝐵, 𝐷) is 𝑆-equivariant (or

𝔾-equivariant, as the case may be).

Remark I.3.9. The dense subset 𝒮𝑎 ⊆ 𝑆 need not be the same for different 𝑎 ∈ 𝒬. For many locally
compact quantum groups, there may be a natural choice, fixed for all 𝑎. For a discrete quantum group
𝔾, i.e. when 𝐶0(𝔾) is isomorphic as an algebra to the C*-algebraic direct sum

⨁
𝜆∈Λ

𝑀𝑛𝜆
(ℂ)

of finite-dimensional matrix algebras, 𝒮𝑎 would contain all elements of the algebraic direct sum. In
this case, the admissible unitary would be labelled by the index set 𝜆 ∈ Λ, so that

𝑉 𝜆
𝐸 ∈ Hom∗

𝐵(𝐸 ⊗𝛿𝐵(𝐵 ⊗ ℂ𝑛𝜆), 𝐸 ⊗ ℂ𝑛𝜆)

and the equivariance condition becomes that

(𝑉 𝜆
𝐸 (𝐷 ⊗𝛿𝐵1)𝑉

𝜆∗
𝐸 (𝑎 ⊗ 1𝑛𝜆

) − (𝑎 ⊗ 1𝑛𝜆
)(𝐷 ⊗ 1𝑛𝜆

))⟨𝐷 ⊗ 1𝑛𝜆
⟩−𝛼

and 𝑉 𝜆
𝐸 ⟨𝐷 ⊗𝛿𝐵1⟩

−𝛼𝑉 𝜆∗
𝐸 (𝑉 𝜆

𝐸 (𝐷 ⊗𝛿𝐵1)𝑉
𝜆∗
𝐸 (𝑎 ⊗ 1𝑛𝜆

) − (𝑎 ⊗ 1𝑛𝜆
)(𝐷 ⊗ 1𝑛𝜆

))

be bounded for all 𝜆 ∈ Λ. (Note that there need not be any bound uniform in 𝜆 ∈ Λ.) For the dual 𝐺̂
of a group 𝐺, we suspect it always makes sense to assume that 𝒮𝑎 contains the right ideal 𝐶∗

𝑟 (𝐺)∞ of
smooth elements [WN92, §§2–3], as in Example I.3.11.

Theorem I.3.10. A uniformly 𝑆-equivariant order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷) gives rise to an 𝑆-equivariant

bounded Kasparov module (𝐴,𝐸𝐵, 𝐹𝐷).

Proof. The only difference from the non-equivariant case is the need to show that, for every 𝑎 ∈ 𝐴 and
𝑠 ∈ 𝑆, (𝐹𝐷 ⊗ 1 − 𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸 )𝑎 ⊗ 𝑠 is compact. Let 𝑏 ∈ 𝒬 and 𝑠 ∈ 𝒮𝑎 so that

(𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 −𝐷⊗ 1)(𝑏 ⊗ 𝑠)⟨𝐷 ⊗ 1⟩𝛽

extends to an adjointable operator. By Corollary I.1.2,

(𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐹𝐷 ⊗ 1)(𝑏 ⊗ 𝑠)⟨𝐷⟩𝛽 ⊗ 1

is bounded for all 𝛽 < 1 − 𝛼. With 𝑐 ∈ 𝐴,

(𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐹𝐷 ⊗ 1)𝑏𝑐 ⊗ 𝑠 = (𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸 − 𝐹𝐷 ⊗ 1)(𝑏 ⊗ 𝑠)(⟨𝐷⟩𝛽 ⊗ 1)⟨𝐷⟩−𝛽𝑐 ⊗ 1

is compact and, by the density of 𝒮𝑎 ⊆ 𝑆 and the inclusion of 𝐴 ⊆ 𝒬𝐴, we are done.

Example I.3.11. Let 𝐺 be a connected Lie group with a left-invariant Riemannian metric 𝐠, such as
the affine group ℝ ⋊ℝ×

+ of the real line as the real hyperbolic plane. The left-invariant Riemannian
metric on 𝐺 is exactly determined by the inner product 𝐠𝑒 on the tangent space 𝑇𝑒𝐺 = 𝔤 at the
identity 𝑒 ∈ 𝐺. The left-invariant differential operators and differential forms on 𝐺 can be identified
with 𝑈(𝔤) and Λ∗(𝔤), respectively. The Clifford algebra 𝒞𝓁(𝔤) acts on the left of Λ∗(𝔤). The Hodge–de
Rham Dirac operator 𝑑 + 𝛿 on (𝐺, 𝐠) can be written as

𝑑 + 𝛿 =
dim𝔤

∑
𝑖=1

𝑋𝑖 ⊗ 𝛾𝑖,
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where 𝑋𝑖 ∈ 𝔤 ⊆ 𝑈(𝔤) and 𝛾𝑖 ∈ 𝔤 ⊆ 𝒞𝓁(𝔤). We have an isometrically 𝐺-equivariant spectral triple

(𝐶0(𝐺), 𝐿2(𝐺,Λ∗(𝔤)), 𝑑 + 𝛿).

Elements of 𝑈(𝔤) act as affiliated operators on 𝐶∗
𝑟 (𝐺); see [WN92, §§2–3]. By abuse of notation, we

also write 𝑑 + 𝛿 ∈ 𝑈(𝔤) ⊗𝒞𝓁(𝔤) for the corresponding regular operator on (𝐶∗
𝑟 (𝐺) ⊗ Λ∗(𝔤))𝐶∗

𝑟(𝐺). By
Baaj–Skandalis duality [BS89, §6], it is reasonable to expect that

(ℂ, (𝐶∗
𝑟 (𝐺) ⊗ Λ∗(𝔤))𝐶∗

𝑟(𝐺), 𝑑 + 𝛿)

is a uniformly 𝐺̂-equivariant ℂ-𝐶∗
𝑟 (𝐺)-unbounded Kasparov module. To see that it is, first consider

the coaction on the module (𝐶∗
𝑟 (𝐺) ⊗ Λ∗(𝔤))𝐶∗

𝑟(𝐺). The admissible unitary is a map from

(𝐶∗
𝑟 (𝐺) ⊗ Λ∗(𝔤)) ⊗𝛿𝐶∗𝑟(𝐺)

(𝐶∗
𝑟 (𝐺) ⊗ 𝐶∗

𝑟 (𝐺)) = 𝐶∗
𝑟 (𝐺) ⊗ Λ∗(𝔤) ⊗ 𝐶∗

𝑟 (𝐺)

to
(𝐶∗

𝑟 (𝐺) ⊗ Λ∗(𝔤)) ⊗ℂ 𝐶∗
𝑟 (𝐺) = 𝐶∗

𝑟 (𝐺) ⊗ Λ∗(𝔤) ⊗ 𝐶∗
𝑟 (𝐺).

Under these identifications,

𝑇𝑥⊗𝜓 ∶ 𝐶∗
𝑟 (𝐺) ⊗ 𝐶∗

𝑟 (𝐺) → 𝐶∗
𝑟 (𝐺) ⊗ Λ∗(𝔤) ⊗ 𝐶∗

𝑟 (𝐺) 𝑦 ⊗ 𝑧 ↦ 𝑥(1)𝑦 ⊗ 𝜓 ⊗ 𝑥(2)𝑧

𝑥(1) ⊗ 𝜓 ⊗ 𝑥(2) = 𝛿(𝑥 ⊗ 𝜓) = 𝑉 𝑇𝑥 = 𝑉 (𝑥(1) ⊗ 𝜓 ⊗ 𝑥(2))

so 𝑉 is just the identity in End∗𝐶∗
𝑟(𝐺)(𝐶∗

𝑟 (𝐺) ⊗ Λ∗(𝔤) ⊗ 𝐶∗
𝑟 (𝐺)). Because 𝑋𝑖 ∈ 𝔤, in the universal

enveloping algebra 𝑈(𝔤), Δ𝑋𝑖 = 𝑋𝑖 ⊗ 1 + 1 ⊗𝑋𝑖 and

(𝑑 + 𝛿) ⊗𝛿𝐶∗𝑟(𝐺)
1 = ∑

𝑖
(𝑋𝑖 ⊗ 𝛾𝑖) ⊗Δ𝑈(𝔤)

1 = ∑
𝑖
(𝑋𝑖 ⊗ 𝛾𝑖 ⊗ 1 + 1 ⊗ 𝛾𝑖 ⊗𝑋𝑖).

Therefore,
𝑉 ((𝑑 + 𝛿) ⊗𝛿𝐶∗𝑟(𝐺)

1)𝑉 ∗ − (𝑑 + 𝛿) ⊗ 1 = 1 ⊗ 𝛾𝑖 ⊗𝑋𝑖.

For (ℂ, (𝐶∗
𝑟 (𝐺) ⊗ Λ∗(𝔤))𝐶∗

𝑟(𝐺), 𝑑 + 𝛿) to be 𝐶∗
𝑟 (𝐺)-equivariant, we require a dense subalgebra of 𝐶∗

𝑟 (𝐺)
in the common domain of the derivations 𝔤. There is in fact such a subalgebra, the right ideal 𝐶∗

𝑟 (𝐺)∞
of smooth elements for the 𝐺-action on 𝐶∗

𝑟 (𝐺) by unitary multipliers [WN92, §§2–3].

I.3.2 Descent and the dual Green–Julg map

Crossed products are not defined in the generality of Hopf C*-algebra–coactions. One needs a well-
defined notion of duality and, for that, we restrict to locally compact quantum groups. (It is possible
to work in the greater generality of a weak Kac system [Ver02, §2.2], but we forgo this in the interests
of readability.)

We use the symbol Σ for the flip map on a tensor product. Recall the multiplicative unitary
𝑊 ∈ 𝑀(𝐶𝑟

0 (𝔾) ⊗ 𝐶𝑟
0 (𝔾̂)) ⊆ 𝐵(𝐿2(𝔾) ⊗ 𝐿2(𝔾)) of a locally compact quantum group 𝔾.

Definition I.3.12. [Tim08, Definition 7.3.1] cf. [BS93, Proposition 3.2, Définition 3.3] A locally
compact quantum group 𝔾 is regular if

span{(𝜔 ⊗ 1)(𝑊Σ) ∣ 𝜔 ∈ 𝐵(𝐿2(𝔾))∗} = 𝐾(𝐿2(𝔾)).

Equivalently, 𝔾 is regular if the reduced crossed product 𝐶𝑟
0 (𝔾)⋊𝑟 𝔾 ≅ 𝐾(𝐿2(𝔾)); see Definition I.3.14

below.
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For example, every locally compact group 𝐺 and its dual 𝐺̂ are regular.
In the following proof, one might expect

(𝐴 ⊗ 1)𝑈(1 ⊗ 𝐵) ⊆ 𝐴⊗𝐵

to hold automatically for a unitary 𝑈 ∈ 𝑀(𝐴⊗𝐵) but this is not the case, as [LPRS87, Remark after
Lemma 1.2] shows.

Lemma I.3.13. Let 𝐸 be a Hilbert 𝐵-module with a 𝔾 action, 𝔾 acting trivially on 𝐵. Then 𝐶∗
𝑢(𝔾) is

represented on 𝐸. Conversely, if 𝔾 is a regular quantum group, a (nondegenerate) representation of
𝐶∗
𝑢(𝔾) on a Hilbert 𝐵-module gives rise to a 𝔾 action on 𝐸 which is trivial on 𝐵.

Proof. Let 𝐸 be a Hilbert 𝐵-module with a 𝔾 action, 𝔾 acting trivially on 𝐵. The fundamental unitary
𝑉𝐸 is then an element of End∗(𝐸 ⊗ 𝐶𝑟

0 (𝔾)) and can be thought of as an element of End∗(𝐸 ⊗ 𝐿2(𝔾))
by the left regular representation of 𝐶𝑟

0 (𝔾). By [Kus01, Proposition 5.2], there is a nondegenerate
representation of 𝐶∗

𝑢(𝔾) on 𝐸.
On the other hand, suppose that 𝐶∗

𝑢(𝔾) is represented nondegenerately by 𝜋 on a Hilbert 𝐵-module
𝐸. Let 𝒱̂ ∈ 𝑀(𝐶𝑟

0 (𝔾) ⊗ 𝐶∗
𝑢(𝔾)) be the unitary of [Kus01, Proposition 4.2]. By [Kus01, Corollary 4.3],

we obtain an element 𝑋 = (𝜋 ⊗ id)(Σ𝒱̂Σ) ∈ End∗(𝐸 ⊗ 𝑆) such that (1 ⊗ Δ)(𝑋) = 𝑋12𝑋13. The only
thing stopping 𝑋 from being the admissible unitary of an action of 𝔾 on 𝐸 (with trivial action on 𝐵)
is the possible failure of (1 ⊗ 𝐶𝑟

0 (𝔾))𝑋(𝐸 ⊗ 1) to be contained in 𝐸 ⊗ 𝐶𝑟
0 (𝔾). If we assume 𝔾 to be

regular, by [BS93, Proposition A.3(d)],

span(1 ⊗ 𝐶𝑟
0 (𝔾))𝑋(𝜋(𝐶∗

𝑢(𝔾)) ⊗ 1) = 𝜋(𝐶∗
𝑢(𝔾)) ⊗ 𝐶𝑟

0 (𝔾)

and therefore

(1 ⊗ 𝐶𝑟
0 (𝔾))𝑋(𝐸 ⊗ 1) = (1 ⊗ 𝐶𝑟

0 (𝔾))𝑋(𝜋(𝐶∗
𝑢(𝔾))𝐸 ⊗ 1) ⊆ 𝐸 ⊗ 𝐶𝑟

0 (𝔾),

as required.

It is unclear if the converse statement of Lemma I.3.13 is true without the assumption of regularity.

Definition I.3.14. cf. [Ver02, Définitions 4.2, 5.1, Lemmes 4.1, 5.2] Let 𝐴 be a C*-algebra with a
𝔾-action. The reduced crossed product 𝐴 ⋊𝑟 𝔾 is given by

span(𝛿𝐴(𝐴)(1 ⊗ 𝐶∗
𝑟 (𝔾))) ⊆ 𝑀(𝐴 ⊗𝐾(𝐿2(𝔾))).

There is also a universal crossed product 𝐴 ⋊𝑢 𝔾; for a definition we refer to [Vae05, §2.3]. For our
purposes, the following details will suffice. Let 𝜋𝐸 be a 𝔾-equivariant 𝐴-𝐵-correspondence, with 𝔾
acting trivially on 𝐵. There is an integrated representation of 𝐴 ⋊𝑢 𝔾 on 𝐸 whose image is

span(𝜋(𝐴)𝐶∗
𝑢(𝔾)) ⊆ End∗(𝐸).

If 𝔾 is regular, the algebra 𝐴 ⋊𝑢 𝔾 is universal for such integrated representations; if 𝔾 is not regular
𝐴 ⋊𝑢 𝔾 is universal for a slightly larger class of representations; see [Ver02, Définition 4.2] and [Vae05,
§2.3]. There is a canonical surjection 𝐴 ⋊𝑢 𝔾 → 𝐴 ⋊𝑟 𝔾.

Let 𝐸 be a right Hilbert 𝐵-module with an action of 𝔾. For either topology 𝑡 ∈ {𝑢, 𝑟}, the crossed
product Hilbert module 𝐸 ⋊𝑡 𝔾 is given by the internal tensor product 𝐸 ⊗𝐵 (𝐵 ⋊𝑡 𝔾). By [Ver02,
Lemme 5.2], End0𝐵(𝐸) ⋊𝑡 𝔾 is naturally identified with End0𝐵⋊𝑡𝔾(𝐸 ⋊𝑡 𝔾).

In the locally compact quantum group setting, there is a descent map

𝑗𝔾𝑡 ∶ 𝐾𝐾𝔾(𝐴,𝐵) → 𝐾𝐾(𝐴 ⋊𝑡 𝔾,𝐵 ⋊𝑡 𝔾)
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for either topology 𝑡 ∈ {𝑢, 𝑟}, universal or reduced, generalising Kasparov’s descent map for classical
groups. If 𝔾 is the dual of a classical group, descent is due to Baaj and Skandalis [BS89, Théorème
6.19], and in general due to Vergnioux [Ver02, Proposition 5.3]. In the locally compact quantum group
setting, a refinement of the reduced descent is possible, to a map

𝐽𝔾 ∶ 𝐾𝐾𝔾(𝐴,𝐵) → 𝐾𝐾𝔾̂(𝐴 ⋊𝑟 𝔾,𝐵 ⋊𝑟 𝔾)

whose composition with the forgetful functor 𝐾𝐾𝔾̂ → 𝐾𝐾 is 𝑗𝔾𝑟 . If 𝔾 is regular, 𝐶𝑟
0 (𝔾) ⋊𝑟 𝔾 ≅

𝐾(𝐿2(𝔾)) ≅ 𝐶∗
𝑟 (𝔾)⋊𝑟 𝔾̂ and the maps 𝐽𝔾 and 𝐽 𝔾̂ are mutually inverse isomorphisms [BS93, Remarque

7.7(b)]. We refer to these isomorphisms as Baaj–Skandalis duality.

Proposition I.3.15. [Ver02, Proposition 5.3] Let (𝐴,𝐸𝐵, 𝐹 ) be a 𝔾-equivariant bounded Kasparov
module. For 𝑡 ∈ {𝑢, 𝑟}, let 𝜄 be the inclusion End0(𝐸) → 𝑀(End0(𝐸) ⋊𝑡 𝔾) ≅ End∗𝐵⋊𝑡𝔾(𝐸 ⋊𝑡 𝔾). Then
(𝐴 ⋊𝑡 𝔾, (𝐸 ⋊𝑡 𝔾)𝐵⋊𝑡𝔾, 𝜄(𝐹 )) is a bounded Kasparov module.

If 𝔾 is compact and acts trivially on 𝐴, we have the Green–Julg isomorphism

Φ𝔾 ∶ 𝐾𝐾𝔾(𝐴,𝐵) → 𝐾𝐾(𝐴,𝐵 ⋊ 𝔾);

see [Ver02, Théorème 5.10]. On the other hand, when 𝔾 acts trivially on 𝐵, there is a dual Green–Julg
map for the universal crossed product

Ψ𝔾 ∶ 𝐾𝐾𝔾(𝐴,𝐵) → 𝐾𝐾(𝐴 ⋊𝑢 𝔾,𝐵)

which is an isomorphism when 𝔾 is discrete [Ver02, Proposition 5.11].

Proposition I.3.16. [Ver02, Proposition 5.11] Let (𝐴,𝐸𝐵, 𝐹 ) be a 𝔾-equivariant bounded Kasparov
module, with 𝔾 acting trivially on 𝐵. Then (𝐴 ⋊𝑢 𝔾,𝐸𝐵, 𝐹 ) is a bounded Kasparov module, with the
integrated representation of 𝐴 ⋊𝑢 𝔾.

Proposition I.3.17. [Ver02, Proposition 5.11] Let (𝐴 ⋊𝑢 𝔾,𝐸𝐵, 𝐹 ) be a bounded Kasparov module,
with 𝔾 a discrete quantum group and 𝐴 ⋊𝑢 𝔾 represented nondegenerately on 𝐸. Then (𝐴,𝐸𝐵, 𝐹 ) is
a 𝔾-equivariant bounded Kasparov module, with the coaction of 𝐶𝑟

0 (𝔾) on 𝐸 given by the action of
𝐶∗
𝑢(𝔾) ⊆ 𝑀(𝐴 ⋊𝑢 𝔾) on 𝐸, acting trivially on 𝐵.

In the unbounded setting, we have the following picture of descent.

Proposition I.3.18. Let (𝐴,𝐸𝐵, 𝐷) be a uniformly 𝔾-equivariant order- 1
1−𝛼 cycle. For 𝑡 ∈ {𝑢, 𝑟}, let 𝜄

be the inclusion End0(𝐸) → 𝑀(End0(𝐸) ⋊𝑡 𝔾) ≅ End∗𝐵⋊𝑡𝔾(𝐸 ⋊𝑡 𝔾). Then (𝐴⋊𝑡 𝔾, (𝐸 ⋊𝑡 𝔾)𝐵⋊𝑡𝔾, 𝜄(𝐷))
is an order- 1

1−𝛼 cycle.
If, for a dense ∗-subalgebra 𝒜 ⊆ 𝐴, (𝒜, 𝐸𝐵, 𝐷) is a uniformly 𝔾-equivariant order- 1

1−𝛼 cycle, the
data

(span{(1 ⊗ 𝜔)((𝜄(𝑎)∗ ⊗ 𝑠∗)𝑋)| 𝑎 ∈ 𝒜, 𝑠 ∈ 𝒮𝑎, 𝜔 ∈ 𝐿1(𝔾)}, (𝐸 ⋊𝑡 𝔾)𝐵⋊𝑡𝔾, 𝜄(𝐷))

defines an order- 1
1−𝛼 cycle, where 𝑋 is a unitary on (𝐸 ⋊𝑡 𝔾) ⊗ 𝐶𝑟

0 (𝔾) described in the proof.

Proof. Note that the image of the representation of 𝐴⋊𝑡 𝔾 is span(𝜄(𝐴)𝐶∗
𝑡 (𝔾)) ⊆ End∗(𝐸 ⋊𝑡 𝔾). Using

the identification End0𝐵(𝐸) ⋊𝑡 𝔾 ≅ End0𝐵⋊𝑡𝔾(𝐸 ⋊𝑡 𝔾), we see that, for 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝐶∗
𝑡 (𝔾),

(1 + 𝜄(𝐷)2)−1/2(𝜄(𝑎)𝑓) = 𝜄((1 + 𝐷2)−1/2𝑎)𝑓

is compact, cf. [Ver02, Démonstration du Proposition 5.3]. By the universality of the crossed product
[Ver02, §4.1] [Vae05, §2.3], the morphism End0(𝐸) ⋊𝑢 𝔾 → End0(𝐸) ⋊𝑡 𝔾 gives rise to the morphism
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𝜄 ∶ End0(𝐸) → 𝑀(End0(𝐸) ⋊𝑡 𝔾) ≅ End∗(𝐸 ⋊𝑡 𝔾) and a unitary 𝑋 ∈ 𝑀((End0(𝐸) ⋊𝑡 𝔾) ⊗ 𝐶𝑟
0 (𝔾)) ≅

End∗((End0(𝐸) ⋊𝑡 𝔾) ⊗ 𝐶𝑟
0 (𝔾)) such that

𝑋(𝜄(𝑇 ) ⊗ 1)𝑋∗ = (𝜄 ⊗ id)(𝑉𝐸(𝑇 ⊗𝛿𝐵 1)𝑉 ∗
𝐸 )

for 𝑇 ∈ End0(𝐸). Let 𝑎 ∈ 𝒬 and 𝑠 ∈ 𝒮𝑎. For 𝑋∗(𝜄(𝑎) ⊗ 𝑠1) ∈ End∗((𝐸 ⋊𝑡 𝔾) ⊗ 𝐶𝑟
0 (𝔾),

[𝜄(𝐷) ⊗ 1,𝑋∗(𝜄(𝑎) ⊗ 𝑠)]⟨𝜄(𝐷)⟩−𝛼

= 𝑋∗ (𝑋(𝜄(𝐷) ⊗ 1)𝑋∗(𝜄(𝑎) ⊗ 𝑠) − (𝜄 ⊗ id) ((𝑎 ⊗ 𝑠)(𝐷 ⊗ 1))) ⟨𝜄(𝐷)⟩−𝛼

= 𝑋∗(𝜄 ⊗ id) ((𝑉𝐸(𝐷 ⊗𝛿𝐵 1)𝑉 ∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)(𝐷 ⊗ 1))(⟨𝐷⊗⟩−𝛼)

and

⟨𝜄(𝐷)⟩−𝛼[𝜄(𝐷) ⊗ 1,𝑋∗(𝜄(𝑎) ⊗ 𝑠)]
= 𝑋∗𝑋⟨𝜄(𝐷)⟩−𝛼𝑋∗ (𝑋(𝜄(𝐷) ⊗ 1)𝑋∗(𝜄(𝑎) ⊗ 𝑠) − (𝜄 ⊗ id) ((𝑎 ⊗ 𝑠)(𝐷 ⊗ 1)) ⟨𝜄(𝐷)⟩−𝛼)

= 𝑋∗(𝜄 ⊗ id) (𝑉𝐸⟨𝐷 ⊗𝛿𝐵1⟩
−𝛼𝑉 ∗

𝐸(𝑉𝐸(𝐷 ⊗𝛿𝐵 1)𝑉 ∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)(𝐷 ⊗ 1)))

are adjointable. The representation of 𝐴 ⋊𝑡 𝔾 on 𝐸 ⋊𝑡 𝔾 consists of

span(𝜄(𝐴)𝐶∗
𝑡 (𝔾)) = span{𝜄(𝑎)(1 ⊗ 𝜔)(𝑋)∣ 𝑎 ∈ 𝐴, 𝜔 ∈ 𝐿1(𝔾)}

= span{𝜄(𝑎)(1 ⊗ 𝜂∗1)𝑋(1 ⊗ 𝜂∗2)∣ 𝑎 ∈ 𝐴, 𝜂1, 𝜂2 ∈ 𝐿2(𝔾)}

= span{(1 ⊗ 𝜂∗1)(𝜄(𝑎)∗ ⊗ 𝑠∗)𝑋(1 ⊗ 𝜂∗2)∣ 𝑎 ∈ 𝐴, 𝑠 ∈ 𝐶𝑟
0 (𝔾), 𝜂1, 𝜂2 ∈ 𝐿2(𝔾)}

⊆ span{(1 ⊗ 𝜂∗1)(𝜄(𝑎)∗ ⊗ 𝑠∗)𝑋(1 ⊗ 𝜂∗2)∣ 𝑎 ∈ 𝒬, 𝑠 ∈ 𝒮𝑎, 𝜂1, 𝜂2 ∈ 𝐿2(𝔾)}

by the density of 𝒮∗
𝑎 ⊆ 𝐶𝑟

0 (𝔾) and the inclusion 𝐴 ⊆ 𝒬.

We also have a realisation of the dual Green–Julg map on uniformly equivariant unbounded
Kasparov modules.

Proposition I.3.19. Let (𝐴,𝐸𝐵, 𝐷) be a uniformly 𝔾-equivariant order- 1
1−𝛼 cycle, with 𝔾 acting

trivially on 𝐵. Then (𝐴 ⋊𝑢 𝔾,𝐸𝐵, 𝐷) is an order- 1
1−𝛼 cycle, with the integrated representation of

𝐴 ⋊𝑢 𝔾.
If, for a dense ∗-subalgebra 𝒜 ⊆ 𝐴, (𝒜, 𝐸𝐵, 𝐷) is a uniformly 𝔾-equivariant unbounded Kasparov

module, with 𝐺 acting trivially on 𝐵, then

(span{(1 ⊗ 𝜔)((𝑎∗ ⊗ 𝑠∗)𝑉𝐸)| 𝑎 ∈ 𝒜, 𝑠 ∈ 𝒮𝑎, 𝜔 ∈ 𝐿1(𝔾)},𝐸𝐵, 𝐷)

is an order- 1
1−𝛼 cycle.

Proof. The only point which is not immediate is the boundedness of commutators with 𝐷. Let 𝑎 ∈ 𝒬
and 𝑠 ∈ 𝒮𝑎 and let 𝜔 ∈ 𝐿1(𝔾), so that

(1 ⊗ 𝜔)((𝑎∗ ⊗ 𝑠∗)𝑉𝐸)

is in the integrated representation of 𝐴 ⋊𝑢 𝔾 on 𝐸. By the uniform equivariance condition,

[𝐷, (1 ⊗ 𝜔)((𝑎∗ ⊗ 𝑠∗)𝑉𝐸)] = (1 ⊗ 𝜔) ((𝑉𝐸(𝐷 ⊗ 1)𝑉 ∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)(𝐷 ⊗ 1))∗ 𝑉𝐸)

and so (1 ⊗ 𝜔)((𝑎∗ ⊗ 𝑠∗)𝑉𝐸) ∈ Lip∗𝛼(𝐷). The representation of 𝐴 ⋊𝑡 𝔾 on 𝐸 ⋊𝑡 𝔾 consists of

span(𝐴𝐶∗
𝑢(𝔾)) = span{𝑎(1 ⊗ 𝜔)(𝑉𝐸)∣ 𝑎 ∈ 𝐴, 𝜔 ∈ 𝐿1(𝔾)}

= span{𝑎(1 ⊗ 𝜂∗1)𝑉𝐸(1 ⊗ 𝜂∗2)∣ 𝑎 ∈ 𝐴, 𝜂1, 𝜂2 ∈ 𝐿2(𝔾)}

= span{(1 ⊗ 𝜂∗1)(𝑎∗ ⊗ 𝑠∗)𝑉𝐸(1 ⊗ 𝜂∗2)∣ 𝑎 ∈ 𝐴, 𝑠 ∈ 𝐶𝑟
0 (𝔾), 𝜂1, 𝜂2 ∈ 𝐿2(𝔾)}

⊆ span{(1 ⊗ 𝜂∗1)(𝑎∗ ⊗ 𝑠∗)𝑉𝐸(1 ⊗ 𝜂∗2)∣ 𝑎 ∈ 𝒬, 𝑠 ∈ 𝒮𝑎, 𝜂1, 𝜂2 ∈ 𝐿2(𝔾)}

by the density of 𝒮𝑎𝐿2(𝔾) ⊆ 𝐶𝑟
0 (𝔾)𝐿2(𝔾) ⊆ 𝐿2(𝔾) and the inclusion 𝐴 ⊆ 𝒬.
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For the inverse map, more structure is required, including the presence of a dense subalgebra 𝒜 of
𝐴. A discrete quantum group 𝔾 has a compact dual, whose polynomial algebra we denote by 𝒪(𝔾̂).
We write 𝒜 ⋊ 𝔾 for the subalgebra of 𝐴 ⋊𝑢 𝔾 generated by 𝒜 and 𝒪(𝔾̂).

Proposition I.3.20. Let (𝒜 ⋊ 𝔾,𝐸𝐵, 𝐷) be an order- 1
1−𝛼 cycle, with 𝔾 a discrete quantum group

and the representation of 𝒜 ⋊ 𝔾 on 𝐸 nondegenerate. Then (𝒜, 𝐸𝐵, 𝐷) is a uniformly 𝔾-equivariant
order- 1

1−𝛼 cycle, with the 𝔾-action on 𝐸 given by Lemma I.3.13 and trivial on 𝐵.

Proof. Because 𝔾 is discrete, 𝒜 is included in 𝒜 ⋊ 𝔾. Hence (1 + 𝐷2)−1𝑎 is compact and [𝐷, 𝑎] is
bounded for all 𝑎 ∈ 𝒜. The inclusion 𝐶∗

𝑢(𝔾) ⊆ 𝑀(𝐴 ⋊𝑢 𝔾) gives a (nondegenerate) representation 𝜋
of 𝐶∗

𝑢(𝔾) on 𝐸. Because 𝔾 is discrete, it is regular. Applying Lemma I.3.13, we obtain an action of
𝔾 on 𝐸, acting trivially on 𝐵. Let 𝑉𝐸 be the admissible unitary. Discreteness means that 𝐶0(𝔾) is
isomorphic as an algebra to the C*-algebraic direct sum

⨁
𝜆∈Λ

𝑀𝑛𝜆
(ℂ)

of finite-dimensional matrix algebras. The admissible unitary is the direct sum over the index set
𝜆 ∈ Λ of

𝑉 𝜆
𝐸 ∈ 𝜋(𝒪(𝔾̂)) ⊗𝑀𝑛𝜆

(ℂ) ⊆ 𝜋(𝐶∗
𝑢(𝔾)) ⊗𝑀𝑛𝜆

(ℂ) ⊆ End∗𝐵(𝐸 ⊗ ℂ𝑛𝜆),

cf. [VY20, §4.2.3] for the inclusion in the polynomial subalgebra. Then, for 𝑎 ∈ 𝒜,

(𝑉 𝜆
𝐸 (𝐷 ⊗ 1)𝑉 𝜆∗

𝐸 (𝑎 ⊗ 1) − (𝑎 ⊗ 1)(𝐷 ⊗ 1))⟨𝐷 ⊗ 1⟩−𝛼 = 𝑉 𝜆
𝐸 [𝐷 ⊗ 1, 𝑉 𝜆∗

𝐸 (𝑎 ⊗ 1)]⟨𝐷 ⊗ 1⟩−𝛼

and

𝑉 𝜆
𝐸 ⟨𝐷 ⊗ 1⟩−𝛼𝑉 𝜆∗

𝐸 (𝑉 𝜆
𝐸 (𝐷 ⊗ 1)𝑉 𝜆∗

𝐸 (𝑎 ⊗ 1) − (𝑎 ⊗ 1)(𝐷 ⊗ 1)) = 𝑉 𝜆
𝐸 ⟨𝐷 ⊗ 1⟩−𝛼[𝐷 ⊗ 1, 𝑉 𝜆∗

𝐸 (𝑎 ⊗ 1)]

are bounded for all 𝜆 ∈ Λ, because 𝑉 𝜆∗
𝐸 (𝑎 ⊗ 1) ∈ 𝜋(𝒪(𝔾̂))𝒜⊗𝑀𝑛𝜆

(ℂ) ⊆ (𝒜 ⋊ 𝔾) ⊗𝑀𝑛𝜆
(ℂ).

Remark I.3.21. It is clear that the bounded transform (𝐴 ⋊𝑡 𝔾, (𝐸 ⋊𝑡 𝔾)𝐵⋊𝑡𝔾, 𝐹𝜄(𝐷) = 𝜄(𝐹𝐷)) of the
descent (𝐴⋊𝑡𝔾, (𝐸⋊𝑡𝔾)𝐵⋊𝑡𝔾, 𝜄(𝐷)) of a uniformly 𝔾-equivariant cycle (𝐴,𝐸𝐵, 𝐷) is exactly the descent
of the bounded transform (𝐴,𝐸𝐵, 𝐹𝐷). The same is true for the dual Green–Julg map.

I.4 The Kasparov product
Let 𝐴, 𝐵, and 𝐶 be (complex) C*-algebras with 𝐴 separable. The internal Kasparov product is a
ℤ-bilinear pairing

𝐾𝐾𝑖(𝐴,𝐵) × 𝐾𝐾𝑗(𝐵,𝐶) → 𝐾𝐾𝑖+𝑗(𝐴,𝐶) (𝐱, 𝐲) ↦ 𝐱 ⊗𝐵 𝐲,

for 𝑖, 𝑗 ∈ ℤ/2ℤ. It has a number of nice properties: it is contravariant in 𝐴, covariant in 𝐶, and
associative, in the sense that, if 𝐵 is separable and 𝐷 is a C*-algebra,

(𝐱 ⊗𝐵 𝐲) ⊗𝐶 𝐳 = 𝐱 ⊗𝐵 (𝐲 ⊗𝐶 𝐳) ∈ 𝐾𝐾𝑖+𝑗+𝑘(𝐴,𝐷)

for all 𝐳 ∈ 𝐾𝐾𝑘(𝐶,𝐷). The pairing also exists, and has these same properties, for 𝐺-equivariant
KK-theory, for 𝐺 a σ-compact locally compact group [Kas88, Theorems 2.11,14], and for 𝑆-equivariant
KK-theory, for 𝑆 a σ-unital C*-bialgebra [BS89, Théorèmes 5.3,5].

Example I.4.1. [Kas88, Definition 2.15] [BS89, Remarque 5.11(1)] Let 𝐺 be a σ-compact locally
compact group. The Kasparov representation ring 𝑅(𝐺) is defined to be the graded abelian group
𝐾𝐾𝐺

∗ (ℂ,ℂ) with multiplication given by the internal product. Similarly, for 𝑆 a σ-unital C*-bialgebra
and 𝔾 a σ-compact locally compact quantum group, the Kasparov representation rings 𝑅(𝑆) and
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𝑅(𝔾) are defined to be the graded abelian groups 𝐾𝐾𝑆
∗ (ℂ,ℂ) and 𝐾𝐾𝔾

∗ (ℂ,ℂ), respectively, with
multiplication again given by the internal product in each case. Each of 𝑅(𝐺), 𝑅(𝑆), and 𝑅(𝔾) is a
ℤ/2ℤ-graded unital ring; 𝑅(𝐺) is commutative, while 𝑅(𝑆) is commutative only if 𝑆 is commutative,
and 𝑅(𝔾) is commutative only if 𝔾 is a (classical) locally compact group. If 𝐺 is a compact group,
𝑅(𝐺) agrees with the usual representation ring. If 𝐺 is discrete, 𝑅(𝐺̂) is isomorphic to the group ring
ℤ[𝐺].

Many subsequent results in this thesis will involve taking the Kasparov product of (usually
unbounded) Kasparov modules. In the interests of economy, we will not give separate statements
for different combinations of parities. Instead, we will abuse the symbol ⊗̃ to represent a flexible
tensor product of possibly ℤ/2ℤ-graded Hilbert modules and operators thereon. Let 𝐸1 be a Hilbert
𝐵-module and 𝐸2 a 𝐵-𝐶-correspondence. Let 𝑇 be a regular (or, as a special case, adjointable) operator
on 𝐸1.

• In the case when 𝐸1 and 𝐸2 are both graded, ⊗̃𝐵 will simply mean the graded tensor product.

• In the case when 𝐸1 is graded and 𝐸2 ungraded, 𝐸1 ⊗̃𝐵 𝐸2 will refer to the plain tensor product,
giving an ungraded Hilbert 𝐶-module, and we will write 𝑇 ⊗̃ 1 ∶= 𝑇 ⊗ 1.

• In the case when 𝐸1 is ungraded and 𝐸2 graded, 𝐸1 ⊗̃𝐵 𝐸2 will again refer to the plain tensor
product, but this time we will write 𝑇⊗̃1 = 𝑇⊗1 if 𝑇⊗̃1 is understood to be even or 𝑇⊗̃1 ∶= 𝑇⊗𝛾2
if 𝑇 ⊗̃ 1 is understood to be odd, where 𝛾2 is the grading on 𝐻2.

• If both 𝐸1 and 𝐸2 are ungraded, we will let 𝐸1 ⊗̃𝐵 𝐸2 = 𝐸1 ⊗𝐵 𝐸2 ⊗ℂ ℂ2, with a grading given
by 1⊗1⊗𝜎3, and write 𝑇 ⊗̃ 1 = 𝐷⊗1⊗1 if 𝑇 ⊗̃ 1 is understood to be even or 𝑇 ⊗̃ 1 = 𝐷⊗1⊗𝜎1
if 𝑇 ⊗̃ 1 is understood to be odd, where 𝜎1, 𝜎2, and 𝜎3 are the Pauli matrices.

Let 𝐸1 be a Hilbert 𝐵-module and 𝐸2 a Hilbert 𝐶-module. We will write 𝐸1 ⊗̃ℂ 𝐸2 for the external
tensor product, with the same parity adjustments as above. For 𝑆 a regular (or, as a special case,
adjointable) operator on 𝐸2,

• In the case when 𝐸1 is graded and 𝐸2 ungraded, we will write 1⊗̃𝑆 = 1⊗𝑆 if 1⊗̃𝑆 is understood
to be even or 1 ⊗̃ 𝑆 = 𝛾1 ⊗ 𝑆 if 1 ⊗̃ 𝑆 is understood to be odd, where 𝛾1 is the grading on 𝐻1.

• In the case when 𝐸1 is ungraded and 𝐸2 graded, we will write 1 ⊗̃ 𝑆 = 1 ⊗ 𝑆.

• If both 𝐸1 and 𝐸2 are ungraded, we will write 1 ⊗̃ 𝑆 = 1 ⊗ 𝑆 ⊗ 1 if 1 ⊗̃ 𝑆 is understood to be
even or 1 ⊗̃ 𝑆 = 1 ⊗ 𝑆 ⊗ 𝜎2 if 1 ⊗̃ 𝑆 is understood to be odd, where 𝜎1, 𝜎2, and 𝜎3 are the Pauli
matrices.

As all our C*-algebras are assumed to be ungraded, this abuse of notation should hopefully cause
no confusion. As an alternative, one could use the machinery of multigradings [HR00, §A.3]. That
Theorem I.4.2 (and so also Theorem I.4.2) is valid for each combination of parities is well known; see
[HR00, Proposition 9.2.5, Exercises 9.8.1–2].

Theorem I.4.2. [CS84, Definition A.1, Theorem A.5] [Kas88, Definition 2.10, Theorem 2.11] [BS89,
Définition 5.2, Théorème 5.3] Let 𝐴, 𝐵, and 𝐶 be C*-algebras with 𝐴 separable. Let (𝐴,𝐸1,𝐵, 𝐹1),
(𝐵,𝐸2,𝐶, 𝐹2), and (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐹 ) be bounded Kasparov modules. If

1. For all 𝜉 ∈ 𝐸1, with 𝑇𝜉 ∈ Hom∗
𝐶(𝐸2, 𝐸1 ⊗̃𝐵 𝐸2) given by 𝜂 → 𝜉 ⊗̃ 𝜂,

[(𝐹
𝐹2
),( 0 𝑇𝜉

𝑇 ∗
𝜉

)]

is a compact operator on (𝐸1 ⊗̃𝐵 𝐸2) ⊕ 𝐸2; and
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2. There exists 0 ≤ 𝜅 < 2 such that

𝑎(𝐹(𝐹1 ⊗̃ 1) + (𝐹1 ⊗̃ 1)𝐹)𝑎∗ ≥ −𝜅𝑎𝑎∗

modulo End0(𝐸1 ⊗̃𝐵 𝐸2)

then (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐹 ) represents the Kasparov product

[(𝐴,𝐸1,𝐵, 𝐹1)] ⊗𝐵 [(𝐵,𝐸2,𝐶, 𝐹2)].

If (𝐴,𝐸1,𝐵, 𝐹1), (𝐵,𝐸2,𝐶, 𝐹2), and (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐹 ) are 𝐺-equivariant for 𝐺 a σ-compact locally
compact group, the latter represents the 𝐺-equivariant Kasparov product of the other two. Similarly, if
the three bounded Kasparov modules are 𝑆-equivariant for 𝑆 a σ-unital C*-bialgebra, (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐹 )
represents the 𝑆-equivariant product of the other two. Moreover, whether in equivariant KK-theory or
not, a module (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐹 ) satisfying the above conditions can always be found and is unique up
to homotopy.

The following is essentially the state of the art for conditions for the unbounded Kasparov product,
without assuming the existence of an approximate unit as in [Dun22]. The statements about the
product in equivariant KK-theory follow immediately from the above; cf. [Kuc94, Theorem 8.12].

Theorem I.4.3. cf. [Kuc94, Theorem 8.12], [Kuc97, Theorem 13], [GM15, Theorem A.7], [Dun22,
Definition 3.2, Theorem 3.3] Let 𝐴, 𝐵, and 𝐶 be C*-algebras with 𝐴 separable. Let (𝐴,𝐸1,𝐵, 𝐷1),
(𝐵,𝐸2,𝐶, 𝐷2), and (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐷) be order- 1

1−𝛼 cycles. If

1. For all 𝜉 in a dense subspace of 𝐸1, with 𝑇𝜉 ∈ Hom∗
𝐶(𝐸2, 𝐸1 ⊗̃𝐵 𝐸2) given by 𝜂 → 𝜉 ⊗̃ 𝜂,

( 0 𝑇𝜉
𝑇 ∗
𝜉

)(dom𝐷
dom𝐷2

) ⊆ (dom𝐷
dom𝐷2

)

and

[(𝐷
𝐷2

),( 0 𝑇𝜉
𝑇 ∗
𝜉

)](⟨𝐷⟩−𝛼

⟨𝐷2⟩−𝛼)

extends to an adjointable operator on (𝐸1 ⊗̃𝐵 𝐸2) ⊕ 𝐸2; and
2. We have dom𝐷 ⊆ dom(𝐷1 ⊗̃ 1) and there exists 𝜆 ≥ 0 such that

⟨(𝐷1 ⊗̃ 1)𝜓 ∣ 𝐷𝜓⟩ + ⟨𝐷𝜓 ∣ (𝐷1 ⊗̃ 1)𝜓⟩ ≥ −𝜆⟨𝜓 ∣ ⟨𝐷⟩𝜓⟩

then (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐷) represents the Kasparov product

[(𝐴,𝐸1,𝐵, 𝐷1)] ⊗𝐵 [(𝐵,𝐸2,𝐶, 𝐷2)].

If (𝐴,𝐸1,𝐵, 𝐷1), (𝐵,𝐸2,𝐶, 𝐷2), and (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐷) are uniformly 𝐺-equivariant for 𝐺 a σ-compact
locally compact group, the latter represents the 𝐺-equivariant Kasparov product of the other two.
Similarly, if the three bounded Kasparov modules are uniformly 𝑆-equivariant for 𝑆 a σ-unital C*-
bialgebra, (𝐴,𝐸1 ⊗̃𝐵 𝐸2,𝐶, 𝐷) represents the 𝑆-equivariant product of the other two.

Conditions 1. and 2. in both Theorems I.4.2 and I.4.3 are referred to as the connection and positivity
conditions, respectively. Both Theorems are sometimes referred to as ‘guess and check’ methods. The
positivity condition of Theorem I.4.3 is, in some sense, not well adapted to higher order cycles. By
considering classical differential operators it may be desirable and, indeed, by inspecting [Dun22, Proof
of Lemma 3.9], may be possible to adapt the form bound to include a factor of ⟨𝑆⟩𝛼 on the right-hand
side.
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For any C*-algebra 𝐶, there is a homomorphism 𝜎𝐶 ∶ 𝐾𝐾∗(𝐴,𝐵) → 𝐾𝐾∗(𝐴 ⊗ 𝐶,𝐵 ⊗ 𝐶) given by
taking an bounded Kasparov module (𝐴,𝐸𝐵, 𝐹 ) to (𝐴 ⊗ 𝐶, (𝐸 ⊗ℂ 𝐶)𝐵⊗𝐶, 𝐹 ⊗ 1). In the unbounded
picture, 𝜎𝐶 takes an unbounded cycle (𝐴,𝐸𝐵, 𝐷) to (𝐴 ⊗ 𝐶, (𝐸 ⊗ℂ 𝐶)𝐵⊗𝐶, 𝐷 ⊗ 1). If 𝐶 is a 𝐺-C*-
algebra for some locally compact group 𝐺, 𝜎𝐶 ∶ 𝐾𝐾𝐺

∗ (𝐴,𝐵) → 𝐾𝐾𝐺
∗ (𝐴 ⊗ 𝐶,𝐵 ⊗ 𝐶) is defined in the

same way, where 𝐴⊗ 𝐶 and 𝐵 ⊗ 𝐶 have the diagonal actions of 𝐺. If 𝐶 is a 𝑆-C*-algebra for some
commutative C*-bialgebra, 𝜎𝐶 ∶ 𝐾𝐾𝑆

∗ (𝐴,𝐵) → 𝐾𝐾𝑆
∗ (𝐴 ⊗ 𝐶,𝐵 ⊗ 𝐶) is again defined in the same way

[Ver02, §3.3]. A C*-algebra 𝐴 permits a nondegenerate ∗-homomorphism 𝜙 ∶ 𝐴 ⊗ 𝐴 → 𝑀(𝐴) such
that 𝜙(𝑎 ⊗ 1) = 𝑎 = 𝜙(1 ⊗ 𝑎) if and only if 𝐴 is commutative [Wor80, §2]. The commutativity of 𝑆
ensures that there is a nondegenerate ∗-homomorphism 𝑆 ⊗ 𝑆 → 𝑀(𝑆), Gelfand dual to the diagonal
embedding, which allows one to define a coaction of 𝑆 on 𝐴⊗ 𝐶 and 𝐵 ⊗ 𝐶. It is perhaps easier to
think of this in terms of the Gelfand dual of 𝑆, which is a locally compact semigroup [Val85] [BS89,
Exemple 1.4(3)].

Let 𝐴1, 𝐴2, 𝐵1, and 𝐵2 be (complex) C*-algebras with 𝐴1 and 𝐴2 separable. The external Kasparov
product is a ℤ-bilinear pairing

𝐾𝐾𝑖(𝐴1, 𝐵1) × 𝐾𝐾𝑗(𝐴2, 𝐵2) → 𝐾𝐾𝑖+𝑗(𝐴1 ⊗𝐴2, 𝐵1 ⊗𝐵2) (𝐱, 𝐲) ↦ 𝐱 ⊗ℂ 𝐲,

for 𝑖, 𝑗 ∈ ℤ/2ℤ. It is defined in terms of the internal product, by

𝐱 ⊗ℂ 𝐲 = 𝜎𝐴2
(𝐱) ⊗𝐵1⊗𝐴2

𝜎𝐵1
(𝐲).

As a consequence, it too has a number of desirable properties: it is contravariant in 𝐴1 and 𝐴2,
covariant in 𝐵1 and 𝐵2, and associative. Furthermore, it is commutative, that is, 𝐱 ⊗ℂ 𝐲 = 𝐲 ⊗ℂ 𝐱.
The pairing also exists, and has these same properties, for 𝐺-equivariant KK-theory, for 𝐺 a σ-compact
locally compact group [Kas88, Theorems 2.11,14], and for 𝑆-equivariant KK-theory, for 𝑆 a σ-unital
commutative C*-bialgebra [Ver02, §3.3]. We should also mention here that the external product has
been generalised to the setting of locally compact quantum groups by [NV10], using the machinery of
the Drinfeld double and braided tensor products.

A key feature of unbounded KK-theory is the fact that the external product becomes completely con-
structive. Extending [BJ83, §3] to our setting, the external product of order- 1

1−𝛼 cycles (𝐴1, 𝐸1,𝐵1
, 𝐷1)

and (𝐴2, 𝐸2,𝐵2
, 𝐷2) is the order- 1

1−𝛼 cycle

(𝐴1 ⊗𝐴2, (𝐸1 ⊗̃ℂ 𝐸2)𝐵1⊗𝐵2
, 𝐷1 ⊗̃ 1 + 1 ⊗̃ 𝐷2).

For 𝐺 a locally compact group or 𝑆 a commutative C*-bialgebra, the external product of 𝐺-equivariant
or 𝑆-equivariant higher order cycles is defined in the same way.

In many examples, the internal product of order- 1
1−𝛼 cycles (𝐴,𝐸1,𝐵, 𝐷1) and (𝐵,𝐸2,𝐶, 𝐷2) can be

represented by an order- 1
1−𝛼 cycle of the form

(𝐴, (𝐸1 ⊗𝐵 𝐸2)𝐶, 𝐷1 ⊗̃ 1 + 1 ⊗̃∇ 𝐷2).

Here, one has to make sense of the operator 1 ⊗̃∇ 𝐷2, using the data of a connection; see [Mes12].
Further, the combined operator 𝐷1 ⊗̃ 1 + 1 ⊗̃∇ 𝐷2 has to be shown to be self-adjoint, have locally
compact resolvent, and satisfy the positivity condition; the current state of the art for guaranteeing
these is by checking that 𝐷1 ⊗̃ 1 and 1 ⊗̃∇ 𝐷2 weakly anticommute; see [LM19]. Finally, one has
to check that 1 ⊗̃∇ 𝐷2 has (relatively) bounded commutators with the algebra, which is the most
fragile part of the procedure, being most likely to fail. Together, these techniques are known as the
constructive unbounded Kasparov product, the eventual hope being to make it truly constructive under
reasonable assumptions. This project has been pursued by a number of authors, most notably Mesland;
see [Mes12, KL13, MR16, LM19, Dun20] and the survey [Mes24].
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In this Chapter we employ tools from geometric group theory to study the geometry of group C*-
algebras and Fell bundles. We construct spectral triples for group C*-algebras from matrix-valued
weights. Our innovation, on the one hand, consists in extending the theory to locally compact groups
and in working naturally with Fell bundles; on the other hand, it lies in exhibiting the nontriviality of
the resulting KK-classes using carefully chosen “directed length” functions from CAT(0) spaces. We
also study the geometry of group extensions using the unbounded Kasparov product.

II.1 KK-theory of group algebras

In this section, we make a study of the KK-groups

𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐵) 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐵)

27
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for 𝐺 a locally compact group and 𝐺-C*-algebras 𝐴 and 𝐵. The commuting diagram

𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐶0(𝐺,𝐵) ⋊𝑟 𝐺) 𝐾𝐾𝐺
∗ (𝐴 ⋊𝑟 𝐺,𝐵)

𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐶0(𝐺,𝐵) ⋊𝑟 𝐺) 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐵)

𝐽𝐺

∼

𝑗𝐺𝑟

⊗[𝐿2(𝐺,𝐵)]
∼

𝑟𝐺̂,1 𝑟𝐺̂,1

⊗[𝐿2(𝐺,𝐵)]
∼

summarises their relationship. By the external Kasparov product, the KK-group 𝐾𝐾𝐺(𝐴,𝐶0(𝐺,𝐴))
is a left module over the unital ring 𝑅(𝐺) ∶= 𝐾𝐾𝐺(ℂ,ℂ) and a right module over the unital ring
𝐾𝐾𝐺(𝐶0(𝐺), 𝐶0(𝐺)). By Baaj–Skandalis duality, 𝐾𝐾𝐺(𝐶0(𝐺), 𝐶0(𝐺)) is isomorphic to the Kasparov
representation ring 𝑅(𝐺̂) ∶= 𝐾𝐾𝐺(ℂ,ℂ). Recall that, if 𝐺 is discrete, 𝑅(𝐺̂) is isomorphic to the group
ring ℤ[𝐺]. This right module structure naturally accounts for the action of 𝐺 on 𝐾𝐾𝐺(𝐴,𝐶0(𝐺,𝐵))
by the automorphism of right translation on 𝐶0(𝐺,𝐵). As a consequence, the restriction map

𝑟𝐺,1 ∶ 𝐾𝐾𝐺
∗ (𝐴 ⋊𝑟 𝐺,𝐵) → 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐵)

factors through 𝐾𝐾𝐺
∗ (𝐴 ⋊𝑟 𝐺,𝐵) ⊗𝑅(𝐺) ℤ.

We refer to §A.2 for details of proper actions, our conventions for crossed products, and the
definition of a cut-off function, among other things. Throughout this Chapter, we take all groups to be
σ-compact unless otherwise mentioned.

II.1.1 The Dirac, dual Dirac, and γ-elements

Let 𝑋 be a Riemannian manifold, with perhaps infinitely many connected components. We will make
the simplifying assumption that all the components of 𝑋 are of the same dimension 𝑛. By 𝐶𝜏(𝑋) we
denote the algebra of sections, vanishing at infinity, of the (complex) Clifford bundle 𝒞𝓁(𝑇 ∗𝑋) of the
cotangent space of 𝑋 [Kas88, Definition 4.1]. Beware that 𝐶𝜏(𝑋) is a ℤ/2ℤ-graded C*-algebra. An
isometric action on 𝑋 by a group 𝐺 pulls back to an action on the bundle 𝒞𝓁(𝑇 ∗𝑋). With the action
of 𝒞𝓁(𝑇 ∗𝑋) on differential forms by Clifford multiplication, we obtain an isometrically 𝐺-equivariant
even spectral triple

(𝐶𝜏(𝑋), 𝐿2(Ω∗𝑋), 𝑑 + 𝑑∗) (II.1.1)

for the Hodge–de Rham Dirac operator 𝑑 + 𝑑∗, representing an element of 𝐾𝐾𝐺
0 (𝐶𝜏(𝑋),ℂ). For our

purposes, it will be preferable to replace the Clifford bundle algebra 𝐶𝜏(𝑋) with 𝐶0(𝑋). Doing this is
contingent on the existence and choice of a spin𝑐 structure on 𝑋, preserved by the action of 𝐺. One
standard reference on spin𝑐 structures is [LM89, Appendix D]. We will give a brief summary.

The group Spin𝑐(𝑛) is a central extension of 𝑆𝑂(𝑛) by 𝕋. The Riemannian structure implies a
reduction of the structure group of the frame bundle of 𝑋 along 𝑂(𝑛) ↪ 𝐺𝐿(𝑛). A spin𝑐 structure
on 𝑋 is a further reduction of the structure group of the frame bundle of 𝑋 along Spin𝑐(𝑛) → 𝑂(𝑛).
Since the image of Spin𝑐(𝑛) → 𝑂(𝑛) is 𝑆𝑂(𝑛), a spin𝑐 structure includes a choice of orientation. We
will think of a spin𝑐 structure as a more elaborate kind of ‘orientation’; indeed, it is sometimes called a
K-orientation. Another way of expressing this, more in tune with the machinery of KK-theory, can be
found in [Ply86, §2]. A spin𝑐 structure can be described as the data of an orientation 𝜀 on 𝑋 together
with a Morita equivalence bimodule ℰ [Ply86, Definition 2.2]. If 𝑛 is even we require that ℰ be a
ℤ/2ℤ-graded Morita equivalence bimodule between 𝐶𝜏(𝑋) and 𝐶0(𝑋). If 𝑛 is odd we require that
ℰ be a Morita equivalence bimodule between 𝐶𝜏(𝑋)ev and 𝐶0(𝑋). If 𝑛 is odd, ℰ can be given the
structure of a left 𝐶𝜏(𝑋)-module by using the unit pseudoscalar [Ply86, §2.6]. The fundamental spinor
bundle /𝑆 is the complex Hermitian vector bundle determined by Γ0(𝑋, /𝑆) ≅ ℰ. The fibres of /𝑆 are
irreducible representations of 𝒞𝓁𝑛 and it is ℤ/2ℤ-graded if and only if 𝑛 is even. When we compose
the cycle of (II.1.1) with the dual of Γ0(𝑋, /𝑆), we obtain an isometrically 𝐺-equivariant spectral triple

(𝐶0(𝑋), 𝐿2(𝑋, /𝑆), /𝐷),
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where /𝑆 is the Atiyah–Singer Dirac operator, representing a class 𝛼 ∈ 𝐾𝐾𝐺
𝑛 (𝐶0(𝑋),ℂ) (where, as

usual, 𝑛 is taken modulo 2).
We will later want to allow for group actions which are not orientation preserving, for instance, a

group of reflections of ℝ𝑛. Just as Spin𝑐(𝑛) is a central extension of 𝑆𝑂(𝑛) by 𝕋, there is a central
extension of 𝑂(𝑛) by 𝕋 called Pin𝑐(𝑛). A pin𝑐 structure is exactly what is left over when one removes
the data of an orientation from a spin𝑐 structure. Following [Ply86, §2.7], given a spin𝑐 structure (𝜀,ℰ),
the reversed spin𝑐 structure is (−𝜀,ℰ(op)), where −𝜀 is the reversed orientation and ℰ(op) is ℰ with, in
the case of 𝑛 even, the opposite grading. We will say that a group 𝐺 acts on 𝑋 by pin𝑐 isometries if it
acts by spin𝑐-structure preserving and spin𝑐-structure reversing isometries. Because the composition
of two spin𝑐-structure reversing isometries is spin𝑐-structure preserving, the subgroup of 𝐺 acting by
spin𝑐-structure preserving isometries is of index 2.

In [Kas88, Definition 5.1], Kasparov uses the term special manifold, repurposed from [Ree83], for a
Riemannian manifold with a suitable dual Dirac element of KK-theory. A spin𝑐 Riemannian 𝑛-manifold
𝑋, on which a locally compact group 𝐺 acts isometrically and by spin𝑐-automorphisms, is special if
there exists an element 𝛽 ∈ 𝐾𝐾𝐺

𝑛 (ℂ,𝐶0(𝑋)) satisfying

𝛼 ⊗ℂ 𝛽 = 1 ∈ 𝐾𝐾𝐺
0 (𝐶0(𝑋), 𝐶0(𝑋))

where 𝛼 ∈ 𝐾𝐾𝐺
0 (𝐶0(𝑋),ℂ) is the Atiyah–Singer Dirac element, as above. The element 𝛾 ∶= 𝛽⊗𝐶0(𝑋)𝛼 ∈

𝐾𝐾𝐺(ℂ,ℂ) is automatically an idempotent; we shall shortly return to its significance.
The motivating example of a special manifold is a simply connected manifold of non-positive

sectional curvature [Kas88, §5.3]. Let 𝑋 be a simply connected spin𝑐 Riemannian 𝑛-manifold of
non-positive sectional curvature on which a locally compact group 𝐺 acts by spin𝑐 isometries. Fix
𝑥0 ∈ 𝑋 and let 𝜌 ∶ 𝑋 → [0,∞) be given by 𝜌(𝑥) = 𝑑(𝑥0, 𝑥). The dual Dirac element 𝛽 is represented
by the uniformly 𝐺-equivariant unbounded Kasparov module

(ℂ, Γ0(𝑋, /𝑆)𝐶0(𝑋), 𝜌𝑑𝜌)

where 𝜌𝑑𝜌 ∈ Ω1𝑋 acts on Γ𝑐(𝑋, /𝑆) by Clifford multiplication [Kas95, Definition 5.4] [Kuc94, Chapter
8]. An early study of the properties of 𝜌𝑑𝜌 as an unbounded operator is in [Luk77].

In fact, for any almost connected group 𝐺, the quotient 𝑋 = 𝐺/𝐾 by the maximal compact
subgroup 𝐾 is a special manifold [Kas88, Theorem 5.7] (modulo a spin𝑐 caveat). Kasparov shows this
by an inductive construction, using the derived series of the Lie group 𝐺/𝑁, where 𝑁 is a compact
normal subgroup of 𝐺. However, although the ingredients can be assembled as unbounded Kasparov
modules, the final construction involves a troublesome Kasparov product. We will return to the issue
of Kasparov products for group extensions in §II.4. In the case of an almost connected group 𝐺,
Kasparov shows that the element 𝛾 ∈ 𝐾𝐾𝐺(ℂ,ℂ) is independent of the choice of special manifold,
and is so denoted 𝛾(𝐺).

Let 𝐴 and 𝐵 be 𝐺-C*-algebras, with 𝐴 separable. By [Kas88, Corollary 5.7], if 𝐺 is almost
connected with maximal compact subgroup 𝐾, the restriction map

𝐾𝐾𝐺
∗ (𝐴,𝐵) → 𝐾𝐾𝐾

∗ (𝐴,𝐵)

is surjective with kernel (1 − 𝛾(𝐺))𝐾𝐾𝐺
∗ (𝐴,𝐵). That is,

𝛾(𝐺)𝐾𝐾𝐺
∗ (𝐴,𝐵) ≅ 𝐾𝐾𝐾

∗ (𝐴,𝐵),

where 𝛾(𝐺) ∈ 𝐾𝐾𝐺(ℂ,ℂ) acts on 𝐾𝐾𝐺
∗ (𝐴,𝐵) by the external Kasparov product. In other words, when

𝛾 acts on a KK-group, it has the effect of reducing the equivariance to the maximal compact subgroup.
It is therefore of interest to understand for which almost connected groups 𝐺 one has 𝛾(𝐺) = 1, and so
𝐾𝐾𝐺

∗ (𝐴,𝐵) ≅ 𝐾𝐾𝐾
∗ (𝐴,𝐵). This question was answered conclusively by Julg and Kasparov [JK95,

Theorem 8.2]: 𝛾(𝐺) = 1 if and only if the quotient of 𝐺 by its radical, that is, its maximal solvable
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connected normal closed subgroup, is locally isomorphic to a product of a compact group and a finite
number of real and complex Lorentz groups. The fact that the real Lorentz groups 𝑆𝑂0(𝑛, 1) and the
complex Lorentz groups 𝑆𝑈(𝑛, 1) have 𝛾(𝐺) = 1 was proved in [Kas84] and [JK95], respectively, in each
case using a representative for the γ-element based on the action of the group on a sphere. We shall
outline these constructions and lift them to unbounded KK-theory in §III.2.1, using the technology of
conformal equivariance developed in Chapter III.

Example II.1.2. Again, let 𝐺 be an almost connected group and let 𝐴 and 𝐵 be 𝐺-C*-algebras, with
𝐴 separable. By [Kas88, Theorem 5.8], 𝛾(𝐺) always acts as the identity on 𝐾𝐾𝐺

∗ (𝐴,𝐶0(𝐺,𝐵)). Hence

𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) = 𝛾(𝐺)𝐾𝐾𝐺

∗ (𝐴,𝐶0(𝐺,𝐵)) ≅ 𝐾𝐾𝐾
∗ (𝐴,𝐶0(𝐺,𝐵)).

Futher, using also the Green–Julg isomorphism, we record that

𝐾𝐾𝐺
∗ (ℂ,𝐶0(𝐺)) ≅ 𝐾𝐾𝐾

∗ (ℂ,𝐶0(𝐺))
≅ 𝐾𝐾∗(ℂ,𝐶0(𝐺) ⋊ 𝐾)
≅ 𝐾𝐾∗(ℂ,𝐶0(𝐺/𝐾))

≅
⎧{
⎨{⎩

ℤ⊕ 0 dim𝐺/𝐾 ≡ 0
0 ⊕ ℤ dim𝐺/𝐾 ≡ 1

(mod 2)

since 𝐺/𝐾 is homeomorphic to ℝdim𝐺/𝐾; see e.g. [CH16, Theorem 2.E.16]. As a ring, using also
Baaj–Skandalis duality,

𝑅(𝐺̂) ≅ 𝐾𝐾𝐺
∗ (𝐶0(𝐺), 𝐶0(𝐺))

= 𝛾(𝐺)𝐾𝐾𝐺
∗ (𝐶0(𝐺), 𝐶0(𝐺))

≅ 𝐾𝐾𝐾
∗ (𝐶0(𝐺), 𝐶0(𝐺))

≅ 𝐾𝐾𝐾
∗ (𝐶0(𝐾) ⊗ 𝐶0(ℝdim𝐺/𝐾), 𝐶0(𝐾) ⊗ 𝐶0(ℝdim𝐺/𝐾))

≅ 𝐾𝐾𝐾
∗ (𝐶0(𝐾), 𝐶0(𝐾))

≅ 𝑅(𝐾̂).

The idea of the γ-element can be applied to other than almost connected groups; a survey can be
found in [AJV19, §§3.5, 4.4]. A γ-element for locally compact groups acting on trees was constructed
by Julg and Valette [JV84]. These same authors made a generalisation to the case of reductive Lie
group over a nonarchimedean local field acting on its Bruhat–Tits building in [JV87]; we return to
discuss buildings in §II.3.3. In [KS91], Kasparov and Skandalis placed these constructions in context:
Dirac and dual Dirac elements 𝛼 and 𝛽 are constructed for locally compact groups acting on Euclidean
buildings with product 𝛽 ⊗ 𝛼 the γ-element; see also [Jul89].

The method of Kasparov and Skandalis was formalised by Tu, who simultaneously generalised it
to the setting of groupoid equivariant KK-theory [Tu00]. Recently, Nishikawa extended the idea of
the γ-element to allow its identification without needing classes 𝛼 and 𝛽 [Nis19]. Such a generalised
γ-element in 𝐾𝐾𝐺(ℂ,ℂ) is called an element with property (γ), and is unique when it exists, so
includes the γ-elements already discussed. In [BGHN20], an element with property (γ) is constructed
for groups acting properly on CAT(0) cube complexes; we will have more to say about these latter
in §II.3.3. We record, in particular, that an element in 𝐾𝐾𝐺(ℂ,ℂ) with property (γ) restricts to
1 ∈ 𝐾𝐾𝐾(ℂ,ℂ) for every compact subgroup 𝐾 of 𝐺.

II.1.2 The Pimsner exact sequences for groups acting on trees

In [Pim86], six-term exact sequences are given for the K-theory and K-homology of crossed product
C*-algebras by groups acting on trees. We shall give a brief outline. To set notation we make
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Definition II.1.3. [Pim86, §1] cf. [Ser80, Definition 1] An oriented graph 𝑋 is given by the data of

• sets 𝑋0 and 𝑋1 of vertices and edges, respectively;

• origin and terminus maps 𝑜, 𝑡 ∶ 𝑋1 → 𝑋0.

An oriented tree is a connected oriented graph 𝑋 with no cycles. We shall from now on refer to
oriented trees simply as trees.

Fix a locally compact group 𝐺 acting on a tree 𝑋 and a separable 𝐺-C*-algebra 𝐴. Let Σ be the
quotient graph of 𝑋 by 𝐺. To the set of edges 𝑋1, we adjoint an ‘edge at infinity’, which we denote ∞.
For any vertex 𝑃 ∈ 𝑋0, we denote by 𝑋1

𝑃 the set of edges whose terminus is closer than their origin to
𝑃, in other words, edges ‘pointing toward’ 𝑃. We denote by 𝜒𝑃 the characteristic function of 𝑋1

𝑃 ⊔ {∞}
on 𝑋1 ⊔{∞}. We construct the C*-subalgebra 𝐶+(𝑋1) of 𝐶0(𝑋1 ⊔{∞}) generated by 𝐶0(𝑋1) and 𝜒𝑃
for all 𝑃 ∈ 𝑋0. The C*-algebra 𝐶+(𝑋1, 𝐴) ∶= 𝐶+(𝑋1) ⊗ 𝐴 fits into the 𝐺-equivariant exact sequence

0 𝐶0(𝑋1, 𝐴) 𝐶+(𝑋1, 𝐴) 𝐴 0 . (II.1.4)

Fixing 𝑃 ∈ 𝑋0, 𝜌 ∶ 𝑎 → 𝜒𝑃𝑎𝜒𝑃 gives a completely positive cross-section. (Beware that 𝜌 is not
equivariant. By [Tho01, Theorem 1.1], the six term exact sequences in equivariant KK-theory of [BS89,
Théorème 7.2] can nevertheless be constructed.) The extension class associated with the sequence
(II.1.4) is

(𝐴,𝐶0(𝑋1, 𝐴)𝐶0(𝑋1,𝐴), 2𝜒𝑃 − 1) (II.1.5)

as a 𝐺-equivariant bounded Kasparov module.
By [Pim86, Proposition 10] and [BS89, Remarque 7.5(3)], one can construct two elements 𝛼 ∈

𝐾𝐾𝐺(𝐶0(𝑋0), 𝐶+(𝑋1)) and 𝛽 ∈ 𝐾𝐾𝐺(𝐶+(𝑋1), 𝐶0(𝑋0)) satisfying

𝛼 ⊗𝐶+(𝑋1) 𝛽 = 1 ∈ 𝐾𝐾𝐺(𝐶0(𝑋0), 𝐶0(𝑋0)) 𝛽 ⊗𝐶0(𝑋0) 𝛼 = 1 ∈ 𝐾𝐾𝐺(𝐶+(𝑋1), 𝐶+(𝑋1)).

The existence of 𝛼 and 𝛽 make 𝐶+(𝑋1) and 𝐶0(𝑋0) KK-equivalent as 𝐺-C*-algebras. By [Bla98,
Examples 19.1.2(c)], 𝐶+(𝑋1, 𝐴) and 𝐶0(𝑋0, 𝐴) are also KK-equivalent as 𝐺-C*-algebras.

Putting all of this together, we obtain two six-term exact sequences by [BS89, Théorème 7.2] and
[Tho01, Theorem 1.1]. For any separable 𝐺-C*-algebra 𝐵, the sequence

𝐾𝐾𝐺
0 (𝐵,𝐶0(𝑋1, 𝐴)) 𝐾𝐾𝐺

0 (𝐵,𝐶0(𝑋0, 𝐴)) 𝐾𝐾𝐺
0 (𝐵,𝐴)

𝐾𝐾𝐺
1 (𝐵,𝐴) 𝐾𝐾𝐺

1 (𝐵,𝐶0(𝑋0, 𝐴)) 𝐾𝐾𝐺
1 (𝐵,𝐶0(𝑋1, 𝐴))

is exact and for any 𝐺-C*-algebra 𝐵, the sequence

𝐾𝐾𝐺
0 (𝐶0(𝑋1, 𝐴),𝐵) 𝐾𝐾𝐺

0 (𝐶0(𝑋0, 𝐴),𝐵) 𝐾𝐾𝐺
0 (𝐴,𝐵)

𝐾𝐾𝐺
1 (𝐴,𝐵) 𝐾𝐾𝐺

1 (𝐶0(𝑋0, 𝐴),𝐵) 𝐾𝐾𝐺
1 (𝐶0(𝑋1, 𝐴),𝐵)

is exact.
We can present these sequences in terms of the Baaj–Skandalis duals. By [Pim86, Lemma 4], there

is a 𝐺̂-equivariant exact sequence

0 𝐶0(𝑋1, 𝐴) ⋊𝑟 𝐺 𝐶+(𝑋1, 𝐴) ⋊𝑟 𝐺 𝐴 ⋊𝑟 𝐺 0. (II.1.6)
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Fixing 𝑃 ∈ 𝑋0, 𝜌 ∶ 𝑎 → 𝜒𝑃𝑎𝜒𝑃 gives a 𝐺̂-equivariant completely positive cross-section. The extension
class associated with the sequence (II.1.6) is

(𝐴 ⋊𝑟 𝐺,𝐶0(𝑋1, 𝐴) ⋊𝑟 𝐺𝐶0(𝑋1,𝐴)⋊𝑟𝐺, 2𝜒𝑃 − 1) (II.1.7)

as a 𝐺̂-equivariant bounded Kasparov module, which is Baaj–Skandalis dual to the extension class
(II.1.5).

By Baaj–Skandalis duality, 𝐶+(𝑋1, 𝐴)⋊𝑟𝐺 and 𝐶0(𝑋0, 𝐴)⋊𝑟𝐺 are KK-equivalent as 𝐺̂-C*-algebras.
Further, it is useful to incorporate the 𝐺̂-equivariant Morita equivalences between 𝐶0(𝑋0, 𝐴) ⋊𝑟 𝐺 and
⨁𝑃∈Σ0 𝐴⋊𝑟𝐺𝑃 and between 𝐶0(𝑋1, 𝐴)⋊𝑟𝐺 and ⨁𝑦∈Σ1 𝐴⋊𝑟𝐺𝑦. (Recall that Σ is the quotient of 𝑋 by
𝐺.) For vertices 𝑃 ∈ Σ0, the inclusions 𝜏𝑃 ∶ 𝐺𝑃 → 𝐺 have open image and give rise to homomorphisms
𝜏𝑃 ∶ 𝐶∗

𝑟 (𝐺𝑃) → 𝐶∗
𝑟 (𝐺). Let

𝜏∗ = ∑
𝑃∈Σ0

𝜏𝑃∗ 𝜏∗ = ∑
𝑃∈Σ0

𝜏∗𝑃.

For edges 𝑦 ∈ Σ1, the injections 𝜎𝑦 ∶ 𝐺𝑦 → 𝐺𝑜(𝑦) and 𝜎𝑦 ∶ 𝐺𝑦 → 𝐺𝑡(𝑦) similarly have open image and
give rise to homomorphisms 𝜎𝑦 ∶ 𝐶∗

𝑟 (𝐺𝑦) → 𝐶∗
𝑟 (𝐺𝑜(𝑦)) and 𝜎𝑦 ∶ 𝐶∗

𝑟 (𝐺𝑦) → 𝐶∗
𝑟 (𝐺𝑡(𝑦)). Let

𝜎∗ = ∑
𝑦∈Σ1

(𝜎𝑦∗ − 𝜎𝑦∗) 𝜎∗ = ∑
𝑦∈Σ1

(𝜎∗
𝑦 − 𝜎∗

𝑦).

We obtain two six-term exact sequences by [BS89, Théorème 7.2]. For any separable 𝐺̂-C*-algebra 𝐵,
provided that Σ is finite, the sequence

⨁
𝑦∈Σ1

𝐾𝐾𝐺
0 (𝐵,𝐴 ⋊𝑟 𝐺𝑦) ⨁

𝑃∈Σ0

𝐾𝐾𝐺
0 (𝐵,𝐴 ⋊𝑟 𝐺𝑃) 𝐾𝐾𝐺

0 (𝐵,𝐴 ⋊𝑟 𝐺)

𝐾𝐾𝐺
1 (𝐵,𝐴 ⋊𝑟 𝐺) ⨁

𝑃∈Σ0

𝐾𝐾𝐺
1 (𝐵,𝐴 ⋊𝑟 𝐺𝑃) ⨁

𝑦∈Σ1

𝐾𝐾𝐺
1 (𝐵,𝐴 ⋊𝑟 𝐺𝑦)

𝜎∗ 𝜏∗

𝜕
𝜕

𝜏∗ 𝜎∗

is exact. For any 𝐺̂-C*-algebra 𝐵 (and with no restriction on Σ), the sequence

⨁
𝑦∈Σ1

𝐾𝐾𝐺
0 (𝐴 ⋊𝑟 𝐺𝑦, 𝐵) ⨁

𝑃∈Σ0

𝐾𝐾𝐺
0 (𝐴 ⋊𝑟 𝐺𝑃, 𝐵) 𝐾𝐾𝐺

0 (𝐴 ⋊𝑟 𝐺,𝐵)

𝐾𝐾𝐺
1 (𝐴 ⋊𝑟 𝐺,𝐵) ⨁

𝑃∈Σ0

𝐾𝐾𝐺
1 (𝐴 ⋊𝑟 𝐺𝑃, 𝐵) ⨁

𝑦∈Σ1

𝐾𝐾𝐺
1 (𝐴 ⋊𝑟 𝐺𝑦, 𝐵)

𝜕

𝜎∗ 𝜏∗

𝜏∗ 𝜎∗

𝜕 (II.1.8)

is exact. These sequences remain exact if one forgets the 𝐺̂-equivariance everywhere, which is the form
in which they are presented in [Pim86, Theorem 17]. One can then also remove the need for Σ to be
finite if 𝐵 is KK-compact; see §II.1.4 and [Pim86, Theorem 18].

II.1.3 Induction from cocompact subgroups

The following Proposition is well known but we have been unable to locate a suitable reference, so we
sketch a proof; but cf. [Bla06, Theorem 20.5.5] and [MN06, §3.2]. An analogous result for quantum
group equivariant KK-theory can be found in [NV10, Proposition 4.7]. The proof of the following
Proposition uses the induction homomorphism 𝑖𝐻,𝐺 ∶ 𝐾𝐾𝐻

∗ (𝐴,𝐵) → 𝐾𝐾𝐺
∗ (𝐶0(𝐺,𝐴)𝐻, 𝐶0(𝐺,𝐵)𝐻) of

[Kas88, Theorem 3.5, §3.6]. We have chosen not to give a fuller account of this map, partly as there
are technical issues arising in the unbounded picture which would necessitate the use of symmetric
operators and so half-closed chains.
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Proposition II.1.9. Let 𝐻 be a cocompact closed subgroup of a locally compact group 𝐺. Let 𝐴 be a
𝐺-C*-algebra and 𝐵 an 𝐻-C*-algebra. There is an isomorphism 𝐾𝐾𝐻

∗ (𝐴,𝐵) ≅ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)𝐻).

The isomorphism can be interpreted as a KK-theoretic analogue of Frobenius reciprocity.
The closed subgroup 𝐻 of 𝐺 acts on 𝐺 by right translation. This means that, for a C*-algebra 𝐵

with an action 𝛽 of 𝐻, 𝐶0(𝐺,𝐵) has a left action 𝛼 of 𝐺 by left translation and a right action 𝛽′ of 𝐻
given by the combination of right translation and the action on 𝐻. That is,

𝛼𝑔(𝑓)(𝑠) = 𝑓(𝑔−1𝑠) 𝛽′
ℎ(𝑓)(𝑠) = 𝛽ℎ(𝑓(𝑠ℎ)).

The group 𝐺 then acts on 𝐶0(𝐺,𝐴)𝐻 by 𝛼′
𝑔(𝑓)(ℎ) = 𝑓(𝑔−1ℎ).

Proof. Let 𝐱 ∈ 𝐾𝐾𝐻(𝐴,𝐵) and 𝐲 ∈ 𝐾𝐾𝐺(𝐴,𝐶0(𝐺,𝐵)𝐻). By [Kas88, Theorem 3.5, §3.6], there is a
homomorphism 𝑖𝐻,𝐺 ∶ 𝐾𝐾𝐻

∗ (𝐴,𝐵) → 𝐾𝐾𝐺
∗ (𝐶0(𝐺,𝐴)𝐻, 𝐶0(𝐺,𝐵)𝐻). By [Kas88, Proof of Corollary

3.15], 𝑖𝐻,𝐺 is related to descent by

𝑖𝐻,𝐺(𝐱) = [𝐻𝐶0(𝐺,𝐴)] ⊗𝐶0(𝐺,𝐴)⋊𝑟𝐻 𝑗𝐻𝑟 (𝜎𝐶0(𝐺)(𝐱)) ⊗𝐶0(𝐺,𝐵)⋊𝑟𝐻 [(𝐻𝐶0(𝐺,𝐵))∗].

Because 𝐺 acts on 𝐴 and on 𝐶0(𝐺,𝐵)𝐻, by [Kas88, Lemma 3.6],

𝐶0(𝐺,𝐴)𝐻 ≅ 𝐶(𝐺/𝐻,𝐴)

and
𝐶0(𝐺,𝐶0(𝐺,𝐵)𝐻)𝐻 ≅ 𝐶(𝐺/𝐻,𝐶0(𝐺,𝐵)𝐻);

see also [RW98, Hooptedoodle 6.15]. Let [𝜆] ∈ 𝐾𝐾𝐻(𝐴,𝐶0(𝐺,𝐴)𝐻) be given by the homomorphism
𝜆 ∶ 𝐴 → 𝐶(𝐺/𝐻,𝐴) taking an element of 𝐴 to a constant function. The product

[𝜆] ⊗𝐶0(𝐺,𝐴)𝐻 𝑖𝐻,𝐺(𝐱)

is an element of 𝐾𝐾𝐺(𝐴,𝐶0(𝐺,𝐵)𝐻). Let [𝜓] ∈ 𝐾𝐾𝐻(𝐶0(𝐺,𝐵)𝐻, 𝐵) be given by the homomorphism
𝐶0(𝐺,𝐵)𝐻 → 𝐵 of evaluation at the identity in 𝐺. The product

𝑟𝐺,𝐻(𝐲) ⊗𝐶0(𝐺,𝐵)𝐻 [𝜓]

is an element of 𝐾𝐾𝐻(𝐴,𝐵). Note that 𝑖𝐻,𝐺([𝜓]) ∈ 𝐾𝐾𝐺(𝐶(𝐺/𝐻,𝐶0(𝐺,𝐵)𝐻), 𝐶0(𝐺,𝐵)𝐻) is equal
to 𝜎𝐶0(𝐺,𝐵)𝐻([𝜓′]) where [𝜓′] ∈ 𝐾𝐾(𝐶(𝐺/𝐻),ℂ) is given by evaluation at the identity coset in
𝐺/𝐻. Note also that [𝜆] ⊗𝐶(𝐺/𝐻,𝐴) 𝜎𝐴([𝜓′]) ∈ 𝐾𝐾𝐺(𝐴,𝐴) is the identity. By [Kas88, Theorem 3.6],
𝑖𝐻,𝐺 ◦ 𝑟𝐺,𝐻 = 𝜎𝐶(𝐺/𝐻). By careful use of the relationship between the exterior and interior Kasparov
products,

[𝜆] ⊗𝐶(𝐺/𝐻,𝐴) 𝑖𝐻,𝐺(𝑟𝐺,𝐻(𝐲) ⊗𝐶0(𝐺,𝐵)𝐻 [𝜓])
= [𝜆] ⊗𝐶(𝐺/𝐻,𝐴) 𝑖𝐻,𝐺(𝑟𝐺,𝐻(𝐲)) ⊗𝐶(𝐺/𝐻,𝐶0(𝐺,𝐵)𝐻) 𝑖𝐻,𝐺([𝜓])
= [𝜆] ⊗𝐶(𝐺/𝐻,𝐴) 𝜎𝐶(𝐺/𝐻)(𝐲) ⊗𝐶(𝐺/𝐻,𝐶0(𝐺,𝐵)𝐻) 𝜎𝐶0(𝐺,𝐵)𝐻([𝜓′])

= [𝜆] ⊗𝐶(𝐺/𝐻,𝐴) (𝐲 ⊗ℂ [𝜓′])

= [𝜆] ⊗𝐶(𝐺/𝐻,𝐴) ([𝜓′] ⊗ℂ 𝐲)
= [𝜆] ⊗𝐶(𝐺/𝐻,𝐴) 𝜎𝐴([𝜓′]) ⊗𝐴 𝐲
= 𝐲.
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On the other hand, note that 𝑟𝐺,𝐻([(𝐻𝐶0(𝐺,𝐵))∗]) ⊗𝐶0(𝐺,𝐵)𝐻 [𝜓] ∈ 𝐾𝐾𝐻(𝐶0(𝐺,𝐵) ⋊𝑟 𝐻,𝐵) is equal
to 𝑗𝐻𝑟 (𝜎𝐵([𝜂])) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)] where 𝜎 ∶ 𝐶0(𝐺) → 𝐶0(𝐻) is given by the 𝐻-orbit of the identity
in 𝐺. By careful use of the relationship between the exterior and interior Kasparov products,

𝑗𝐻𝑟 (𝜎𝐶0(𝐺)(𝐱)) ⊗𝐶0(𝐺,𝐵)⋊𝑟𝐻 [(𝐻𝐶0(𝐺,𝐵))∗] ⊗𝐶0(𝐺,𝐵)𝐻 [𝜓]
= 𝑗𝐻𝑟 (𝜎𝐶0(𝐺)(𝐱)) ⊗𝐶0(𝐺,𝐵)⋊𝑟𝐻 𝑗𝐻𝑟 (𝜎𝐵([𝜂])) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)]

= 𝑗𝐻𝑟 (𝜎𝐶0(𝐺)(𝐱) ⊗𝐶0(𝐺,𝐵) 𝜎𝐵([𝜂])) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)]

= 𝑗𝐻𝑟 (𝐱 ⊗ℂ [𝜂]) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)]

= 𝑗𝐻𝑟 ([𝜂] ⊗ℂ 𝐱) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)]

= 𝑗𝐻𝑟 (𝜎𝐴([𝜂]) ⊗ℂ 𝜎𝐶0(𝐻)(𝐱)) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)].

Finally, we have

𝑟𝐺,𝐻([𝜆] ⊗𝐶0(𝐺,𝐴)𝐻 𝑖𝐻,𝐺(𝐱)) ⊗𝐶0(𝐺,𝐵)𝐻 [𝜓]

= 𝑟𝐺,𝐻([𝜆] ⊗𝐶0(𝐺,𝐴)𝐻 [𝐻𝐶0(𝐺,𝐴)]

⊗𝐶0(𝐺,𝐴)⋊𝑟𝐻 𝑗𝐻𝑟 (𝜎𝐶0(𝐺)(𝐱)) ⊗𝐶0(𝐺,𝐵)⋊𝑟𝐻 [(𝐻𝐶0(𝐺,𝐵))∗]) ⊗𝐶0(𝐺,𝐵)𝐻 [𝜓]

= 𝑟𝐺,𝐻([𝜆] ⊗𝐶0(𝐺,𝐴)𝐻 [𝐻𝐶0(𝐺,𝐴)])

⊗𝐶0(𝐺,𝐴)⋊𝑟𝐻 𝑗𝐻𝑟 (𝜎𝐴([𝜂]) ⊗ℂ 𝜎𝐶0(𝐻)(𝐱)) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)]
= 𝑟𝐺,𝐻([𝜆]) ⊗𝐶0(𝐺,𝐴)𝐻 [𝐻𝐶0(𝐻,𝐴)] ⊗𝐶0(𝐻,𝐴)⋊𝑟𝐻 𝑗𝐻𝑟 (𝜎𝐶0(𝐻)(𝐱)) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)]
= [𝐿2(𝐻,𝐴)∗] ⊗𝐶0(𝐻,𝐴)⋊𝑟𝐻 𝑗𝐻𝑟 (𝜎𝐶0(𝐻)(𝐱)) ⊗𝐶0(𝐻)⋊𝑟𝐻 [𝐿2(𝐻,𝐵)]
= 𝐱.

We hence obtain the required isomorphism of KK-groups.

Remark II.1.10. [EKQR06, Example A.12] Let 𝐴 be a 𝐺-C*-algebra and denote by 𝐴 the same
C*-algebra with the trivial 𝐺-action. The C*-algebras 𝐶0(𝐺,𝐴) and 𝐶0(𝐺,𝐴) are 𝐺-equivariantly
isomorphic.

Corollary II.1.11. Let 𝐻 be a closed subgroup of a locally compact group 𝐺 and let 𝐴 and 𝐵 be
𝐺-C*-algebras. Calling the inclusion 𝜑 ∶ 𝐻 ↪ 𝐺, there is a homomorphism

𝜑∗𝑟𝜑 ∶ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾𝐻

∗ (𝐴,𝐶0(𝐻,𝐵))

which is an isomorphism if 𝐻 is cocompact in 𝐺.

Proof. Let 𝐵 be the C*-algebra 𝐵 equipped with the trivial 𝐺-action. Remark that 𝐶0(𝐺,𝐶0(𝐻,𝐵))𝐻
is 𝐺-equivariantly isomorphic to

𝐶0(𝐺,𝐶0(𝐻,𝐵))𝐻 ≅ 𝐶0(𝐺 ×𝐻)𝐻 ⊗𝐵 ≅ 𝐶0(𝐺) ⊗ 𝐵 ≅ 𝐶0(𝐺,𝐵).

The conclusion follows from applying Proposition II.1.9.

Example II.1.12. If 𝐾 is a compact group and 𝐴 and 𝐵 are 𝐾-C*-algebras,

𝐾𝐾𝐾
∗ (𝐴,𝐶(𝐾,𝐵)) ≅ 𝐾𝐾{𝑒}

∗ (𝐴,𝐶({𝑒},𝐵)) = 𝐾𝐾∗(𝐴,𝐵).

The C*-algebra 𝐶∗(𝐾) of a compact group 𝐾 is isomorphic to a direct sum of matrix algebras
⨁𝜆∈Λ 𝑀dim𝜆(ℂ) over the set Λ of the equivalence classes of irreducible unitary representations of 𝐾.
By [Kas88, Theorem 2.9],

𝐾𝐾∗(𝐶∗(𝐾),ℂ) = 𝐾𝐾∗ (⨁
𝜆∈Λ

𝑀dim𝜆(ℂ), ℂ) ≅ ∏
𝜆∈Λ

𝐾𝐾∗(𝑀dim𝜆(ℂ), ℂ) = ∏
𝜆∈Λ

ℤ⊕ 0.
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The descent map from 𝐾𝐾𝐾
∗ (ℂ,𝐶(𝐾)) to 𝐾𝐾∗(𝐶∗(𝐾),ℂ) is injective, taking 1 ∈ 𝐾𝐾∗(ℂ,ℂ) ≅

𝐾𝐾𝐾
∗ (ℂ,𝐶(𝐾)) to the left regular representation in 𝐾𝐾∗(𝐶∗(𝐾),ℂ). Remark also that, by the dual

Green–Julg isomorphism,
𝑅(𝐾̂) = 𝐾𝐾𝐾̂(ℂ,ℂ) ≅ 𝐾𝐾(𝐶0(𝐾),ℂ)

as abelian groups. (The right-hand side is not a ring.)

Example II.1.13. If 𝐺 is abelian, 𝐶∗(𝐺) is the commutative C*-algebra of functions on the Pontryagin
dual group 𝐺̂. Within locally compact abelian groups, it is natural for our purposes to restrict to those
which are compactly generated. In some sense, this corresponds to the finite-dimensionality of the
geometry of 𝐶∗(𝐺). A compactly generated locally compact abelian group can always be decomposed
as

𝐺 ≅ ℝ𝑚 ×ℤ𝑛 ×𝐾

for integers 𝑚,𝑛 and a compact group 𝐾, see e.g. [CH16, Example 5.A.3]. Because ℝ𝑚 × ℤ𝑛 is a
cocompact subgroup of ℝ𝑚 ×ℤ𝑛 ×𝐾 and a cocompact subgroup of ℝ𝑚+𝑛, we have an isomorphism

𝐾𝐾ℝ𝑚×ℤ𝑛×𝐾
𝑖 (𝐴,𝐶0(ℝ𝑚 ×ℤ𝑛 ×𝐾,𝐵)) ≅ 𝐾𝐾ℝ𝑚×ℤ𝑛

𝑖 (𝐴,𝐶0(ℝ𝑚 ×ℤ𝑛, 𝐵))
≅ 𝐾𝐾ℝ𝑚+𝑛

𝑖 (𝐴,𝐶0(ℝ𝑚+𝑛, 𝐵))
≅ 𝐾𝐾𝑖+𝑚+𝑛(𝐴,𝐵).

In contrast,
𝐾𝐾∗(𝐶∗(𝐺),ℂ) = ∏

𝜆∈Λ𝐾

𝐾𝐾∗+𝑚(𝐶(𝕋𝑛), ℂ) ≅ ∏
𝜆∈Λ𝐾

(ℤ2𝑛−1 ⊕ℤ2𝑛−1).

As 𝐾𝐾𝐺
∗ (ℂ,𝐶0(𝐺)) is singly generated, it is straightforward to check that the descent map to

𝐾𝐾∗(𝐶∗(𝐺),ℂ) is injective. By Proposition II.1.9, Baaj–Skandalis duality, and the Green–Julg
isomorphism, as an abelian group,

𝑅(𝐺̂) = 𝐾𝐾𝐺
∗ (𝐶0(𝐺), 𝐶0(𝐺))

≅ 𝐾𝐾ℝ𝑚×ℤ𝑛

∗ (𝐶0(ℝ𝑚 ×ℤ𝑛 ×𝐾),𝐶0(ℝ𝑚 ×ℤ𝑛))
≅ 𝐾𝐾ℝ𝑚×𝕋𝑛

∗ (𝐶0(ℝ𝑚 ×ℤ𝑛 ×𝐾) ⋊ (ℝ𝑚 ×ℤ𝑛), 𝐶0(ℝ𝑚 ×ℤ𝑛) ⋊ (ℝ𝑚 ×ℤ𝑛))
≅ 𝐾𝐾ℝ𝑚×𝕋𝑛

∗ (𝐶0(𝐾),ℂ)
≅ 𝛾(ℝ𝑚×𝕋𝑛)𝐾𝐾𝕋𝑛

∗ (𝐶0(𝐾),ℂ)
= 𝐾𝐾𝕋𝑛

∗ (𝐶0(𝐾),ℂ)
≅ 𝐾𝐾∗(𝐶0(𝐾), 𝐶∗(𝕋𝑛))
≅ ⨁

ℤ𝑛
𝐾𝐾∗(𝐶0(𝐾),ℂ).

It is not difficult to check that 𝑅(𝐺̂) is isomorphic as a ring to 𝑅(𝕋𝑛) ⊗ℤ 𝑅(𝐾̂) ≅ 𝑅(𝐾̂)[𝑋1,… ,𝑋𝑛]
by considering the range of the two injections 𝑅(𝕋𝑛) ↪ 𝑅(𝐺̂) and 𝑅(𝐾̂) ↪ 𝑅(𝐺̂).

II.1.4 Restriction to compact subgroups

We say that a C*-algebra 𝐴 is KK-compact if 𝐾𝐾∗(𝐴, ⋅) is continuous, i.e. commutes with direct limits
[Uuy11, Definition 2.9]. To set notation, if (𝐵𝑖, 𝜙𝑖𝑗)𝑖,𝑗∈Λ is an inductive system of C*-algebras over a
directed set Λ (see e.g. [Bla98, §3.3]), if 𝐴 is KK-compact then

𝐾𝐾∗(𝐴, lim−→𝐵𝑖) ≅ lim−→𝐾𝐾∗(𝐴,𝐵𝑖).

The limit on the right is the algebraic direct limit of abelian groups. In particular, if (𝐶𝑖)𝑖∈𝐼 is a
collection of C*-algebras,

𝐾𝐾∗(𝐴,⨁
𝑖∈𝐼

𝐶𝑖) ≅ ⨁
𝑖∈𝐼

𝐾𝐾∗(𝐴,𝐶𝑖).
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The most important example of a KK-compact C*-algebra is ℂ; a sufficient condition for 𝐴 to be
KK-compact is that it satisfy the Universal Coefficient Theorem and have finitely-generated K-theory
[Uuy11, Definition 2.10.1].

Proposition II.1.14. Let 𝐺 be a noncompact locally compact group for which the connected component
of the identity 𝐺0 is compact. Let 𝐴 and 𝐵 be 𝐺-C*-algebras with 𝐴 a KK-compact C*-algebra. If 𝐾
is a compact subgroup of 𝐺,

𝑟𝐺,𝐾 ∶ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾𝐾

∗ (𝐴,𝐶0(𝐺,𝐵))

is zero.

Proof. By [CH16, Corollary 2.E.7(2)], we can find a compact open subgroup 𝐻 of 𝐺 containing 𝐾. It
will suffice to show that

𝑟𝐺,𝐻 ∶ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾𝐻

∗ (𝐴,𝐶0(𝐺,𝐵))

is zero. Because 𝐻 is open, the quotient space 𝑋 ∶= 𝐺/𝐻 is discrete and 𝐺 is 𝐻-equivariantly
homeomorphic to 𝐻 × 𝑋. Choose 𝜎 ∶ 𝑋 → 𝐺 such that 𝐻𝜎(𝐻𝑔) = 𝐻𝑔 for 𝐻𝑔 ∈ 𝑋. By Corollary
II.1.11,

𝜎∗𝑟𝐻,1 ∶ 𝐾𝐾𝐻
∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾∗(𝐴,𝐶0(𝑋,𝐵))

is an isomorphism. It therefore suffices to show that

𝑟𝐺,1 = 𝑟𝐻,1𝑟𝐺,𝐻 ∶ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾∗(𝐴,𝐶0(𝐺,𝐵))

is zero.
Since 𝑒 ∈ 𝐺 has a compact open neighbourhood 𝐻, so does every element of 𝐺. Let Σ be the set

of compact open subsets of 𝐺, partially ordered by inclusion. For 𝑈, 𝑉 ∈ Σ such that 𝑈 ⊆ 𝑉, denote
by 𝜙𝑈,𝑉 the inclusion 𝐶(𝑈,𝐵) ↪ 𝐶(𝑉 ,𝐵). We thus form the inductive system (𝐶(𝑈,𝐵), 𝜙𝑈,𝑉)𝑈,𝑉 ∈Σ
of C*-algebras. For every 𝑈 ∈ Σ, there is an inclusion 𝜙𝑈 ∶ 𝐶(𝑈,𝐵) ↪ 𝐶0(𝐺,𝐵), making 𝐶0(𝐺,𝐵)
isomorphic to the direct limit lim−→𝐶(𝑈,𝐵). Suppose that 𝐴 is KK-compact, so that

𝐾𝐾∗(𝐴,𝐶0(𝐺,𝐵)) ≅ lim−→𝐾𝐾∗(𝐴,𝐶(𝑈,𝐵)).

Let 𝐱 ∈ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)), so that 𝑟𝐺,1(𝐱) ∈ 𝐾𝐾∗(𝐴,𝐶0(𝐺,𝐵)). By the definition of the algebraic

direct limit, there must exist some 𝑈 ∈ Σ and 𝐲 ∈ 𝐾𝐾∗(𝐴,𝐶(𝑈,𝐵)) such that 𝐲⊗𝐶(𝑈,𝐵) [𝜙𝑈] = 𝑟𝐺,1(𝐱).
Let 𝑉 ∈ Σ such that 𝑈 ⊆ 𝑉. Now, with 𝑝𝑉 ∈ 𝐶0(𝐺,𝐵) the projection onto 𝐶(𝑉 ,𝐵) ⊂ 𝐶0(𝐺,𝐵) and
[𝑝𝑉] ∈ 𝐾𝐾0(𝐶0(𝐺,𝐵), 𝐶0(𝐺,𝐵)),

𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝑝𝑉] = 𝐲 ⊗𝐶(𝑈,𝐵) [𝜙𝑈] ⊗𝐶0(𝐺,𝐵) [𝑝𝑉] = 𝐲 ⊗𝐶(𝑈,𝐵) [𝜙𝑈] = 𝑟𝐺,1(𝐱).

In particular,
𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝑝𝑉] = 𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝑝𝑈].

By the noncompactness of 𝐺 and the properness of its action on itself by left translation, choose 𝑔 ∈ 𝐺
such that 𝑔𝑈 ∩𝑈 = ∅. Taking 𝑉 = 𝑔𝑈 ∪𝑈, we see that 𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝑝𝑔𝑈] = 0. Let 𝛼 and 𝛽 be the
actions of 𝐺 on 𝐴 and 𝐶0(𝐺,𝐵) respectively. Because 𝐱 ∈ 𝐾𝐾𝐺

∗ (𝐴,𝐶0(𝐺,𝐵)),

[𝛼𝑔−1 ] ⊗𝐴 𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝛽𝑔] = 𝑟𝐺,1(𝐱).

Hence

[𝛼𝑔−1 ] ⊗𝐴 𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝑝𝑔𝑈] ⊗𝐶0(𝐺,𝐵) [𝛽𝑔] = [𝛼𝑔−1 ] ⊗𝐴 𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝛽𝑔] ⊗𝐶0(𝐺,𝐵) [𝑝𝑈]
= 𝑟𝐺,1(𝐱) ⊗𝐶0(𝐺,𝐵) [𝑝𝑈]

and so 𝑟𝐺,1(𝐱) = 0, as required.



II.1. KK-theory of group algebras 37

As a consequence, we have the following counterpoint to Corollary II.1.11.

Proposition II.1.15. Let 𝐺 be a locally compact group and 𝐴 and 𝐵 be 𝐺-C*-algebras. Let 𝐾 be a
compact subgroup of 𝐺. Call the inclusion 𝜄𝐾,𝐺 ∶ 𝐾 ↪ 𝐺. The homomorphism

𝜄∗𝐾,𝐺𝑟𝐺,𝐾 ∶ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾𝐾

∗ (𝐴,𝐶(𝐾,𝐵))

is an isomorphism if 𝐺 is compact and zero if 𝐺 is noncompact and either

1. The connected component 𝐺0 of the identity is noncompact or
2. 𝐴 is KK-compact.

Proof. Let 𝐾 be a compact subgroup of a locally compact group 𝐺. By Corollary II.1.11,

𝐾𝐾𝐾
∗ (𝐴,𝐶(𝐾,𝐵)) ≅ 𝐾𝐾{𝑒}

∗ (𝐴,𝐶({𝑒},𝐵)) = 𝐾𝐾∗(𝐴,𝐵).

With the inclusion 𝜄{𝑒},𝐺 ∶ {𝑒} ↪ 𝐺, the homomorphism

𝜄∗{𝑒},𝐺𝑟
𝐺,1 ∶ 𝐾𝐾𝐺

∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾{𝑒}
∗ (𝐴,𝐶({𝑒},𝐵)) = 𝐾𝐾∗(𝐴,𝐵)

factors through
𝜄∗𝐾,𝐺𝑟𝐺,𝐾 ∶ 𝐾𝐾𝐺

∗ (𝐴,𝐶0(𝐺,𝐵)) → 𝐾𝐾𝐾
∗ (𝐴,𝐶(𝐾,𝐵))

so one is zero if and only if the other is zero.
If 𝐺0 is compact but 𝐺 is noncompact and 𝐴 is KK-compact, the result follows directly from

Proposition II.1.14. On the other hand, suppose that the connected component 𝐺0 of the identity
is noncompact. Let 𝐾0 be the maximal compact subgroup of 𝐺0. With 𝜄𝐺0,𝐺 ∶ 𝐺0 ↪ 𝐺 and
𝜄𝐾0,𝐺0

∶ 𝐾0 ↪ 𝐺0 and 𝜄{𝑒},𝐾0
∶ {𝑒} ↪ 𝐾0 the inclusion homomorphisms,

𝜄∗{𝑒},𝐺 ◦ 𝑟𝐺,1 = 𝜄∗{𝑒},𝐾0
◦ 𝜄∗𝐾0,𝐺0

◦ 𝜄∗𝐺0,𝐺 ◦ 𝑟𝐺,1.

So it will suffice for 1. to show that

𝜄∗𝐾0,𝐺0
∶ 𝐾𝐾∗(𝐴,𝐶0(𝐺0, 𝐵)) → 𝐾𝐾∗(𝐴,𝐶0(𝐾0, 𝐵))

is zero. By [CH16, Theorem 2.E.16], 𝐺0 is homeomorphic to ℝ𝑛 × 𝐾0 for some 𝑛 ≥ 1. The class
[𝜄𝐾0,𝐺0

] ∈ 𝐾𝐾0(𝐶0(𝐺0), 𝐶0(𝐾0)), which implements 𝜄∗𝐾0,𝐺0
by the external product on the right, is

equal to 𝜎𝐶0(𝐾0)(𝐰) where 𝐰 ∈ 𝐾𝐾0(ℂ,𝐶0(ℝ𝑛)) is the class given by point evaluation (unique because
ℝ𝑛 is path connected). But, since ℝ𝑛 is path-connected and noncompact, 𝐰 is homotopy equivalent
to zero, and we are done.

Remark II.1.16. Let 𝐺 be a locally compact group and let 𝐴 and 𝐵 be 𝐺-C*-algebras. If 𝐻 is an open
subgroup of 𝐺, there are inclusions

𝜆 ∶ 𝐴 ⋊𝑟 𝐻 ↪ 𝐴 ⋊𝑟 𝐺 𝜇 ∶ 𝐵 ⋊𝑟 𝐻 ↪ 𝐵 ⋊𝑟 𝐺.

It is routine to check, using in particular the nondegeneracy of 𝜆 and 𝜇, that the diagram

𝐾𝐾𝐺
∗ (𝐴,𝐵) 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐵 ⋊𝑟 𝐺)

𝐾𝐾∗(𝐴 ⋊𝑟 𝐻,𝐵 ⋊𝑟 𝐺)

𝐾𝐾𝐻
∗ (𝐴,𝐵) 𝐾𝐾∗(𝐴 ⋊𝑟 𝐻,𝐵 ⋊𝑟 𝐻)

𝑗𝐺𝑟

𝑟𝐺,𝐻

𝜆∗

𝑗𝐻𝑟

𝜇∗
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commutes. As a special case, with the inclusion 𝜇′ ∶ 𝐶0(𝐺,𝐵) ⋊𝑟 𝐻 ↪ 𝐶0(𝐺,𝐵) ⋊𝑟 𝐺, we have the
commuting diagram

𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐶0(𝐺,𝐵) ⋊𝑟 𝐺) ≅ 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐵)

𝐾𝐾∗(𝐴 ⋊𝑟 𝐻,𝐶0(𝐺,𝐵) ⋊𝑟 𝐺) ≅ 𝐾𝐾∗(𝐴 ⋊𝑟 𝐻,𝐵)

𝐾𝐾𝐻
∗ (𝐴,𝐶0(𝐺,𝐵)) 𝐾𝐾∗(𝐴 ⋊𝑟 𝐻,𝐶0(𝐺,𝐵) ⋊𝑟 𝐻)

𝑗𝐺𝑟

𝑟𝐺,𝐻

𝜆∗

𝑗𝐻𝑟

𝜇′
∗

.

In particular, if 𝐺 is noncompact and 𝐻 is a compact open subgroup, Proposition II.1.14 implies that

𝜆∗ ∶ 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐵) → 𝐾𝐾∗(𝐴 ⋊ 𝐻,𝐵)

is zero on the image of 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵)) under the descent map. Taking into account Baaj–Skandalis

duality, this implies also that

𝜆∗ ◦ 𝑟𝐺,1 ∶ 𝐾𝐾𝐺
∗ (𝐴 ⋊𝑟 𝐺,𝐵) → 𝐾𝐾∗(𝐴 ⋊ 𝐻,𝐵)

is zero.
Remark II.1.17. Let 𝐺 be an locally compact group, 𝐴 a 𝐺-C*-algebra, and 𝐵 a C*-algebra with
the trivial action of 𝐺. Let 𝐻 be an open subgroup of 𝐺 and denote by 𝜆𝑟 and 𝜆𝑢 the inclusions
𝐴 ⋊𝑟 𝐻 ↪ 𝐴⋊𝑟 𝐺 and 𝐴 ⋊𝑢 𝐻 ↪ 𝐴⋊𝑢 𝐺. Let 𝜏𝐺 and 𝜏𝐻 be the quotient maps 𝐴 ⋊𝑢 𝐺 → 𝐴⋊𝑟 𝐺 and
𝐴 ⋊𝑢 𝐻 → 𝐴 ⋊𝑟 𝐻, respectively. With Ψ𝐺 and Ψ𝐻 the dual Green–Julg maps, the diagram

𝐾𝐾𝐺
∗ (𝐴 ⋊𝑟 𝐺,𝐵) 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐵) 𝐾𝐾∗(𝐴 ⋊𝑢 𝐺,𝐵) 𝐾𝐾𝐺

∗ (𝐴,𝐵)

𝐾𝐾∗(𝐴 ⋊𝑟 𝐻,𝐵) 𝐾𝐾∗(𝐴 ⋊𝑢 𝐻,𝐵) 𝐾𝐾𝐻
∗ (𝐴,𝐵)

𝑟𝐺̂,1

𝜏∗
𝐺

𝜆∗
𝑟 𝜆∗

𝑢

Ψ𝐺

𝑟𝐺,𝐻

𝜏∗
𝐻

Ψ𝐻

commutes. As a consequence, if 𝐺 is infinite and discrete and 𝐻 is a finite subgroup, because the dual
Green–Julg maps Ψ𝐺 and Ψ𝐻 are isomorphisms,

𝑟𝐺,𝐻 ◦ (Ψ𝐺)−1 ◦ 𝜏∗𝐺 ◦ 𝑟𝐺,1 ∶ 𝐾𝐾𝐺
∗ (𝐴⋊𝑟, 𝐵) → 𝐾𝐾𝐾

∗ (𝐴,𝐵)

is zero. In particular, if 𝐴 = 𝐵 = ℂ,

𝑟𝐺,𝐻 ◦ (Ψ𝐺)−1 ◦ 𝜏∗𝐺 ◦ 𝑟𝐺,1 ∶ 𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (𝐺),ℂ) → 𝐾𝐾𝐾
∗ (ℂ,ℂ)

is zero, which means that, for 𝐱 ∈ 𝐾𝐾𝐺
∗ (𝐴 ⋊𝑟 𝐺,𝐵), the element (Ψ𝐺)−1 ◦ 𝜏∗𝐺 ◦ 𝑟𝐺,1 of 𝐾𝐾𝐺(ℂ,ℂ)

cannot be 1 nor any of the generalised γ-elements discussed at the end of §II.1.1.
Remark II.1.18. Let 𝐺 be a (countably) infinite discrete group. For any finite subgroup 𝐾 of 𝐺, denote
by 𝜆𝐾,𝐺 the inclusion 𝐶∗(𝐾) ↪ 𝐶∗

𝑟 (𝐺). Remark II.1.16 says that

𝜆∗ ◦ 𝑟𝐺,1 ∶ 𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (𝐺),ℂ) → 𝐾𝐾∗(𝐶∗(𝐾),ℂ)

is zero. Let 𝐱 ∈ 𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (𝐺),ℂ). If 𝑝 ∈ 𝐶∗
𝑟 (𝐺) is a projection supported on 𝐾, that is, inside the

subalgebra 𝐶∗(𝐾), representing a class in 𝐾0(𝐶∗
𝑟 (𝐺)), then its pairing with 𝑟𝐺,1(𝐱) is

[𝑝] ⊗𝐶∗
𝑟(𝐺) 𝑟𝐺,1(𝐱) = [𝑝] ⊗𝐶∗(𝐾) [𝜆] ⊗𝐶∗

𝑟(𝐺) 𝑟𝐺,1(𝐱) = 0. (II.1.19)

Suppose that
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1. 𝐶∗
𝑟 (𝐺) satisfies the Universal Coefficient Theorem;

2. 𝐾0(𝐶∗
𝑟 (𝐺)) is free and represented by projections in 𝐶∗

𝑟 (𝐺) which are supported on finite subgroups
of 𝐺; and

3. 𝐾1(𝐶∗
𝑟 (𝐺)) is zero.

For example, 𝐺 could be

• The free product of a finite number of finite groups [Cun83, §3]; or
• The (countable) direct limit of finite groups, including any torsion abelian (discrete) group, such

as the Prüfer 𝑝-group ℤ(𝑝∞) cf. [Bla98, Definition 22.3.4(N2)].

(We remark that, by [Tu99, Théorème 9.3, Proposition 10.7], a sufficient condition for 𝐶∗
𝑟 (𝐺) to

satisfy the Universal Coefficient Theorem is that 𝐺 have the Haagerup property; see [CCJJV01].) By
the Universal Coefficient Theorem [Bla98, Theorem 23.1.1] and the freeness of 𝐾∗(𝐶∗

𝑟 (𝐺)), there are
isomorphisms

𝐾𝐾0(𝐶∗
𝑟 (𝐺),ℂ) ≅ Hom(𝐾0(𝐶∗

𝑟 (𝐺)), ℤ) 𝐾𝐾1(𝐶∗
𝑟 (𝐺),ℂ) = Hom(𝐾1(𝐶∗

𝑟 (𝐺)), ℤ) = 0.

In particular, if an element 𝐲 ∈ 𝐾𝐾0(𝐶∗
𝑟 (𝐺),ℂ) pairs trivially with every element of 𝐾0(𝐶∗

𝑟 (𝐺)),
then 𝐲 = 0. By assumption, all the elements of 𝐾0(𝐶∗

𝑟 (𝐺)) are supported on finite subgroups. So, if
𝐱 ∈ 𝐾𝐾𝐺

∗ (𝐶∗
𝑟 (𝐺),ℂ), (II.1.19) implies that 𝑟𝐺,1(𝐱) = 0. In other words, the forgetful map

𝑟𝐺,1 ∶ 𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (𝐺),ℂ) → 𝐾𝐾∗(𝐶∗
𝑟 (𝐺),ℂ)

is zero. By Baaj–Skandalis duality, this implies also that the descent map

𝑗𝐺𝑟 ∶ 𝐾𝐾𝐺
∗ (ℂ,𝐶0(𝐺)) → 𝐾𝐾∗(𝐶∗

𝑟 (𝐺),ℂ)

is zero.
We shall show in Example II.3.18 that, for a free product 𝐻1 ∗ 𝐻2 of finite groups 𝐻1 and 𝐻2, the

KK-group
𝐾𝐾𝐺

∗ (𝐶∗
𝑟 (𝐺),ℂ)

is nonzero, so the forgetful map 𝑟𝐺,1 is really losing substantial information.

II.2 Unbounded Kasparov modules from weights on groups

II.2.1 Length functions and weights on groups

The building of spectral triples for group C*-algebras has its origin in Connes’s 1989 paper [Con89].
There is actually more than one such construction present in the article, but the most influential has
been the first. A length function on a discrete group 𝐺 is a map ℓ ∶ 𝐺 → ℝ+ such that

1. ℓ(𝑔ℎ) ≤ ℓ(𝑔) + ℓ(ℎ),
2. ℓ(𝑔−1) = ℓ(𝑔), and
3. ℓ(𝑒) = 0

for 𝑔, ℎ ∈ 𝐺 and 𝑒 the identity. If, in addition, (1 + ℓ2)−1 ∈ 𝐶0(𝐺), then

(𝐶∗
𝑟 (𝐺), ℓ2(𝐺),𝑀ℓ) (II.2.1)

is a spectral triple, where the operator 𝑀ℓ is multiplication by ℓ [Con89, Lemma 5].
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Any isometric action of 𝐺 on a metric space (𝑋, 𝑑) and choice of a point 𝑥0 ∈ 𝑋 gives rise to a
length function ℓ ∶ 𝑔 ↦ 𝑑(𝑔 ⋅ 𝑥0, 𝑥0). By Proposition A.2.2, the condition that (1 + ℓ2)−1 ∈ 𝐶0(𝐺) is
equivalent to the properness of the action. Conversely, given a length function ℓ on 𝐺, the expression
𝑑 ∶ (𝑔, ℎ) ↦ ℓ(𝑔ℎ−1) defines a pseudometric on 𝐺 and gives rise to a metric on the quotient space of 𝐺
by the equivalence relation 𝑔 ∼ ℎ ⟺ 𝑑(𝑔, ℎ) = 0.

The isometry groups of spectral triples of the form (II.2.1) were studied by Park [Par95a, Par95b].
More recently, other authors have considered the quantum isometry groups [BS10] and e.g. [GB16,
Chapter 8]. Rieffel addressed whether the construction gives rise to a compact quantum metric
space, first for 𝐺 = ℤ𝑛 [Rie02] and later, with other authors, for hyperbolic [OR05] and nilpotent
groups [CR17]. In [BCL06], spectral triples for group C*-algebras were considered for their categorical
properties. The length functions were here allowed to be ℝ-valued to include the number operator on ℤ.
Following the construction of spectral triples for crossed products by ℤ in [CMRV08, BMR10] spectral
triples for crossed products by discrete groups in general were constructed in [HSWZ13, Pat14].

In spite of the pervasiveness of the use of length functions to build spectral triples of the form
(II.2.1), the construction suffers from a serious drawback. Since the operator 𝑀ℓ is positive, the
spectral triple must represent the zero class in the K-homology of 𝐶∗

𝑟 (𝐺). Even where the length
function is allowed to be ℝ-valued, no serious attempt has been made to produce examples other than
the aforementioned number operator on ℤ. In [Rub22, AGIR22], where spectral triples for twisted
crossed products are considered, the length function is permitted to be matrix-valued, cf. [HSWZ13,
Remark 2.15]. Still, beyond ℤ𝑛, no new examples are given. Further, this loosening to matrix-valued
weights comes at the cost of the geometrical interpretation of ℓ as a (pseudo)metric on 𝐺. A further
generalisation can be found in [GRU19, §2.2.4], in which semifinite spectral triples are built from
weights valued in bounded operators on an infinite dimensional Hilbert space.

We will consider how the situation can be remedied, using both ingredients dating back a half-century
and new ideas. We also work in the generality of locally compact groups although, for nondiscrete 𝐺,
𝐶∗
𝑟 (𝐺) is non-unital and so we enter the realm of non-compact noncommutative geometry. We make

the following boilerplate definition.

Definition II.2.2. Given a locally compact group 𝐺 and a finite-dimensional complex vector space 𝑉,
a weight is a continuous function

ℓ ∶ 𝐺 → End𝑉 .

If 𝑉 is ℤ/2ℤ-graded, we require that ℓ be odd. We say that ℓ is

• self-adjoint if ℓ∗ = ℓ;

• proper if (1 + ℓ∗ℓ)−1 ∈ 𝐶0(𝐺,End𝑉 ) = 𝐶0(𝐺) ⊗ End𝑉; and

• translation-bounded if, for all 𝑔 ∈ 𝐺, supℎ∈𝐺 ‖ℓ(𝑔ℎ)−ℓ(ℎ)‖ < ∞ and there exists a neighbourhood
𝑈 of the identity in 𝐺 such that sup𝑔∈𝑈,ℎ∈𝐺 ‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ < ∞.

When 𝐺 is discrete, our definition coincides with [Rub22, Definition 6.1].
For the following, we use the notion of a k-space; see e.g. [Wil70, Definition 43.8]. (Further details

can be found in Appendix A.1.1, particularly in Definition A.1.6.) Note that any locally compact space
is a k-space.

Lemma II.2.3. Let 𝑋 be a k-space, 𝑌 a locally compact Hausdorff space, and 𝐸 a locally convex
complete topological vector space. Let 𝑓 ∶ 𝑋 × 𝑌 → 𝐸 be a continuous function. The following are
equivalent:

1. The function Λ(𝑓) ∶ 𝑋 → 𝐶(𝑌 ,𝐸) given by Λ(𝑓)(𝑥)(𝑦) = 𝑓(𝑥, 𝑦) is an element of 𝐶(𝑋,𝐶𝑏(𝑌 ,𝐸)𝛽),
where 𝛽 is the strict topology; and

2. For every compact subset 𝐾 ⊆ 𝑋, sup𝑥∈𝐾,𝑦∈𝑌 ‖𝑓(𝑥, 𝑦)‖ < ∞.
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Proof. To show 1. ⇒ 2., suppose that 𝜁 ∈ 𝐶(𝑋,𝐶𝑏(𝑌 ,𝐸)𝛽). Let 𝐾 be a compact subset of 𝑋. Since
𝐾 is compact, its image under 𝜁 is also a compact set 𝜁(𝐾) ⊆ 𝐶𝑏(𝑌 ,𝐸)𝛽. A compact subset of a
topological vector space is closed and bounded so, in particular, 𝜁(𝐾) is bounded in 𝜅. By [Buc58,
Theorem 1(iii)], 𝜁(𝐾) is uniformly bounded, i.e. sup𝑥∈𝐾,𝑦∈𝑌 ‖𝑓(𝑥, 𝑦)‖ < ∞.

We now show 2. ⇒ 1.. By e.g. [Eng89, Theorem 3.4.3] (cf. [Eng89, §2.6]), a function 𝑓 ∶ 𝑋×𝑌 → 𝐸
is continuous if and only if Λ(𝑓) ∈ 𝐶(𝑋,𝐶(𝑌 ,𝐸)𝜅), where 𝜅 is the compact-open topology on 𝐶(𝑌 ,𝐸).
Assume 2. holds. By taking 𝐾 = {𝑥} for each 𝑥 ∈ 𝑋, we obtain that 𝜁 ∈ 𝐶(𝑋,𝐶𝑏(𝑌 ,𝐸)𝜅). Now
let 𝐾 be any compact subset of 𝑋. By [Buc58, Theorem 1(iii)], 𝜁(𝐾) is bounded in 𝛽. By [Buc58,
Theorem 1(iv)], on any 𝛽-bounded set, 𝛽 and 𝜅 coincide. Hence the restriction 𝜁|𝐾 is an element
of 𝐶(𝐾,𝐶𝑏(𝑌 , End𝑉 )𝛽). By e.g. [Wil70, Lemma 43.10], the fact that 𝜁|𝐾 ∈ 𝐶(𝐾,𝐶𝑏(𝑌 ,𝐸)𝛽) for all
compact subsets 𝐾 ⊆ 𝑋 is equivalent to 𝜁 ∈ 𝐶(𝑋,𝐶𝑏(𝑌 ,𝐸)𝛽).

Lemma II.2.4. Let 𝐺 be a locally compact group, 𝑉 a finite-dimensional complex vector space, and
ℓ ∶ 𝐺 → End𝑉 a weight. The following are equivalent:

1. For all 𝑔 ∈ 𝐺,
sup
ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ < ∞

and there exists a neighbourhood 𝑈 of the identity in 𝐺 such that

sup
𝑔∈𝑈,ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ < ∞.

2. For every compact subset 𝐾 ⊆ 𝐺,

sup
𝑔∈𝐾,ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ < ∞.

3. The function 𝜁 ∶ 𝐺 → 𝐶(𝐺,End𝑉 ) given by

𝜁(𝑔)(ℎ) = ℓ(𝑔ℎ) − ℓ(ℎ)

is an element of 𝐶(𝐺,𝐶𝑏(𝐺,End𝑉 )𝛽), where 𝛽 is the strict topology.

Proof. Suppose that 1. holds and let 𝐾 be a compact subset of 𝐺. The open sets (𝑈𝑔)𝑔∈𝐾 cover 𝐾.
Let 𝑈𝑔1,… , 𝑈𝑔𝑘 be a finite subcover. We have

sup
𝑔∈𝐾,ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ ≤ max
1≤𝑖≤𝑘

sup
𝑔∈𝑈𝑔𝑖,ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖

= max
1≤𝑖≤𝑘

sup
𝑔∈𝑈,ℎ∈𝐺

‖ℓ(𝑔𝑔−1
𝑖 ℎ) − ℓ(ℎ)‖

≤ max
1≤𝑖≤𝑘

sup
𝑔∈𝑈,ℎ∈𝐺

(‖ℓ(𝑔𝑔−1
𝑖 ℎ) − ℓ(𝑔−1

𝑖 ℎ)‖ + ‖ℓ(𝑔−1
𝑖 ℎ) − ℓ(ℎ)‖)

≤ sup
𝑔∈𝑈,ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ + max
1≤𝑖≤𝑘

sup
ℎ∈𝐺

‖ℓ(𝑔−1
𝑖 ℎ) − ℓ(ℎ)‖

< ∞,

that is, 2. is satisfied.
Suppose that 2. holds and, by the local compactness of 𝐺, take an open neighbourhood 𝑈 of the

identity in 𝐺 contained in a compact set 𝐾. Then

sup
𝑔∈𝑈,ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ ≤ sup
𝑔∈𝐾,ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ < ∞,

so 1. is satisfied.
That 3. ⇔ 2., is a consequence of Lemma II.2.3 with 𝑓 ∶ 𝐺 × 𝐺 → End𝑉 given by 𝑓(𝑔, ℎ) =

ℓ(𝑔ℎ) − ℓ(ℎ). By the continuity of ℓ and of group multiplication, 𝑓 is continuous and, furthermore,
𝜁 = Λ(𝑓).
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In our construction of weights from directed length functions in §II.3, we will have a bound

sup
ℎ∈𝐺

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ = ‖ℓ(𝑔)‖,

which implies the translation-boundedness of ℓ.

Remark II.2.5. Let 𝑋 be a locally compact Hausdorff space and 𝑉 a finite dimensional complex vector
space. The ∗-strong topology on End∗𝐶0(𝑋) 𝐶0(𝑋, 𝑉 ) ≅ 𝐶𝑏(𝑋, 𝑉 ) coincides with the strict topology 𝛽
on 𝐶𝑏(𝑋, 𝑉 ). This follows from the definition of each topology and the finite-dimensionality of 𝑉; for
further details see [Gab21].

Example II.2.6. cf. [Rub22, Examples 6.2–3] Let 𝐺 be a compactly generated locally compact abelian
group. There is an isomorphism

𝐺 ≅ ℝ𝑚 ×ℤ𝑛 ×𝐾

for integers 𝑚,𝑛, and a compact group 𝐾, see e.g. [CH16, Example 5.A.3]. The group 𝐺 acts properly
on ℝ𝑚+𝑛 by translation, with 𝐾 the stabiliser at every point. Let (𝑣𝑖)𝑚+𝑛

𝑖=1 be a basis of ℝ𝑚+𝑛. To
simplify notation, we will also write (𝑣𝑖)𝑚+𝑛

𝑖=1 for their images in 𝒞𝓁𝑚+𝑛. Let 𝑉 be a Clifford module
for 𝒞𝓁𝑚+𝑛 and define a weight ℓ ∶ 𝐺 → End𝑉 on the group by

ℓ(𝑔) =
𝑚+𝑛

∑
𝑗=1

𝑔𝑗𝑣𝑗

where 𝑔𝑗 is a real or integer component of 𝑔. The self-adjointness of 𝑣𝑗 ∈ 𝒞𝓁𝑚+𝑛 means that ℓ is
self-adjoint. The weight ℓ is a homomorphism from 𝐺 to the additive group of End𝑉, so

‖ℓ(𝑔ℎ) − ℓ(ℎ)‖ = ‖ℓ(𝑔)‖

for all 𝑔, ℎ ∈ 𝐺. We have

ℓ(𝑔)2 =
𝑚+𝑛

∑
𝑖,𝑗=1

𝑔𝑖𝑔𝑗⟨𝑣𝑖 ∣ 𝑣𝑗⟩,

which is a positive-definite quadratic form in 𝑔, and so ℓ is proper.

Example II.2.7. Let 𝐾 be a compact group. Let 𝑉 be equal to the ℤ/2ℤ-graded vector space ℂ⊕ 0
and let ℓ ∶ 𝑘 ↦ 0. Because 𝐾 is compact, ℓ is proper; it would not be otherwise.

Example II.2.8. Let 𝑘 be a local field with absolute value | ⋅ |, such as ℝ, ℂ, ℚ𝑝, or 𝔽𝑝((𝑡)). Define a
weight ℓ ∶ 𝑘× → ℂ for the multiplication group of 𝑘 by ℓ(𝑎) = log |𝑎|. The weight is clearly self-adjoint,
and being, in fact, a homomorphism, is translation bounded. The weight ℓ is proper since the subgroup
|𝑘×| of ℝ× is either all of ℝ×, if 𝑘 is archimedean, or equal to 𝑐ℤ for some 𝑐 > 1, if 𝑘 is nonarchimedean.

On the other hand, let 𝑘 be a locally compact field with absolute value | ⋅ | which is not local. Then
| ⋅ | must be the trivial absolute value, giving 𝑘 the discrete topology. Then |𝑘×| = {1} and, if we define
ℓ ∶ 𝑎 → log |𝑎|, ℓ is zero. Only if 𝑘 is a finite field is ℓ a proper weight.

If we had a third hand, we could consider a field 𝑘 with absolute value | ⋅ | which is not locally
compact. As 𝑘× is not necessarily locally compact, let us equip it with the discrete topology. Suppose
further that |𝑘×| is a dense subset of ℝ×. For instance, consider ℚ with the usual archimedean absolute
value, in which case |ℚ×| = ℚ×

+, or consider the 𝑝-adic complex numbers ℂ𝑝, for which |ℂ×
𝑝 | = 𝑐ℚ, for

some 𝑐 > 1. Let ℓ ∶ 𝑎 → log |𝑎|. Although ℓ is self-adjoint and translation bounded, it is not proper.
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II.2.2 Fell bundles

One of the goals of this Chapter is to study KK-theory for dynamical systems and to provide tools
for the future study of such. Partial dynamical systems are naturally captured by the ideal of a Fell
bundle. A standard reference from this point of view, in the discrete group case, is [Exe17].

Definition II.2.9. [FD88b, Definitions VIII.2.2,3.1,16.2] cf. [MW08, Definition 1.1] A Fell bundle
ℬ over a locally compact group 𝐺 is a Banach bundle over 𝐺 with a continuous bilinear associative
multiplication map ⋅ ∶ ℬ × ℬ → ℬ and a continuous conjugate-linear antiautomorphic involution
∗ ∶ ℬ → ℬ, such that

1. 𝐵𝑔 ⋅ 𝐵ℎ ⊆ 𝐵𝑔ℎ and (𝐵𝑔)∗ ⊆ 𝐵𝑔−1 ;

2. The fibre 𝐵𝑒 at the identity 𝑒 ∈ 𝐺 is a C*-algebra with respect to the multiplication, involution,
and norm on ℬ; and

3. For each 𝑔 ∈ 𝐺, the fibre 𝐵𝑔 is a partial imprimitivity 𝐵𝑒-𝐵𝑒-bimodule with the module actions
determined by the multiplication on ℬ and inner products given by

𝐵𝑒
⟨𝑎 ∣ 𝑏⟩ = 𝑎𝑏∗ ⟨𝑎 ∣ 𝑏⟩𝐵𝑒

= 𝑎∗𝑏

for 𝑎, 𝑏 ∈ 𝐵𝑔.

These axioms imply that 𝐵𝑔−1 is isomorphic to the dual bimodule of 𝐵𝑔 by the involution and that
multiplication induces an isomorphism of 𝐵𝑔 ⊗𝐵𝑒

𝐵ℎ with a partial imprimitivity 𝐵𝑒-𝐵𝑒-subbimodule
of 𝐵𝑔ℎ [MW08, Lemma 1.2].

Definition II.2.10. [EN02, Definitions 2.2,7, Proposition 2.10] Let ℬ be a Fell bundle over a locally
compact group 𝐺. A section of ℬ is a continuous function 𝑦 from 𝐺 to ℬ such that 𝑦(𝑔) ∈ 𝐵𝑔.
The space of compactly supported sections is denoted 𝐶𝑐(ℬ). The convolution product of sections
𝑦, 𝑧 ∈ 𝐶𝑐(ℬ) is given by

(𝑦𝑧)(𝑔) = ∫
𝐺
𝑦(ℎ)𝑧(ℎ−1𝑔)𝑑𝜇(ℎ).

The adjoint of a section is given by 𝑦∗(𝑔) = Δ(𝑔−1)𝑦(𝑔−1)∗. With these operations, 𝐶𝑐(ℬ) is a ∗-algebra.
The Hilbert 𝐵𝑒-module 𝐿2(ℬ) is defined as the completion of 𝐶𝑐(ℬ) under the 𝐵𝑒-valued right inner
product given by

⟨𝜉 ∣ 𝜂⟩𝐵𝑒
= (𝜉∗𝜂)(𝑒) = ∫

𝐺
𝜉(𝑔)∗𝜂(𝑔)𝑑𝜇(𝑔) (𝜉, 𝜂 ∈ 𝐶𝑐(ℬ)).

The representation of 𝐶𝑐(ℬ) given by left multiplication on 𝐿2(ℬ) when completed gives the reduced
C*-algebra 𝐶∗

𝑟 (ℬ). The elements of ℬ itself act naturally as multipliers on 𝐶∗
𝑟 (ℬ).

The Fell bundle ℬ gives its C*-algebra 𝐶∗
𝑟 (ℬ) a canonical 𝐺̂-action 𝛿 [EN02, Proposition 2.10] cf.

[KMQW10, Proposition 3.1, Remark 3.2]. The coaction 𝛿 ∶ 𝐶∗
𝑟 (ℬ) → 𝑀(𝐶∗

𝑟 (ℬ) ⊗ 𝐶∗
𝑟 (𝐺)) is given by

𝛿(𝑦) = ∫
𝐺
𝑦(𝑔) ⊗ 𝑢𝑔𝑑𝜇(𝑔) (𝑦 ∈ 𝐶𝑐(ℬ)), (II.2.11)

where 𝑢𝑔 ∈ 𝑀(𝐶∗
𝑟 (𝐺)) are the unitaries corresponding to elements of 𝐺. Indeed, [Qui96, Corollary

3.9] says that a C*-algebra 𝐴 is isomorphic to 𝐶∗
𝑟 (ℬ) for some Fell bundle ℬ over a discrete group if

and only if 𝐴 has a coaction of 𝐺̂ and the conditional expectation to its fixed point algebra is faithful.
This is very far from being true for a non-discrete group; see [LPRS87, Example 2.3(6)]. The Hilbert
𝐵𝑒-module 𝐿2(ℬ) also carries a 𝐺̂-action (with 𝐺̂ acting trivially on 𝐵𝑒), given on 𝐶𝑐(ℬ) ⊆ 𝐿2(ℬ) by
the same formula (II.2.11), for which the representation of 𝐶∗

𝑟 (ℬ) is 𝐺̂-equivariant.
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Examples II.2.12.
1. [FD88b, Example VIII.2.7] The group bundle ℬ is defined as ℂ×𝐺 as a Banach bundle over 𝐺.

We define multiplication on ℬ by

(𝑧, 𝑔)(𝑤, ℎ) = (𝑧𝑤, 𝑔ℎ)

and an involution by
(𝑧, 𝑔)∗ = (𝑧, 𝑔−1).

There is an isomorphism between 𝐶∗
𝑟 (ℬ) and 𝐶∗

𝑟 (𝐺).
2. [FD88b, §VIII.4.2] Let 𝐴 be a C*-algebra with an action 𝛼 of a locally compact group 𝐺. We

define the semidirect product Fell bundle ℬ as 𝐴 × 𝐺 as a Banach bundle over 𝐺. We define
multiplication on ℬ by

(𝑎, 𝑔)(𝑏, ℎ) = (𝑎𝛼𝑔(𝑏), 𝑔ℎ)

and an involution by
(𝑎, 𝑔)∗ = (𝛼𝑔−1(𝑎)∗, 𝑔−1).

There is an isomorphism between 𝐶∗
𝑟 (ℬ) and 𝐴 ⋊𝛼,𝑟 𝐺.

3. [Exe97, EL97] cf. [FD88b, §VIII.4.7] Let 𝐴 be a C*-algebra and 𝐺 a locally compact group. A
twisted action of 𝐺 on 𝐴 is a continuous map 𝛼 ∶ 𝐺 → Aut(𝐴) and a strictly continuous map
𝜎 ∶ 𝐺 × 𝐺 → 𝑈𝑀(𝐴) to the group of unitary multipliers of 𝐴, satisfying

𝛼𝑒 = id𝐴 𝛼𝑔 ◦ 𝛼ℎ = Ad(𝜎(𝑔, ℎ)) ◦ 𝛼𝑔ℎ

𝜎(𝑔, 𝑒) = 𝜎(𝑒, 𝑔) = 1 𝜎(𝑔, ℎ)𝜎(𝑔ℎ, 𝑘) = 𝛼𝑔(𝜎(ℎ, 𝑘))𝜎(𝑔, ℎ𝑘).

The twisted semidirect Fell bundle ℬ is defined as 𝐴×𝐺 as a Banach bundle over 𝐺. We define
multiplication on ℬ by

(𝑎, 𝑔)(𝑏, ℎ) = (𝑎𝛼𝑔(𝑏)𝜎(𝑔, ℎ), 𝑔ℎ)

and an involution by
(𝑎, 𝑔)∗ = (𝛼𝑔−1(𝑎)∗𝜎(𝑔−1, 𝑔)∗, 𝑔−1).

There is an isomorphism between 𝐶∗
𝑟 (ℬ) and the reduced twisted crossed product C*-algebra

𝐴 ⋊𝜎
𝛼,𝑟 𝐺.

4. [FD88b, §VIII.4.8] Consider the special case of 3. when 𝐴 = ℂ (and so 𝛼 = id). Then 𝜎 ∶
𝐺×𝐺 → 𝕋 is just a 2-cocycle. The twisted group bundle ℬ is ℂ×𝐺 as a Banach bundle over 𝐺.
Multiplication on ℬ is given by

(𝑧, 𝑔)(𝑤, ℎ) = (𝑧𝑤𝜎(𝑔, ℎ), 𝑔ℎ)

and involution by
(𝑧, 𝑔)∗ = (𝑧𝜎(𝑔−1, 𝑔)∗, 𝑔−1).

There is an isomorphism between 𝐶∗
𝑟 (ℬ) and the reduced twisted group C*-algebra 𝐶∗

𝑟 (𝐺, 𝜎).

II.2.2.1 Saturated and fissured bundles

In [CNNR11, §2.1], an unbounded Kasparov module is constructed from a C*-algebra 𝐴 with a circle
action to its fixed-point algebra, under a certain assumption. This condition, the spectral subspace
assumption, is a weakening of the condition of saturation. We will give the following generalisation,
which reduces to [CNNR11, Definition 2.2] when 𝐺 = ℤ. In the case when 𝐺 is discrete, the condition
is simpler to state and Theorem II.2.14 can be proved along the lines of [CNNR11, Lemmas 2.4,8].
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Definition II.2.13. cf. [CNNR11, Definition 2.2] Let ℬ be a Fell bundle over a locally compact group
𝐺. Let ℬ̂ be the continuous field of C*-algebras over 𝐺 with fibre

𝐵̂𝑔 = 𝐵𝑔 ⊗𝐵𝑒
𝐵𝑔−1 = End0𝐵𝑒

(𝐵𝑔) ⊴ 𝐵𝑒

at 𝑔 ∈ 𝐺. The C*-algebra of its continuous sections Γ0(ℬ̂) is an ideal of 𝐶0(𝐺,𝐵𝑒). We say that ℬ is
fissured if Γ0(ℬ̂) is a complemented ideal of 𝐶0(𝐺,𝐵𝑒), that is, when there exists an ideal 𝐽 ⊲ 𝐶0(𝐺,𝐵𝑒)
such that 𝐶0(𝐺,𝐵𝑒) = Γ0(ℬ̂) ⊕ 𝐽. If Γ0(ℬ̂) = 𝐶0(𝐺,𝐵𝑒), i.e. 𝐵̂𝑔 = 𝐵𝑒 for all 𝑔 ∈ 𝐺, ℬ is saturated
[FD88b, Definition VIII.2.8].

For instance, all of Examples II.2.12 are saturated [FD88b, §4.3,7]. Fissuration is not to be confused
with semi-saturation [Exe17, Definition 16.10(b)]. An example of a Fell bundle which is fissured but
not saturated is that associated to the partial Bernoulli action of a discrete group 𝐺; see [Exe17,
Definition 5.12] and also [Exe17, Proposition 5.7].

Theorem II.2.14. Let ℬ be a Fell bundle over a locally compact group 𝐺. Let

Ω ∶ 𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂ → End∗(𝐿2(ℬ))

be the integrated representation. Then the image of Ω is End0(𝐿2(ℬ)) if and only if ℬ is fissured.
Further, Ω is an isomorphism from 𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂ to End0(𝐿2(ℬ)) if and only if ℬ is saturated.

To prove this, we will use a result of [Aba18]. (Note that the arXiv version [Aba18] corrects an error
in the published version [Aba03] of the article.) By [Aba18, Proposition 9.1], there is a presentation of
𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂ as a C*-algebra of kernels. A compactly supported continuous function 𝑘 ∶ 𝐺 × 𝐺 → ℬ

such that 𝑘(𝑔, ℎ) ∈ 𝐵𝑔ℎ−1 is a compactly supported kernel of ℬ. By [Aba18, Proposition 6.1], the set of
such kernels forms a ∗-algebra 𝐤𝑐(ℬ) with the convolution product

(𝑘1𝑘2)(𝑔, ℎ) = ∫
𝐺
𝑘1(𝑔, 𝑠)𝑘2(𝑠, ℎ)𝑑𝜇(𝑠)

and involution 𝑘∗(𝑔, ℎ) = 𝑘(ℎ, 𝑔)∗. There is an integrated representation Ω of 𝐤𝑐(ℬ) on 𝐿2(ℬ) given
by (Ω(𝑘)𝜉)(𝑔) = ∫

𝐺
𝑘(𝑔, ℎ)𝜉(ℎ)𝑑𝜇(ℎ). There is in addition a faithful representation of 𝐤𝑐(ℬ) on

𝐿2(ℬ) ⊗ 𝐿2(𝐺) under which the norm completion of 𝐤𝑐(ℬ) is isomorphic to 𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂.

Proposition II.2.15. [Aba18, Proposition 6.9] Let ℬ be a Fell bundle over a locally compact group 𝐺.
Let

Ω ∶ 𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂ → End∗(𝐿2(ℬ))

be the integrated representation on the Hilbert 𝐵𝑒-module 𝐿2(ℬ). There is an ideal 𝐼 ⊆ 𝐶∗
𝑟 (ℬ) ⋊𝑟 𝐺̂

which is represented faithfully by Ω as Ω(𝐼) = End0(𝐿2(ℬ)). The ideal

𝐼𝑐 = {𝑘 ∈ 𝐤𝑐(ℬ) ∣ 𝑘(𝑔, ℎ) = 𝜉(𝑔)𝜂(ℎ)∗, 𝜉, 𝜂 ∈ 𝐶𝑐(ℬ)}

of 𝐤𝑐(ℬ) is dense in 𝐼. The kernel of Ω is equal to the annihilator ideal

𝐽 = {𝑎 ∈ 𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂∣ ∀𝑥 ∈ 𝐼, 𝑎𝑥 = 0} .

In particular, the image of Ω is End0(𝐿2(ℬ)) if and only if 𝐼 is a complemented ideal and Ω is an
isomorphism from 𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂ to End0(𝐿2(ℬ)) if and only if 𝐼 = 𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂.

In particular, [Aba18, Proposition 6.9] already implies the saturated case of Theorem II.2.14.
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Proof of Theorem II.2.14. First, let

𝐼′𝑐 = {𝑘 ∈ 𝐤𝑐(ℬ) ∣ 𝑘(𝑔, ℎ) ∈ 𝐵𝑔 ⊗𝐵𝑒
𝐵ℎ−1}

An application of [FD88a, Theorem II.14.6] gives us that 𝐼𝑐 is dense in 𝐼′𝑐 in the inductive limit topology
and so that the norm closure of 𝐼′𝑐 is 𝐼.

Second, the algebra 𝐶𝑐(𝐺,𝐵𝑒) acts on 𝐤𝑐(ℬ) by

(𝑓𝑘)(𝑔, ℎ) = 𝑓(𝑔)𝑘(𝑔, ℎ) (𝑘𝑓)(𝑔, ℎ) = 𝑘(𝑔, ℎ)𝑓(ℎ) (𝑓 ∈ 𝐶𝑐(𝐺,𝐵𝑒), 𝑘 ∈ 𝐤𝑐(ℬ)).

These extend to a nondegenerate injective ∗-homomorphism 𝜑 ∶ 𝐶0(𝐺,𝐵𝑒) → 𝑀(𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂).

Suppose that 𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂ = 𝐼 ⊕ 𝐽 for an ideal 𝐽 of 𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂. Then there exists a projection
𝑃 ∈ 𝑀(𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂) such that

𝑃(𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂) = (𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂)𝑃 = 𝐼.

At 𝑔 ∈ 𝐺, 𝑃 is given by the projection 𝑃(𝑔) ∈ End0𝐵𝑒
(𝐵𝑔) = 𝐵̂𝑔 for which

𝑃(𝑔)𝐵𝑔ℎ−1 = 𝐵𝑔 ⊗𝐵𝑒
𝐵ℎ−1 𝐵ℎ𝑔−1𝑃(𝑔) = 𝐵ℎ ⊗𝐵𝑒

𝐵𝑔−1 .

Since 𝑃(𝑔)𝐵𝑒 = 𝐵𝑔 ⊗𝐵𝑒
𝐵𝑔−1 = 𝐵̂𝑔, we have

𝑃𝜑(𝐶𝑐(𝐺,𝐵𝑒)), 𝜑(𝐶𝑐(𝐺,𝐵𝑒))𝑃 ⊆ 𝜑(Γ𝑐(ℬ̂)).

For 𝑎 ∈ 𝐵̂𝑔, choose 𝑏 ∈ 𝐵𝑒 such that 𝑃(𝑔)𝑏 = 𝑎. Then, choosing 𝑓0 ∈ 𝐶𝑐(𝐺,𝐵𝑒) such that 𝑓0(𝑔) = 𝑏,
we obtain 𝑓1 ∈ 𝑃𝜑(𝐶𝑐(𝐺,𝐵𝑒)) such that 𝑓1(𝑔) = 𝑎 by taking

𝑓1(ℎ) = (𝑃𝜑(𝑓0))(ℎ).

Similarly, we can find 𝑓2 ∈ 𝜑(𝐶𝑐(𝐺,𝐵𝑒))𝑃 such that 𝑓2(𝑔) = 𝑎. Applying [FD88a, Corollary II.14.7],
we obtain that

𝑃𝜑(𝐶0(𝐺,𝐵𝑒)) = 𝜑(𝐶0(𝐺,𝐵𝑒))𝑃 = 𝜑(Γ0(ℬ̂)).

This means that 𝐶0(𝐺,𝐵𝑒) = Γ0(ℬ̂) ⊕ 𝐽 ′ where

𝜑(𝐽 ′) = (1 − 𝑃)𝜑(𝐶0(𝐺,𝐵𝑒)) = 𝜑(𝐶0(𝐺,𝐵𝑒))(1 − 𝑃).

On the other hand, suppose that ℬ is fissured. Because Γ0(ℬ̂) is a complemented ideal of 𝐶0(𝐺,𝐵𝑒),
there is a projection 𝑝 ∈ 𝑀(𝐶0(𝐺,𝐵𝑒)) ≅ 𝐶𝑏(𝐺,𝑀(𝐵𝑒)𝛽) such that

𝑝𝐶0(𝐺,𝐵𝑒) = 𝐶0(𝐺,𝐵𝑒)𝑝 = Γ0(ℬ̂).

At 𝑔 ∈ 𝐺, 𝑝 is given by the projection 𝑝(𝑔) ∈ 𝑀(𝐵𝑒) for which

𝑝(𝑔)𝐵𝑒 = 𝐵𝑒𝑝(𝑔) = 𝐵̂𝑔.

Since
𝑝(𝑔)𝐵𝑔ℎ−1 = 𝐵𝑔 ⊗𝐵𝑒

𝐵𝑔−1 ⊗𝐵𝑒
𝐵𝑔ℎ−1 ⊆ 𝐵𝑔 ⊗𝐵𝑒

𝐵ℎ−1

and
𝐵𝑔 ⊗𝐵𝑒

𝐵ℎ−1 = 𝐵𝑔 ⊗𝐵𝑒
𝐵𝑔−1 ⊗𝐵𝑒

𝐵𝑔 ⊗𝐵𝑒
𝐵ℎ−1 ⊆ 𝐵𝑔 ⊗𝐵𝑒

𝐵𝑔−1 ⊗𝐵𝑒
𝐵𝑔ℎ−1 ,

we have 𝑝(𝑔)𝐵𝑔ℎ−1 = 𝐵𝑔 ⊗𝐵𝑒
𝐵ℎ−1 and, similarly, 𝐵ℎ𝑔−1𝑝(𝑔) = 𝐵ℎ ⊗𝐵𝑒

𝐵𝑔−1 . This means that

𝜑(𝑝)𝐤𝑐(ℬ), 𝐤𝑐(ℬ)𝜑(𝑝) ⊆ 𝐼 ′𝑐 .
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For 𝑎 ∈ 𝐵𝑔 ⊗𝐵𝑒
𝐵ℎ−1 , choose 𝑏 ∈ 𝐵𝑔ℎ−1 such that 𝑝(𝑔)𝑏 = 𝑎. Then, choosing 𝑓0 ∈ 𝐤𝑐(ℬ) such that

𝑓0(𝑔, ℎ) = 𝑏, we obtain 𝑓1 ∈ 𝜑(𝑝)𝐤𝑐(ℬ) such that 𝑓1(𝑔, ℎ) = 𝑎 by taking

𝑓1(ℎ) = (𝜑(𝑝)𝑓0)(ℎ).

Similarly, we can find 𝑓2 ∈ 𝐤𝑐(ℬ)𝜑(𝑝) such that 𝑓2(𝑔, ℎ) = 𝑎. Applying [FD88a, Theorem II.14.6], we
obtain that

𝜑(𝑝)(𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂) = (𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂)𝜑(𝑝) = 𝐼.

This means that 𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂ = 𝐼 ⊕ 𝐽 where

𝐽 = (1 − 𝜑(𝑝))(𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂) = (𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂)(1 − 𝜑(𝑝)).

By Proposition II.2.15, Ω(𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂) = End0(𝐿2(ℬ)) if and only if 𝐼 is a complemented ideal, in

other words
𝐼 ⊕ 𝐽 = 𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂.

Hence, 𝐼 ⊴ (𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂) is complemented if and only if Γ0(ℬ̂) ⊴ 𝐶0(𝐺,𝐵𝑒) is complemented.

Remark II.2.16. Let 𝐴 = 𝐶∗
𝑟 (ℬ) ⋊𝑟 𝐺̂ as a 𝐺-C*-algebra and denote by 𝐴 the same C*-algebra with

the trivial 𝐺-action. Applying Baaj–Skandalis duality and the Morita equivalence between 𝐵𝑒 and
End0(𝐿2(ℬ)),

𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (ℬ), 𝐵𝑒) ≅ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐵𝑒))

≅ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,End

0(𝐿2(ℬ))))

≅ 𝐾𝐾𝐺
∗ (𝐴 ⋊𝑟 𝐺,End

0(𝐿2(ℬ))),

where 𝐵𝑒 and End0(𝐿2(ℬ)) both carry the trivial 𝐺̂- and 𝐺-actions. By forgetting the 𝐺̂-equivariance,
we also obtain an isomorphism

𝐾𝐾∗(𝐶∗
𝑟 (ℬ), 𝐵𝑒) ≅ 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,End

0(𝐿2(ℬ))).

If ℬ is saturated, 𝐴 is isomorphic to End0(𝐿2(ℬ)), so

𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (ℬ), 𝐵𝑒) ≅ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)) ≅ 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐴)

and 𝐾𝐾∗(𝐶∗
𝑟 (ℬ), 𝐵𝑒) ≅ 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐴). If ℬ is not necessarily saturated, by Proposition II.2.15,

End0(𝐿2(ℬ)) is isomorphic to an ideal of 𝐴, so we have homomorphisms

𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (ℬ), 𝐵𝑒) ← 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)) ≅ 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐴)

and 𝐾𝐾∗(𝐶∗
𝑟 (ℬ), 𝐵𝑒) ← 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐴). If ℬ is fissured, by Theorem II.2.14, End0(𝐿2(ℬ)) is

isomorphic to a complemented ideal in 𝐴, so there are injections

𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (ℬ), 𝐵𝑒) ↪ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)) ≅ 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐴)

and 𝐾𝐾∗(𝐶∗
𝑟 (ℬ), 𝐵𝑒) ↪ 𝐾𝐾∗(𝐴 ⋊𝑟 𝐺,𝐴), making 𝐾𝐾𝐺

∗ (𝐶∗
𝑟 (ℬ), 𝐵𝑒) and 𝐾𝐾∗(𝐶∗

𝑟 (ℬ), 𝐵𝑒) direct
summands in each case. Throughout, recall also that, by Remark II.1.10, 𝐶0(𝐺,𝐴) is 𝐺-equivariantly
isomorphic to 𝐶0(𝐺,𝐴).
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II.2.2.2 Partial cross-sectional bundles

An important method for constructing Fell bundles is to take an existing Fell bundle over a locally
compact group 𝐺 and form a new bundle over 𝐺/𝑁 for some closed subgroup 𝑁. We here give a brief
account of these partial cross-sectional bundles, as introduced in [FD88b, §VIII.6]; however, we here
use the reduced C*-algebraic completion rather than the 𝐿1 completion.

Let 𝑁 be a closed normal subgroup of a locally compact group 𝐺. Recall that the modular function
Δ𝑁 of 𝑁 is the restriction of the modular function Δ𝐺 of 𝐺 [DE14, Corollary 1.5.5]. We choose Haar
measures 𝜇𝐺, 𝜇𝑁, and 𝜇𝐺/𝑁 to be normalised such that

∫
𝐺
𝑓(𝑔)𝑑𝜇𝐺(𝑔) = ∫

𝐺/𝑁
∫
𝑁
𝑓(𝑔𝑛)𝑑𝜇𝑁(𝑛)𝑑𝜇𝐺/𝑁(𝑔)

for all 𝑓 ∈ 𝐶𝑐(𝐺). This can always be done; see e.g. [DE14, Theorem 1.5.3]. We note that, for
𝑓 ∈ 𝐶𝑐(𝑁) and 𝑔 ∈ 𝐺,

∫𝑓(𝑔ℎ𝑔−1)𝑑𝜇𝑁(ℎ) =
Δ𝐺(𝑔)

Δ𝐺/𝑁(𝑔𝑁)
∫𝑓(ℎ)𝑑𝜇𝑁(ℎ) (II.2.17)

by [FD88a, Proposition III.13.20].

Definition II.2.18. Let 𝑁 be a closed normal subgroup of a locally compact group 𝐺. Let ℬ = (𝐵𝑔)𝑔∈𝐺
be a Fell bundle over 𝐺. We define the restricted Fell bundle ℬ𝑁 = (𝐵𝑔)𝑔∈𝑁. Over each coset 𝑠𝑁 ∈ 𝐺/𝑁
we also define a Banach bundle ℬ𝑠𝑁 = (𝐵𝑔)𝑔∈𝑠𝑁. Let 𝐶𝑁 = 𝐶∗

𝑟 (ℬ𝑁) be the reduced cross-sectional
C*-algebra. For 𝜙 ∈ 𝐶𝑐(ℬ𝑠𝑁) and 𝜓 ∈ 𝐶𝑐(ℬ𝑡𝑁), we define 𝜙𝜓 ∈ 𝐶𝑐(ℬ𝑠𝑡𝑁) by

(𝜙𝜓)(𝑔) = ∫𝜙(𝑠ℎ)𝜓(ℎ−1𝑠−1𝑔)𝑑𝜇𝑁(ℎ) = ∫𝜙(𝑡−1𝑔ℎ)𝜓(ℎ−1𝑡)𝑑𝜇𝑁(ℎ) (II.2.19)

for 𝑔 ∈ 𝑠𝑡𝑁. Again for 𝜙 ∈ 𝐶𝑐(ℬ𝑠𝑁), we define 𝜙∗ ∈ 𝐶𝑐(ℬ𝑠−1𝑁) by

𝜙∗(𝑔) = 𝜙(𝑔−1)∗ Δ𝐺(𝑔−1)
Δ𝐺/𝑁(𝑔−1𝑁)

= 𝜙(𝑔−1)∗ Δ𝐺(𝑔−1)
Δ𝐺/𝑁(𝑠−1𝑁)

(II.2.20)

for 𝑔 ∈ 𝑠−1𝑁. For 𝜙, 𝜓 ∈ 𝐶𝑐(ℬ𝑡𝑁), using (II.2.17), 𝜙∗𝜓 ∈ 𝐶𝑐(ℬ𝑁) is given by

(𝜙∗𝜓)(𝑔) = ∫𝜙(ℎ−1𝑡)∗𝜓(ℎ−1𝑡𝑔) Δ𝐺(ℎ−1𝑡)
Δ𝐺/𝑁(𝑡𝑁)

𝑑𝜇𝑁(ℎ)

= ∫𝜙(𝑡ℎ−1)∗𝜓(𝑡ℎ−1𝑔) Δ𝐺(𝑡−1)
Δ𝐺/𝑁(𝑡−1𝑁)

Δ𝐺(𝑡ℎ−1)
Δ𝐺/𝑁(𝑡𝑁)

𝑑𝜇𝑁(ℎ)

= ∫𝜙(𝑡ℎ)∗𝜓(𝑡ℎ𝑔)𝑑𝜇𝑁(ℎ) (II.2.21)

for 𝑔 ∈ 𝑁. We define left and right 𝐶𝑐(ℬ𝑁)-valued inner products on 𝐶𝑐(ℬ𝑡𝑁) by

𝐶𝑁
⟨𝜙 ∣ 𝜓⟩ = 𝜙𝜓∗ ⟨𝜙 ∣ 𝜓⟩𝐶𝑁

= 𝜙∗𝜓 (𝜙, 𝜓 ∈ 𝐶𝑐(ℬ𝑡𝑁)).

By [RW98, Corollary 3.13], the completion of 𝐶𝑐(ℬ𝑡𝑁) is a partial imprimitivity 𝐶𝑁-𝐶𝑁-bimodule,
which we call 𝐶𝑡𝑁. We denote by 𝒞 the bundle (𝐶𝑡𝑁)𝑡𝑁∈𝐺/𝑁 over 𝐺/𝑁. Every element 𝑦 ∈ 𝐶𝑐(ℬ)
gives rise to a cross-section 𝑦 of 𝒞 given by 𝑦(𝑡𝑁) = 𝑦|𝑡𝑁. Applying [FD88a, Theorem II.13.18], we
obtain that 𝒞 is a Banach bundle and 𝑦 ∈ 𝐶𝑐(𝒞). The multiplication and involution on 𝒞 defined
by (II.2.19) and (II.2.20) make 𝒞 a Fell bundle over 𝐺/𝑁; the continuity of these maps follows as in
[FD88b, §VIII.6.4–5]. We call 𝒞 the reduced partial cross-sectional Fell bundle.
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Let us consider the Hilbert 𝐶𝑁-module 𝐿2(𝒞). For 𝜉, 𝜂 ∈ 𝐶𝑐(𝒞), we have

⟨𝜉 ∣ 𝜂⟩𝐶𝑁
= ∫

𝐺/𝑁
𝜉(𝑠𝑁)∗𝜂(𝑠𝑁)𝑑𝜇𝐺/𝑁(𝑠𝑁).

Let 𝑦, 𝑧 ∈ 𝐶𝑐(ℬ), with their corresponding elements 𝑦, 𝑧 ∈ 𝐶𝑐(𝒞). The inner product ⟨𝑦 ∣ 𝑧⟩𝐶𝑁
is then

an element of 𝐶𝑐(ℬ𝑁), given by

⟨𝑦 ∣ 𝑧⟩𝐶𝑁
(𝑔) = ∫

𝐺/𝑁
(𝑦(𝑠𝑁)∗𝑧(𝑠𝑁))(𝑔)𝑑𝜇𝐺/𝑁(𝑠𝑁)

= ∫
𝐺/𝑁

∫
𝑁
𝑦(𝑠ℎ)∗𝑧(𝑠ℎ𝑔)𝑑𝜇𝑁(ℎ)𝑑𝜇𝐺/𝑁(𝑠𝑁)

= ∫
𝐺
𝑦(𝑠)∗𝑧(𝑠𝑔)𝑑𝜇𝑁(ℎ)𝑑𝜇𝐺(𝑠)

= (𝑦∗𝑧)(𝑔)

using (II.2.21). Let 𝜐, 𝜁 ∈ 𝐶𝑐(ℬ𝑁) ⊆ 𝐿2(ℬ𝑁); then 𝑦𝜐 and 𝑧𝜁 are elements of 𝐶𝑐(ℬ) and

⟨𝑦 ⊗ 𝜐 ∣ 𝑧 ⊗ 𝜁⟩𝐵𝑒
= ⟨𝜐 ∣ ⟨𝑦 ∣ 𝑧⟩𝐶𝑁

𝜁⟩𝐵𝑒
= (𝜐∗(𝑦∗𝑧)𝜁)(𝑒) = ((𝑦𝜐)∗(𝑧𝜁))(𝑒) = ⟨𝑦𝜐 ∣ 𝑧𝜁⟩𝐵𝑒

.

Hence, the inner products on 𝐿2(𝒞) ⊗𝐶𝑁
𝐿2(ℬ𝑁) and 𝐿2(ℬ) agree on their common subset 𝐶𝑐(ℬ).

By definition, 𝐶𝑐(ℬ) is dense in 𝐿2(ℬ); by [FD88a, Theorem II.14.6], 𝐶𝑐(ℬ) is dense in 𝐿2(𝒞). Hence
𝐿2(𝒞) ⊗𝐶𝑁

𝐿2(ℬ𝑁) is isomorphic as a Hilbert 𝐵𝑒-module to 𝐿2(ℬ). Again using [FD88a, Theorem
II.14.6], we thus obtain that the C*-algebras 𝐶∗

𝑟 (𝒞) and 𝐶∗
𝑟 (ℬ) are isomorphic, both containing the

dense ∗-subalgebra 𝐶𝑐(ℬ); cf. [FD88b, Proposition VIII.6.7].

Example II.2.22. cf. [FD88b, Definition VIII.6.6] Let 𝑁 be a closed normal subgroup of a locally
compact group 𝐺. Let ℬ be the group bundle over 𝐺, of Example II.2.12.1. The reduced partial
cross-sectional Fell bundle 𝒞 over 𝐺/𝑁 is called the (reduced) group extension bundle. Its fibre at
𝑁 ∈ 𝐺/𝑁 is 𝐶∗

𝑟 (𝑁).

Proposition II.2.23. cf. [FD88b, Proposition VIII.6.8] Let 𝑁 be a closed normal subgroup of a locally
compact group 𝐺. Let ℬ be a Fell bundle over 𝐺 and 𝒞 the reduced partial cross-sectional bundle over
𝐺/𝑁. If ℬ is fissured, 𝒞 and ℬ𝑁 are fissured and, if ℬ is saturated, 𝒞 and ℬ𝑁 are saturated.

Proof. Suppose that ℬ is fissured. That is, with ℬ̂ the continuous field of C*-algebras over 𝐺 with
fibre

𝐵̂𝑔 = 𝐵𝑔 ⊗𝐵𝑒
𝐵𝑔−1

at 𝑔 ∈ 𝐺, the C*-algebra of its continuous sections Γ0(ℬ̂) is a complemented ideal of 𝐶0(𝐺,𝐵𝑒). It
is immediate that ℬ𝑁 is fissured, and saturated if ℬ is saturated. Let 𝒞 be the continuous field of
C*-algebras over 𝐺/𝑁 with fibre

𝐶𝑠𝑁 = 𝐶𝑠𝑁 ⊗𝐶𝑁
𝐶𝑠−1𝑁

at 𝑠𝑁 ∈ 𝐺/𝑁. We have nondegenerate injective ∗-homomorphisms 𝜑1 ∶ 𝐶0(𝐺,𝐵𝑒) → 𝑀(𝐶0(𝐺,𝐶𝑁))
and 𝜑2 ∶ 𝐶0(𝐺/𝑁,𝐶𝑁) → 𝑀(𝐶0(𝐺,𝐶𝑁)). Because Γ0(ℬ̂) is a complemented ideal of 𝐶0(𝐺,𝐵𝑒), there
is a projection 𝑝 ∈ 𝑀(𝐶0(𝐺,𝐵𝑒)) such that

𝑝𝐶0(𝐺,𝐵𝑒) = 𝐶0(𝐺,𝐵𝑒)𝑝 = Γ0(ℬ̂).

At 𝑔 ∈ 𝐺, 𝑝 is given by the projection 𝑝(𝑔) ∈ 𝑀(𝐵𝑒) for which

𝑝(𝑔)𝐵𝑒 = 𝐵𝑒𝑝(𝑔) = 𝐵̂𝑔.
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Recall from the Proof of Theorem II.2.14 that

𝐵𝑔 ⊗𝐵𝑒
𝐵𝑔−1 ⊗𝐵𝑒

𝐵𝑔ℎ = 𝐵𝑔 ⊗𝐵𝑒
𝐵ℎ = 𝐵𝑔ℎ ⊗𝐵𝑒

𝐵ℎ−1 ⊗𝐵𝑒
𝐵ℎ

One can check, then, that 𝐶𝑠𝑁 = 𝑝(𝑠)𝐶𝑁 = 𝐶𝑁𝑝(𝑠). Proceeding as in the Proof of Theorem II.2.14, we
obtain that

𝜑1(𝑝)𝜑2(𝐶0(𝐺/𝑁,𝐶𝑁)) = 𝜑2(𝐶0(𝐺/𝑁,𝐶𝑁))𝜑1(𝑝) = 𝜑2(Γ0(𝒞))

which means that Γ0(𝒞) is a complemented ideal of 𝐶0(𝐺/𝑁,𝐶𝑁). If ℬ is saturated, 𝑝 = 1; hence also
𝜑1(𝑝) = 1 and so Γ0(𝒞) = 𝐶0(𝐺/𝑁,𝐶𝑁).

II.2.3 Two unbounded Kasparov modules from weights

For the proof of the following Theorem, we take from Lemma A.3.3 a basic fact about the norm on a
Hilbert module. For 𝐵 a C*-algebra and 𝐸 a Hilbert 𝐵-module, the norm of 𝜉 ∈ 𝐸 is equal to

‖𝜉‖ = sup
𝜋

sup
𝜂∈𝐻𝜋

‖𝜉 ⊗ 𝜂‖
‖𝜂‖

where the supremum is over irreducible representations 𝜋 of 𝐵 and 𝜉 ⊗ 𝜂 ∈ 𝐸 ⊗𝜋 𝐻𝜋.

Theorem II.2.24. cf. [CNNR11, Proposition 2.9] Let ℬ be a Fell bundle over a locally compact group
𝐺. Let 𝑉 be a finite-dimensional complex vector space and ℓ ∶ 𝐺 → End𝑉 be a self-adjoint, proper,
translation-bounded weight. If ℬ is fissured,

(𝐶∗
𝑟 (ℬ), 𝐿2(ℬ) ⊗ 𝑉 ,𝑀ℓ)

is an isometrically 𝐺̂-equivariant unbounded Kasparov 𝐶∗
𝑟 (ℬ)-𝐵𝑒-module. The Kasparov module is

even if 𝑉 is ℤ/2ℤ-graded and odd otherwise.

We shall denote the class of (𝐶∗
𝑟 (ℬ), 𝐿2(ℬ) ⊗ 𝑉 ,𝑀ℓ) in 𝐾𝐾(𝐶∗

𝑟 (ℬ), 𝐵𝑒) by [𝑀ℓ].

Proof. First, recall the formula (II.2.11) for the action of 𝐺̂ on 𝐶∗
𝑟 (ℬ) and 𝐿2(ℬ). The fact that

𝑀ℓ acts by multiplication on each fibre of ℬ implies that it is isometrically equivariant. Next,
recall the integrated representation Ω ∶ 𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂ → End∗(𝐿2(ℬ)). Since, by the properness of ℓ,
(1 + ℓ2)−1 ∈ 𝐶0(𝐺) ⊗ End𝑉, for all 𝑎 ∈ 𝐶∗

𝑟 (ℬ),

𝑎(1 +𝑀2
ℓ )−1 ∈ Ω(𝐶∗

𝑟 (ℬ) ⋊ 𝐺̂) ⊗ End𝑉 .

By fissuration and Theorem II.2.14,

Ω(𝐶∗
𝑟 (ℬ) ⋊ 𝐺̂) ⊗ End𝑉 = End0(𝐿2(ℬ)) ⊗ End𝑉 = End0(𝐿2(ℬ) ⊗ 𝑉 ),

meaning that 𝑀ℓ has locally compact resolvent.
For an element 𝑓 ∈ 𝐶𝑐(ℬ) and a vector 𝜉 ∈ 𝐶𝑐(ℬ) ⊗ 𝑉 ⊆ 𝐿2(ℬ) ⊗ 𝑉,

([𝑀ℓ, 𝑓]𝜉)(ℎ) = (𝑀ℓ𝑓𝜉)(ℎ) − (𝑓𝑀ℓ𝜉)(ℎ)

= ℓ(ℎ)(𝑓𝜉)(ℎ) −∫
𝐺
𝑓(𝑠)(𝑀ℓ𝜉)(𝑠−1ℎ)𝑑𝜇(𝑠)

= ℓ(ℎ)∫
𝐺
𝑓(𝑠)𝜉(𝑠−1ℎ)𝑑𝜇(𝑠) −∫

𝐺
𝑓(𝑠)ℓ(𝑠−1ℎ)𝜉(𝑠−1ℎ)𝑑𝜇(𝑠)

= ∫
𝐺
(ℓ(ℎ) − ℓ(𝑠−1ℎ)) 𝑓(𝑠)𝜉(𝑠−1ℎ)𝑑𝜇(𝑠).
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Let 𝜋 ∶ 𝐵𝑒 → 𝐵(𝐻𝜋) be an irreducible representation of 𝐵𝑒 and let 𝜂 ∈ 𝐻, so that 𝜉 ⊗ 𝜂 ∈ (𝐿2(ℬ) ⊗
𝑉 ) ⊗𝜋 𝐻𝜋. First,

⟨[𝑀ℓ, 𝑓]𝜉 ⊗ 𝜂 ∣ [𝑀ℓ, 𝑓]𝜉 ⊗ 𝜂⟩ = ∫
𝐺
⟨𝜂∣⟨([𝑀ℓ, 𝑓]𝜉)(ℎ)∣([𝑀ℓ, 𝑓]𝜉)(ℎ)⟩𝜂⟩𝑑𝜇(ℎ)

= ∫
𝐺
⟨([𝑀ℓ, 𝑓]𝜉)(ℎ) ⊗ 𝜂∣([𝑀ℓ, 𝑓]𝜉)(ℎ) ⊗ 𝜂⟩𝑑𝜇(ℎ)

where ([𝑀ℓ, 𝑓]𝜉)(ℎ) ⊗ 𝜂 ∈ 𝑉 ⊗ 𝐵ℎ ⊗𝜋 𝐻. Continuing,

⟨[𝑀ℓ, 𝑓]𝜉 ⊗ 𝜂 ∣ [𝑀ℓ, 𝑓]𝜉 ⊗ 𝜂⟩

= ∫
𝐺
∫
𝐺
∫
𝐺
⟨(ℓ(ℎ) − ℓ(𝑠−1ℎ))𝑓(𝑠)𝜉(𝑠−1ℎ) ⊗ 𝜂∣(ℓ(ℎ) − ℓ(𝑡−1ℎ))𝑓(𝑡)𝜉(𝑡−1ℎ) ⊗ 𝜂⟩

×𝑑𝜇(𝑠)𝑑𝜇(𝑡)𝑑𝜇(ℎ)

≤ ∫
𝐺
∫
𝐺
(∫

𝐺
∥(ℓ(ℎ) − ℓ(𝑠−1ℎ))𝑓(𝑠)𝜉(𝑠−1ℎ) ⊗ 𝜂∥

2
𝑑𝜇(ℎ))

1/2

×(∫
𝐺
∥(ℓ(ℎ) − ℓ(𝑡−1ℎ))𝑓(𝑡)𝜉(𝑡−1ℎ) ⊗ 𝜂∥

2
𝑑𝜇(ℎ))

1/2

𝑑𝜇(𝑠)𝑑𝜇(𝑡)

= (∫
𝐺
(∫

𝐺
∥(ℓ(ℎ) − ℓ(𝑠−1ℎ))𝑓(𝑠)𝜉(𝑠−1ℎ) ⊗ 𝜂∥

2
𝑑𝜇(ℎ))

1/2

𝑑𝜇(𝑠))
2

≤ (∫
𝐺
‖𝑓(𝑠)‖𝑑𝜇(𝑠))

2

(∫
𝐺
‖𝜉(ℎ) ⊗ 𝜂‖2𝑑𝜇(ℎ)) sup

ℎ∈𝐺,𝑠∈supp𝑓
∥ℓ(ℎ) − ℓ(𝑠−1ℎ)∥

2

= ‖𝜉 ⊗ 𝜂‖2‖𝑓‖2𝐿1 sup
ℎ∈𝐺,𝑠∈supp𝑓

∥ℓ(ℎ) − ℓ(𝑠−1ℎ)∥
2
,

using the compact support of 𝑓 and Lemma II.2.4. Hence

∥[𝑀ℓ, 𝑓]𝜉∥ = sup
𝜋

sup
𝜂∈𝐻𝜋

‖[𝑀ℓ, 𝑓]𝜉 ⊗ 𝜂‖
‖𝜂‖

≤ sup
𝜋

sup
𝜂∈𝐻𝜋

‖𝜉 ⊗ 𝜂‖
‖𝜂‖

‖𝑓‖𝐿1 sup
ℎ∈𝐺,𝑠∈supp𝑓

∥ℓ(ℎ) − ℓ(𝑠−1ℎ)∥

= ‖𝜉‖‖𝑓‖𝐿1 sup
ℎ∈𝐺,𝑠∈supp𝑓

∥ℓ(ℎ) − ℓ(𝑠−1ℎ)∥,

meaning that [𝑀ℓ, 𝑓] is bounded.

Suppose that we have a fissured Fell bundle ℬ and a self-adjoint, proper, translation-bounded
weight ℓ ∶ 𝐺 → End𝑉. The unbounded Kasparov module

(𝐶∗
𝑟 (ℬ), 𝐿2(ℬ) ⊗ 𝑉 ,𝑀ℓ)

has class in 𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (ℬ), 𝐵𝑒). Let 𝐴 = 𝐶∗
𝑟 (ℬ) ⋊𝑟 𝐺̂ as a 𝐺-C*-algebra. By Remark II.2.16, there is

an inclusion
𝐾𝐾𝐺

∗ (𝐶∗
𝑟 (ℬ), 𝐵𝑒) ↪ 𝐾𝐾𝐺

∗ (𝐴,𝐶0(𝐺,𝐴)) = 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴))

given by
𝐱 ↦ 𝐽𝐺(𝐱) ⊗𝐵𝑒

[𝐿2(ℬ)∗] ⊗End0(𝐿2(ℬ)) [Ω]

where Ω ∶ 𝐴 → End0(𝐿2(ℬ)) is the integrated representation. The following Theorem gives a
representative of the image of

(𝐶∗
𝑟 (ℬ), 𝐿2(ℬ) ⊗ 𝑉 ,𝑀ℓ)

under this inclusion.



52 Chapter II. Noncommutative-geometric group theory

Theorem II.2.25. Let 𝐺 be a locally compact group, 𝐴 a C*-algebra with an action 𝛼 of 𝐺, and
𝑉 a finite-dimensional complex vector space. Let ℓ ∶ 𝐺 → End𝑉 be a self-adjoint, proper, and
translation-bounded weight. Then

(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉 )𝐶0(𝐺,𝐴), ℓ)

is a 𝐺-equivariant unbounded Kasparov 𝐴-𝐶0(𝐺,𝐴)-module. The Kasparov module is even if 𝑉 is
ℤ/2ℤ-graded and odd otherwise.

Note that (𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉 )𝐶0(𝐺,𝐴), ℓ) = 𝜎𝐴((ℂ,𝐶0(𝐺, 𝑉 )𝐶0(𝐺), ℓ)). We shall write its class in
𝐾𝐾(𝐴,𝐶0(𝐺,𝐴)) as 𝜎𝐴([ℓ]).

Proof. First, for all 𝑎 ∈ 𝐴, 𝑎(1 + ℓ2)−1 ∈ 𝐶0(𝐺,𝐴 ⊗ End𝑉 ) and [ℓ, 𝑎] = 0.
For the 𝐺-equivariance, observe that, for an implementer 𝑈𝑔 of the action and a vector 𝜉 ∈

𝐶𝑐(𝐺,𝐴 ⊗ 𝑉 ) ⊆ 𝐶0(𝐺,𝐴 ⊗ 𝑉 ),

((𝑈𝑔ℓ𝑈 ∗
𝑔 − ℓ)𝜉)(ℎ) = (ℓ(𝑔ℎ) − ℓ(ℎ))𝜉(ℎ).

So
∥𝑈𝑔ℓ𝑈∗

𝑔 − ℓ∥ = sup
ℎ∈𝐺

∥ℓ(𝑔ℎ) − ℓ(ℎ)∥ < ∞

by the translation-boundedness of ℓ. Furthermore, by Lemma II.2.4, 𝑔 ↦ 𝑈𝑔ℓ𝑈 ∗
𝑔 − ℓ is an element of

𝐶(𝐺,𝐶𝑏(𝐺,End𝑉 )𝛽) and so ∗-strongly continuous into End∗𝐶0(𝐺,𝐴)(𝐶0(𝐺,𝐴 ⊗ 𝑉 )) = 𝐶𝑏(𝐺,𝑀(𝐴)𝛽 ⊗
End𝑉 ).

Corollary II.2.26. Let 𝐺 be a locally compact group and 𝑉 be a finite-dimensional complex vector
space. Let ℓ ∶ 𝐺 → End𝑉 be a self-adjoint, proper, and translation-bounded, continuous function. Let
𝑀ℓ be the densely defined operator on 𝐿2(𝐺, 𝑉 ) given by multiplication by ℓ. Then

(𝐶∗
𝑟 (𝐺), 𝐿2(𝐺, 𝑉 ),𝑀ℓ)

is an isometrically 𝐺̂-equivariant spectral triple and

(ℂ,𝐶0(𝐺, 𝑉 )𝐶0(𝐺), ℓ)

is a 𝐺-equivariant unbounded Kasparov ℂ-𝐶0(𝐺)-module. Both Kasparov modules are even if 𝑉 is
ℤ/2ℤ-graded and odd otherwise.

Remarks II.2.27.

1. If 𝐺 is discrete, so that 𝐶∗
𝑟 (𝐺) is unital, and (1 + ℓ2)−1/2 ∈ ℓ𝑝(𝐺,End𝑉 ), the spectral triple in

Corollary II.2.26 is 𝑝-summable; cf. [Con89, Proposition 6], [Rub22, Proposition 6.8]. There is a
well-known obstruction to the building of finitely summable spectral triples for discrete groups
with Kazhdan’s property (T), due to Connes [Con89, Proposition 19].

However, for groups with property (T), it may nevertheless be possible to build finitely summable
Fredholm modules. In [Con89, Proposition 20] a finitely summable Fredholm module is given
for the C*-algebra of 𝐺 a lattice in 𝑆𝑝(𝑛, 1), which has property (T), acting on the symmetric
space 𝑆𝑝(𝑛, 1)/(𝑆𝑝(𝑛) × 𝑆𝑝(1)). We shall build an unbounded lift of this in Corollary II.3.10
and Example II.3.12. The apparent contradiction is resolved by the fact that to obtain a finitely
summable Fredholm module, instead of the usual bounded transform 𝑀ℓ ↦ 𝐹𝑀ℓ

= 𝑀ℓ⟨𝑀ℓ⟩−1,
the phase 𝑀ℓ|𝑀ℓ|−1 must be used. This phenomenon is deserving of further study. A similar
situation arises for Cuntz–Krieger algebras; see [GM15].
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2. Corollary II.2.26 also applies to twisted group C*-algebras; see Example II.2.12.4. Remark also
that

𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (𝐺, 𝜎), ℂ) ≅ 𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (𝐺, 𝜎) ⋊ 𝐺̂, 𝐶0(𝐺)) ≅ 𝐾𝐾𝐺
∗ (ℂ,𝐶0(𝐺))

because, by the saturation of the twisted group bundle and Theorem II.2.14, 𝐶∗
𝑟 (𝐺, 𝜎) ⋊ 𝐺̂ is

isomorphic to 𝐾(𝐿2(𝐺)) and so Morita equivalent to ℂ.

3. Let ℓ ∶ 𝐺 → End𝑉 be a self-adjoint, proper, translation-bounded weight. Fix 𝑠 ∈ 𝐺. The
weight ℓ′ ∶ 𝐺 → End𝑉 given by ℓ′(𝑔) = ℓ(𝑔𝑠) is still self-adjoint, proper, and translation-
bounded. However, the difference ℓ − ℓ′ may not be bounded if 𝐺 is not abelian. Further, the
classes [ℓ] and [ℓ′] need not be the same; they are related by the right action of an element of
𝐾𝐾𝐺

∗ (𝐶0(𝐺), 𝐶0(𝐺)) ≅ 𝑅(𝐺̂) on 𝐾𝐾𝐺
∗ (ℂ,𝐶0(𝐺)).

Example II.2.28. Continuing Example II.2.6, let 𝐺 be the compactly generated locally compact
abelian group ℝ𝑚 ×ℤ𝑛 ×𝐾, for integers 𝑚,𝑛, and a compact group 𝐾. As before, we let (𝑣𝑖)𝑚+𝑛

𝑖=1 be a
basis of ℝ𝑚+𝑛, let 𝑉 be an irreducible Clifford module for 𝒞𝓁𝑚+𝑛, and define a weight ℓ ∶ 𝐺 → End𝑉
by

ℓ(𝑔) =
𝑚+𝑛

∑
𝑗=1

𝑔𝑗𝑣𝑗

where 𝑔𝑗 is a real or integer component of 𝑔. This gives rise to an isometrically 𝐺̂-equivariant spectral
triple

(𝐶∗(ℝ𝑚 ×ℤ𝑛 ×𝐾),𝐿2(ℝ𝑚 ×ℤ𝑛 ×𝐾,𝑉 ),𝑀ℓ).

By Pontryagin duality, this spectral triple is unitarily equivalent to the isometrically ℝ𝑚 ×𝕋𝑛 × 𝐾̂-
equivariant spectral triple

(𝐶0(ℝ𝑚 ×𝕋𝑛 × 𝐾̂), 𝐿2(ℝ𝑚 ×𝕋𝑛 × 𝐾̂, 𝑉 ),𝐷).

Here, 𝐷 is the Fourier dual of 𝑀ℓ, the differential operator

𝐷 =
𝑚+𝑛

∑
𝑗=1

𝑣𝑗𝑖𝜕𝑗

where 𝜕𝑖 is the partial derivative on a real line factor or a circle factor. Its square is

𝐷2 = −
𝑚+𝑛

∑
𝑗=1

⟨𝑣𝑖 ∣ 𝑣𝑗⟩𝜕𝑖𝜕𝑗

so that 𝐷 is the Atiyah-Singer Dirac operator and 𝐷2 the Laplacian on ℝ𝑚 ×𝕋𝑛 × 𝐾̂ with constant
(inverse) Riemannian metric 𝐠𝑖𝑗 = ⟨𝑣𝑖 ∣ 𝑣𝑗⟩. The manifold ℝ𝑚 × 𝕋𝑛 × 𝐾̂ may have infinitely many
connected components, depending on the factor 𝐾. The class of the spectral triple is therefore nontrivial
in 𝐾𝐾𝑚+𝑛(𝐶0(ℝ𝑚 ×𝕋𝑛 × 𝐾̂),ℂ).

Example II.2.29. Let 𝐾 be a compact group. Let ℓ be the zero weight on 𝑉 ∶= ℂ⊕ 0. We obtain the
even spectral triple

(𝐶∗(𝐾), 𝐿2(𝐾) ⊕ 0,𝑀ℓ = 0),

which is simply the left regular representation. The class 1 ∈ 𝐾𝐾∗(ℂ,ℂ) ≅ 𝐾𝐾𝐾
∗ (ℂ,𝐶(𝐾,ℂ)) is

naturally represented by
(ℂ, (𝐶(𝐾) ⊕ 0)𝐶(𝐾), ℓ = 0)

corresponding, in some sense, to the action of 𝐾 on a single point.
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Example II.2.30. As in Example II.2.8, consider the multiplication group 𝑘× of a local field 𝑘 with
absolute value | ⋅ | and define the weight ℓ ∶ 𝑥 ↦ log |𝑥| ∈ ℂ for 𝑘×. One can check that the odd spectral
triple

(𝐶∗(𝑘×), 𝐿2(𝑘×),𝑀ℓ)

has nontrivial class in 𝐾𝐾1(𝐶∗(𝑘×), ℂ).

Example II.2.31. Again, as in Example II.2.8, consider ℚ, with the usual archimedean absolute value,
which is not locally compact. Equip ℚ× with the discrete topology. Let ℓ ∶ ℚ× → ℂ be given by
ℓ(𝑥) = log |𝑥|. The triple

(𝐶∗(ℚ×), ℓ2(ℚ×),𝑀ℓ)

fails to be a spectral triple only because the resolvent fails to be compact. However, consider the
crossed product 𝐶0(ℝ×) ⋊ ℚ×, where ℚ× acts by dilation. There is a representation of 𝐶0(ℝ×) ⋊ ℚ×

on ℓ2(ℚ×) given by

(𝑓𝑢𝑦𝜉)(𝑥) = 𝑓(𝑥)𝜉(𝑦−1𝑥) (𝑓 ∈ 𝐶0(ℝ×), 𝑢𝑦 ∈ 𝐶∗(ℚ×), 𝜉 ∈ ℓ2(ℚ×)).

Because ℚ× is dense in ℝ×, this is a faithful representation. Furthermore, 𝐶0(ℝ×) ⋊ ℚ× possesses a
trace 𝜏, given by

𝜏( ∑
𝑦∈ℚ×

𝑓𝑦𝑢𝑦) = ∫
∞

−∞
𝑓1(𝑥)

𝑑𝑥
|𝑥|

for positive ∑𝑦∈ℚ× 𝑓𝑦𝑢𝑦 ∈ 𝐶0(ℝ×) ⋊ ℚ×. Let 𝑁 be the von Neumann enveloping algebra of the
representation of 𝐶0(ℝ×) ⋊ℚ× on ℓ2(ℚ×). We remark that, by [Tak03, Theorem 1.7, Example of (iii)],
𝑁 is of type II∞. Since 𝐶∗(ℚ×) ⊂ 𝑁 and

𝜏((1 +𝑀2
ℓ )−𝑝/2) = ∫

∞

−∞
(1 + (log |𝑥|)2)−𝑝/2 𝑑𝑥

|𝑥|
= 2∫

∞

−∞
(1 + 𝑣2)−𝑝/2𝑑𝑣 < ∞

for 𝑝 > 1,
(𝐶∗(ℚ×), ℓ2(ℚ×),𝑀ℓ)

is a semifinite spectral triple; see [CP98, Definition 2.1].
It is likely that a similar technique could be used more generally to obtain semifinite spectral triples

for group C*-algebras from weights which are self-adjoint and translation-bounded but not proper. We
leave this as a topic for future investigation. We mention here also [GRU19, §2.2.4], in which semifinite
spectral triples are built for group C*-algebras from an isometric action of the group on a Hilbert
space; in that case the semifiniteness arises from the infinite-dimensionality of the Hilbert space.

II.2.4 Restriction and induction of weights

We remark that, if ℓ is a self-adjoint, proper, or translation-bounded weight for 𝐺, its restriction to a
closed subgroup 𝐻 is also. One can use the idea of induction to go the other way, at least when 𝐺/𝐻
is compact. We refer to Definition A.2.4 for the idea of a cut-off function.

Proposition II.2.32. Let ℓ ∶ 𝐻 → End𝑉 be a weight for 𝐻, a closed subgroup of a locally compact
group 𝐺. Let 𝑐 ∈ 𝐶𝑏(𝐺) be a cut-off function for the right action of 𝐻 on 𝐺. The formula

⏜ℓ(𝑔) = ∫
𝐻
𝑐(𝑔𝑠)2ℓ(𝑠−1)𝑑𝜇𝐻(𝑠)

gives a weight ⏜ℓ on 𝐺. If ℓ is self-adjoint, ⏜ℓ is self-adjoint. Suppose that ℓ is translation-bounded. Then,
for every pair 𝐾1 and 𝐾2 of compact subsets of 𝐺,

sup
𝑔∈𝐾1,𝑘∈𝐾2,𝑢∈𝐻

‖⏜ℓ(𝑔𝑘𝑢) − ⏜ℓ(𝑘𝑢)‖ < ∞.
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In particular, if 𝐺/𝐻 is compact, ⏜ℓ is translation-bounded. Suppose further that ℓ is proper. Then, for
every compact subset 𝐾 of 𝐺,

(1 + ⏜ℓ
∗ ⏜ℓ)−1|𝐾𝐻 ∈ 𝐶0(𝐾𝐻,End𝑉 ).

In particular, if 𝐺/𝐻 is compact, ⏜ℓ is proper.

Proof. We first check that ⏜ℓ ∶ 𝐺 → End𝑉 is continuous. For 𝑔 in a compact subset 𝐾 ⊆ 𝐺, the
integrand 𝑐(𝑔𝑠)2ℓ(𝑠−1) is zero for 𝑠 ∉ 𝐻 ∩𝐾−1 supp 𝑐, which is a compact set. Hence, restricted to any
compact subset, ⏜ℓ is equal to a convolution of compactly supported functions and so continuous. An
application of Lemma A.1.7 shows that ⏜ℓ is continuous on all of 𝐺. Further, because 𝑐 is positive, if ℓ
is self-adjoint, ⏜ℓ is self-adjoint.

Now suppose that ℓ is translation-bounded. With 𝑔, 𝑘 ∈ 𝐺 and 𝑢 ∈ 𝐻, we have

⏜ℓ(𝑔𝑘𝑢) − ⏜ℓ(𝑘𝑢) = ∫
𝐻
𝑐(𝑔𝑘𝑢𝑠)2ℓ(𝑠−1)𝑑𝜇𝐻(𝑠) −∫

𝐻
𝑐(𝑘𝑢𝑡)2ℓ(𝑡−1)𝑑𝜇𝐻(𝑡)

= ∫
𝐻
𝑐(𝑔𝑘𝑠)2ℓ(𝑠−1𝑢)𝑑𝜇𝐻(𝑠) −∫

𝐻
𝑐(𝑘𝑡)2ℓ(𝑡−1𝑢)𝑑𝜇𝐻(𝑡)

= ∫
𝐻
𝑐(𝑔𝑘𝑠)2(ℓ(𝑠−1𝑢) − ℓ(𝑢))𝑑𝜇𝐻(𝑠) +∫

𝐻
𝑐(𝑘𝑡)2(ℓ(𝑢) − ℓ(𝑡−1𝑢))𝑑𝜇𝐻(𝑡).

So

‖⏜ℓ(𝑔𝑘𝑢) − ⏜ℓ(𝑘𝑢)‖ ≤ sup
𝑠∈𝐻∩𝑘−1𝑔−1 supp𝑐

‖ℓ(𝑠−1𝑢) − ℓ(𝑢)‖ + sup
𝑡∈𝐻∩𝑘−1 supp𝑐

‖ℓ(𝑢) − ℓ(𝑡−1𝑢)‖

≤ 2 sup
𝑠∈𝐻∩𝑘−1{𝑔−1,𝑒} supp𝑐

‖ℓ(𝑠−1𝑢) − ℓ(𝑢)‖.

By the support property of the cut-off function 𝑐, 𝐻 ∩ supp 𝑐 is compact. If 𝐾′ is a compact subset of
𝐺, 𝐻 ∩𝐾′ supp 𝑐 is a closed subset of the compact set (𝐾′ ∪ {𝑒})(𝐻 ∩ supp 𝑐) and so itself compact.
So, with 𝐾1 and 𝐾2 compact subsets of 𝐺,

sup
𝑔∈𝐾1,𝑘∈𝐾2,𝑢∈𝐻

‖⏜ℓ(𝑔𝑘𝑢) − ⏜ℓ(𝑘𝑢)‖ ≤ 2 sup
𝑠∈𝐻∩𝐾−1

2 {𝐾−1
1 ,𝑒} supp𝑐,𝑢∈𝐻

‖ℓ(𝑠−1𝑢) − ℓ(𝑢)‖ < ∞

using the compactness of 𝐻 ∩𝐾−1
2 {𝐾−1

1 , 𝑒} supp 𝑐 and Lemma II.2.4. If 𝐺/𝐻 is compact, we can find
a compact subset 𝐾2 ⊆ 𝐺 such that 𝐾2𝐻 = 𝐺. Then

sup
𝑔∈𝐾1,ℎ∈𝐺

‖⏜ℓ(𝑔ℎ) − ⏜ℓ(ℎ)‖ < ∞

and an application of Lemma II.2.4 says that ⏜ℓ is translation-bounded.
Suppose now that ℓ is proper and translation-bounded. Let 𝑘 ∈ 𝐺 and 𝑢 ∈ 𝐻. We have

⏜ℓ(𝑘𝑢)∗ ⏜ℓ(𝑘𝑢) = ∫
𝐻
∫
𝐻
𝑐(𝑘𝑢𝑠)2𝑐(𝑘𝑢𝑡)2ℓ(𝑠−1)∗ℓ(𝑡−1)𝑑𝜇𝐻(𝑠)𝑑𝜇𝐻(𝑡)

= ∫
𝐻
∫
𝐻
𝑐(𝑘𝑠)2𝑐(𝑘𝑡)2ℓ(𝑠−1𝑢)∗ℓ(𝑡−1𝑢)𝑑𝜇𝐻(𝑠)𝑑𝜇𝐻(𝑡)

= ∫
𝐻
𝑐(𝑘𝑠)2ℓ(𝑠−1𝑢)∗ℓ(𝑠−1𝑢)𝑑𝜇𝐻(𝑠) (II.2.33)

− 1
2
∫
𝐻
∫
𝐻
𝑐(𝑘𝑠)2𝑐(𝑘𝑡)2(ℓ(𝑠−1𝑢) − ℓ(𝑡−1𝑢))∗(ℓ(𝑠−1𝑢) − ℓ(𝑡−1𝑢))𝑑𝜇𝐻(𝑠)𝑑𝜇𝐻(𝑡).
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Let 𝐾 be a compact subset of 𝐺. For the second term of (II.2.33),

sup
𝑘∈𝐾,𝑢∈𝐻

∥1
2
∫
𝐻
∫
𝐻
𝑐(𝑘𝑠)2𝑐(𝑘𝑡)2(ℓ(𝑠−1𝑢) − ℓ(𝑡−1𝑢))∗(ℓ(𝑠−1𝑢) − ℓ(𝑡−1𝑢))𝑑𝜇𝐻(𝑠)𝑑𝜇𝐻(𝑡)∥

≤ 1
2

sup
𝑠,𝑡∈𝐻∩𝐾−1 supp𝑐,𝑢∈𝐻

‖ℓ(𝑠−1𝑢) − ℓ(𝑡−1𝑢)‖2

≤ 1
2

sup
𝑠,𝑡∈𝐻∩𝐾−1 supp𝑐,𝑢∈𝐻

(‖ℓ(𝑠−1𝑢) − ℓ(𝑢)‖ + ‖ℓ(𝑢) − ℓ(𝑡−1𝑢)‖)
2

< ∞.

For the first term of (II.2.33), write 𝑔 = 𝑘𝑢, so that

∫
𝐻
𝑐(𝑘𝑠)2ℓ(𝑠−1𝑢)∗ℓ(𝑠−1𝑢)𝑑𝜇𝐻(𝑠) = ∫

𝐻
𝑐(𝑔𝑠)2ℓ(𝑠−1)∗ℓ(𝑠−1)𝑑𝜇𝐻(𝑠).

Remarking that 𝑇 ↦ ‖𝑇−1‖−1 gives the smallest eigenvalue of a positive invertible matrix 𝑇,

∥(∫
𝐻
𝑐(𝑔𝑠)2ℓ(𝑠−1)∗ℓ(𝑠−1)𝑑𝜇𝐻(𝑠))

−1
∥
−1

≥ ∥(∫
𝐻
𝑐(𝑔𝑠)2𝑑𝜇𝐻(𝑠)⎞⎟

⎠

−1

∥
−1

inf
𝑠∈𝐻∩𝑔−1 supp𝑐

‖(ℓ(𝑠−1)∗ℓ(𝑠−1))−1‖−1

= inf
𝑡∈𝐻∩𝑔−1 supp𝑐

‖(ℓ(𝑠−1)∗ℓ(𝑠−1))−1‖−1.

Fix 𝑀 ≥ 0. By the properness of ℓ, the set 𝑌 of 𝑠 ∈ 𝐻 such that ‖(ℓ(𝑠−1)∗ℓ(𝑠−1))−1‖−1 ≤ 𝑀 is compact.
Because 𝐻 is a closed subgroup of 𝐺, 𝑌 is compact in 𝐺. Because, furthermore, 𝐻 acts properly on 𝐺
by right translation and 𝐻 ∩𝐾−1 supp 𝑐 is compact,

⎧{
⎨{⎩
𝑔 ∈ 𝐾𝐻∣∥(∫

𝐻
𝑐(𝑘𝑠)2ℓ(𝑠−1𝑢)∗ℓ(𝑠−1𝑢)𝑑𝜇𝐻(𝑠))

−1
∥
−1

≤ 𝑀
⎫}
⎬}⎭

⊆ {𝑔 ∈ 𝐾𝐻 ∣ inf
𝑡∈𝐻∩𝑔−1 supp𝑐

‖(ℓ(𝑡−1)∗ℓ(𝑡−1))−1‖−1 ≤ 𝑀}

= {𝑔 ∈ 𝐾𝐻 ∣ 𝑌 ∩ 𝑔−1 supp 𝑐 ≠ ∅}
= {𝑘𝑢 ∈ 𝐾𝐻 ∣ 𝑌 ∩ 𝑢−1𝑘−1 supp 𝑐 ≠ ∅}
⊆ {𝑘𝑢 ∈ 𝐾𝐻 ∣ 𝑌 ∩ 𝑢−1𝐾−1 supp 𝑐 ≠ ∅}
⊆ {𝑘𝑢 ∈ 𝐾𝐻 ∣ 𝑌 ∩ 𝑢−1(𝐻 ∩𝐾−1 supp 𝑐) ≠ ∅}

is compact. Hence (1 + ⏜ℓ
∗ ⏜ℓ)−1|𝐾𝐻 ∈ 𝐶0(𝐾𝐻,End𝑉 ). If 𝐺/𝐻 is compact, we can find a compact

subset 𝐾 ⊆ 𝐺 such that 𝐾𝐻 = 𝐺 and so ⏜ℓ is proper.

Remark II.2.34. Let ℓ ∶ 𝐻 → End𝑉 be a translation-bounded weight for 𝐻, a closed subgroup of a
locally compact group 𝐺. For a cut-off function 𝑐 ∈ 𝐶𝑏(𝐺) for the right action of 𝐻 on 𝐺, define the
weight ⏜ℓ ∶ 𝐺 → End𝑉 by

⏜ℓ(𝑔) = ∫
𝐻
𝑐(𝑔𝑠)2ℓ(𝑠−1)𝑑𝜇𝐻(𝑠).
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Notice that,

sup
ℎ∈𝐻

‖⏜ℓ(ℎ) − ℓ(ℎ)‖ = sup
ℎ∈𝐻

∥∫
𝐻
𝑐(ℎ𝑠)2(ℓ(𝑠−1) − ℓ(ℎ))𝑑𝜇𝐻(𝑠)∥

= sup
ℎ∈𝐻

∥∫
𝐻
𝑐(𝑠)2(ℓ(𝑠−1ℎ) − ℓ(ℎ))𝑑𝜇𝐻(𝑠)∥

≤ ∫
𝐻
𝑐(𝑠)2𝑑𝜇𝐻(𝑠) sup

𝑠∈𝐻∩supp𝑐,ℎ∈𝐻
‖ℓ(𝑠−1ℎ) − ℓ(ℎ)‖

= sup
𝑠∈𝐻∩supp𝑐,ℎ∈𝐻

‖ℓ(𝑠−1ℎ) − ℓ(ℎ)‖

< ∞

because 𝐻 ∩ supp 𝑐 is compact and ℓ is translation-bounded. Suppose that 𝐺/𝐻 is compact. By
Proposition II.2.32, ⏜ℓ is translation-bounded. And, if ℓ is also self-adjoint and proper, giving a class
in 𝐾𝐾𝐻

∗ (𝐴,𝐶0(𝐻,𝐴)) for some 𝐺-C*-algebra 𝐴, the corresponding class in 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)) of

Corollary II.1.11 is given by ⏜ℓ.
Remark II.2.35. Let 𝐾 be a compact group. Because the trivial subgroup is cocompact, there is
an isomorphism 𝐾𝐾𝐾

∗ (𝐴,𝐶(𝐾,𝐴)) ≅ 𝐾𝐾∗(𝐴,𝐴). Let ℓ ∶ 𝐾 → End𝑉 be a self-adjoint, proper,
translation-bounded, even weight. The class of

(𝐴,𝐶(𝐾, 𝑉 ⊗ 𝐴)𝐶(𝐾,𝐴), ℓ ⊗ 1)

corresponds to ind(ℓ(𝑒))1 ∈ 𝐾𝐾∗(𝐴,𝐴), where ind(ℓ(𝑒)) is the index of the odd matrix ℓ(𝑒) with
respect to the grading. Note also that, if 𝐺 is a noncompact locally compact group and ℓ ∶ 𝐺 → End𝑉
is a proper, even weight, ind(ℓ(𝑔)) = 0 for all 𝑔 ∈ 𝐺.

II.3 Directed length functions from actions on CAT(0) spaces
The use of negatively curved manifolds in the operator-theoretic treatment of group representations
is generally credited to Miščenko [Miš74]. In a form more reminiscent of Kasparov’s γ-element, this
project was pursued by Luke [Luk77]. Here, we will give a very general construction, which can be
specialised to manifolds, trees, and CAT(0) complexes.

Definition II.3.1. [BH99, Definitions I.1.3] Let (𝑋, 𝑑) be a metric space. A geodesic from 𝑥 ∈ 𝑋 to
𝑦 ∈ 𝑋 is a map 𝑐 ∶ [0, 𝑙] ⊂ ℝ → 𝑋 such that

𝑐(0) = 𝑥 𝑐(𝑙) = 𝑦 𝑑(𝑐(𝑡), 𝑐(𝑡′)) = |𝑡 − 𝑡′| (𝑡, 𝑡′ ∈ [0, 𝑙]).

A geodesic space is a metric space in which every two points are joined by a geodesic. A subspace 𝐶 of
a metric space 𝑋 is convex if, for every pair of points in 𝐶, there is a geodesic between them which is
contained in 𝐶.

Definition II.3.2. [BH99, Definitions I.1.10,12, II.3.18] A geodesic triangle Δ in a metric space (𝑋, 𝑑)
consists of a triple (𝑥, 𝑦, 𝑧) of points in 𝑋 and a triple (𝑐, 𝑐′, 𝑐″) of geodesic segments joining them.

A comparison triangle in ℝ2 for a triple (𝑥, 𝑦, 𝑧) of distinct points in 𝑋 is a triangle in the Euclidean
plane with vertices (𝑥, 𝑦, 𝑧) such that

𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) 𝑑(𝑦, 𝑧) = 𝑑(𝑦, 𝑧) 𝑑(𝑧, 𝑥) = 𝑑(𝑧, 𝑥).

A comparison triangle is unique up to isometry. The comparison angle between 𝑥 and 𝑦 at 𝑧, denoted
∠𝑧(𝑥, 𝑦), is the interior angle of the comparison triangle and 𝑧. The Alexandrov angle between two
geodesics 𝑐 and 𝑐′ in 𝑋 with 𝑐(0) = 𝑐′(0) is

∠(𝑐, 𝑐′) = lim sup
𝑡,𝑡′→0

∠𝑐(𝑜)(𝑐(𝑡), 𝑐(𝑡′)).
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The space of directions 𝑆𝑥(𝑋) at a point 𝑥 ∈ 𝑋 is the set of geodesics emanating from 𝑥, modulo the
equivalence relation of zero Alexandrov angle. The Alexandrov angle thus becomes a metric on 𝑆𝑥(𝑋).

For many results and proofs following, for points 𝑥 and 𝑦 of a geodesic metric space 𝑋, we denote
by 𝑣(𝑥, 𝑦) ∈ 𝑆𝑦(𝑋) the direction of the geodesic from 𝑥 to 𝑦 as it reaches 𝑦.

Definition II.3.3. [BH99, Definition II.1.1, Proposition II.1.7] A geodesic space (𝑋, 𝑑) is CAT(0) if
either of the following equivalent conditions apply:

• For every geodesic triangle Δ in 𝑋 and a comparison triangle Δ in ℝ2, 𝑑(𝑝, 𝑞) ≤ ‖𝑝 − 𝑞‖ for all
𝑝, 𝑞 ∈ Δ and their comparison points 𝑝, 𝑞 ∈ Δ.

• For every geodesic triangle (𝑐, 𝑐′, 𝑐″) in 𝑋 with distinct vertices, a triangle in ℝ2 with two side
lengths 𝑑(𝑐), 𝑑(𝑐′) and interior angle ∠(𝑐, 𝑐′) has its third side no longer than 𝑑(𝑐″).

Geodesics are uniquely determined by their endpoints in a CAT(0) space.
A locally compact group 𝐺 is CAT(0) if it acts properly and cocompactly by isometries on a

CAT(0) space.

A complete Riemannian manifold is a CAT(0) space if and only if it is simply connected and its
sectional curvature is everywhere non-positive [BH99, Appendix to Chapter II.1]; such manifolds are
called Hadamard manifolds. The geometric realisation of a graph is CAT(0) if and only if that graph
is a tree [BH99, Example II.1.15(4)]. Certain polyhedral complexes provide other important examples
of CAT(0) spaces although it is harder to formulate conditions ensuring that they are CAT(0); see
[BH99, Chapter II.5].

One can also define CAT(𝜅) spaces for 𝜅 < 0 and 𝜅 > 0 by using comparison triangles in the real
hyperbolic plane or sphere, respectively, but we shall not make use of this idea.

Proposition II.3.4. Let 𝐺 be a locally compact group acting isometrically on a CAT(0) space (𝑋, 𝑑).
Suppose that at a point 𝑥0 ∈ 𝑋, the space of directions 𝑆𝑥0

(𝑋) is isometric to a sphere 𝐒𝑛−1 ⊆ ℝ𝑛.
Let 𝑉 be a Clifford module for the Clifford algebra 𝒞𝓁𝑛. Define the function ℓ ∶ 𝐺 → End𝑉 by

ℓ(𝑔) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0)𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0)

where 𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0) ∈ 𝑆𝑥0
(𝑋) ≅ 𝐒𝑛−1 ⊆ ℝ𝑛 ⊆ 𝒞𝓁𝑛 acts by Clifford multiplication on 𝑉. Then ℓ is

self-adjoint and translation bounded; indeed, for all 𝑔, ℎ ∈ 𝐺, ‖ℓ(𝑔ℎ)−ℓ(ℎ)‖ ≤ ‖ℓ(𝑔)‖. If 𝐺 acts properly
on 𝑋, ℓ is proper.

We remark that the choice of isometry between 𝑆𝑥0
(𝑋) and 𝐒𝑛−1 is not consequential except in

the matter of orientation. If 𝜓1, 𝜓2 ∶ 𝑆𝑥0
(𝑋) → 𝐒𝑛−1 are two isometries and 𝜓1 ◦ 𝜓−1

2 ∈ Iso(𝐒𝑛−1) is
orientation preserving, the two resulting weights will be unitarily equivalent.

Proof. We have, where the norm is in End𝑉,

∥ℓ(𝑔ℎ) − ℓ(ℎ)∥ = ∥𝑑((𝑔ℎ)−1 ⋅ 𝑥0, 𝑥0)𝑣((𝑔ℎ)−1 ⋅ 𝑥0, 𝑥0) − 𝑑(ℎ−1 ⋅ 𝑥0, 𝑥0)𝑣(ℎ−1 ⋅ 𝑥0, 𝑥0)∥ =∶ 𝐿.

This is the length of the third side of a Euclidean triangle with the other side lengths 𝑑((𝑔ℎ)−1 ⋅ 𝑥0, 𝑥0)
and 𝑑(ℎ−1 ⋅ 𝑥0, 𝑥0) and the opposite angle arccos⟨𝑣((𝑔ℎ)−1 ⋅ 𝑥0, 𝑥0), 𝑣(ℎ−1 ⋅ 𝑥0, 𝑥0)⟩. We can compare
this to the triangle in 𝑋 with vertices at 𝑥0, (𝑔ℎ)−1 ⋅ 𝑥0, and ℎ−1 ⋅ 𝑥0. The CAT(0) property guarantees
that 𝐿 will be less than the true distance between (𝑔ℎ)−1 ⋅ 𝑥0 and ℎ−1 ⋅ 𝑥0. Because 𝐺 acts isometrically,

𝐿 ≤ 𝑑(ℎ−1𝑔−1 ⋅ 𝑥0, ℎ−1 ⋅ 𝑥0) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0) = ‖ℓ(𝑔)‖

and so ∥ℓ(𝑔ℎ) − ℓ(ℎ)∥ ≤ ‖ℓ(𝑔)‖ for all ℎ ∈ 𝐺.
The final statement follows immediately from Proposition A.2.2.
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Applying Theorems II.2.24 and II.2.25, we obtain

Corollary II.3.5. Let 𝐺 be a locally compact group acting isometrically on a CAT(0) space (𝑋, 𝑑).
Let 𝐴 be a 𝐺-C*-algebra. Suppose that a point 𝑥0 ∈ 𝑋, the space of directions 𝑆𝑥0

(𝑋) is isometric to
a sphere 𝐒𝑛−1 ⊆ ℝ𝑛. With a Clifford module 𝑉 for 𝒞𝓁𝑛 and the function ℓ ∶ 𝐺 → End𝑉 of Proposition
II.3.4,

(𝐴 ⋊𝑟 𝐺,𝐿2(𝐺,𝐴 ⊗ 𝑉 ),𝑀ℓ)

is an isometrically 𝐺̂-equivariant unbounded Kasparov module with class [𝑀ℓ] and

(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉 )𝐶0(𝐺,𝐴), ℓ)

is a 𝐺-equivariant unbounded Kasparov module with class 𝜎(ℓ). These classes are related by [𝑀ℓ] =
𝐽𝐺(𝜎𝐴([ℓ])) ⊗𝐶0(𝐺,𝐴)⋊𝑟𝐺 [𝐿2(𝐺,𝐴)] ∈ 𝐾𝐾𝐺

𝑛 (𝐴 ⋊𝑟 𝐺,𝐴).

Note that, by Remark II.2.27.3, a change in basepoint from 𝑥0 to 𝑠𝑥0 on its orbit may not give the
same class [ℓ]; however, they are related by the right action of an element of 𝐾𝐾𝐺

∗ (𝐶0(𝐺), 𝐶0(𝐺)) ≅
𝑅(𝐺̂) on 𝐾𝐾𝐺

∗ (ℂ,𝐶0(𝐺)). The class 𝑟𝐺,1([𝑀ℓ]) = 𝑗𝐺𝑟 ([ℓ]) is, however, unchanged. We mention that it
appears that the group invariant dimℚ(𝐾𝐾𝐺

∗ (𝐶∗
𝑟 (𝐺),ℂ) ⊗𝑅(𝐺) ℚ) seems to reflect the structure of a

CAT(0) space on which 𝐺 acts. We do not yet venture to make a precise conjecture.

Example II.3.6. Continuing Examples II.2.6 and II.2.28, let 𝐺 be the compactly generated locally
compact abelian group ℝ𝑚 ×ℤ𝑛 ×𝐾, for integers 𝑚,𝑛, and a compact group 𝐾. Let us equip ℝ𝑚+𝑛

with the Euclidean metric (in terms of the standard basis). As before, let (𝑣𝑖)𝑚+𝑛
𝑖=1 be a basis of ℝ𝑚+𝑛.

We shall define a proper action of 𝐺 on ℝ𝑚+𝑛 by translation, with 𝐾 acting trivially. We write this
action additively, as

𝑔 + 𝑥 = 𝑥 +
𝑚+𝑛

∑
𝑖=1

𝑔𝑗𝑣𝑗

where 𝑔𝑗 is a real or integer component of 𝑔. The geodesic from −𝑔 + 0 to 0 is a straight line; we may
think of it as the vector

𝑚+𝑛

∑
𝑗=1

𝑔𝑗𝑣𝑗

in ℝ𝑛. Let 𝑉 be a Clifford module for 𝒞𝓁𝑚+𝑛 and, to simplify notation, write (𝑣𝑖)𝑚+𝑛
𝑖=1 for the images

of (𝑣𝑖)𝑚+𝑛
𝑖=1 in 𝒞𝓁𝑚+𝑛. In accordance with Proposition II.3.4, then, we define the weight ℓ ∶ 𝐺 → End𝑉

by

ℓ(𝑔) =
𝑚+𝑛

∑
𝑗=1

𝑔𝑗𝑣𝑗,

recovering the weight of Example II.2.6.

Theorem II.3.7. Let 𝐺 be a locally compact group acting properly and isometrically on a CAT(0)
space (𝑋, 𝑑). Let 𝐴 be a 𝐺-C*-algebra. Suppose that there is a complete subspace 𝑌 of 𝑋 such that

• every path component of 𝑌 is a convex subset of 𝑋;
• 𝑌 is isometric to a spin𝑐 Riemannian 𝑛-manifold; and
• 𝑌 contains a neighbourhood of a point 𝑥0 ∈ 𝑋.

Let 𝑥1 ∈ 𝑋 be a point not in 𝑌 but with 𝑆𝑥1
(𝑋) isometric to a sphere 𝐒𝑚−1 ⊆ ℝ𝑚. Let 𝑉0 and 𝑉1 be

Clifford modules for 𝒞𝓁𝑛 and 𝒞𝓁𝑚 respectively, with 𝑉0 irreducible. Define the weights

ℓ0 ∶ 𝐺 → End𝑉0 ℓ1 ∶ 𝐺 → End𝑉1
𝑔 ↦ 𝑑(𝑔−1𝑥0, 𝑥0)𝑣(𝑔−1𝑥0, 𝑥0) 𝑔 ↦ 𝑑(𝑔−1 ⋅ 𝑥1, 𝑥1)𝑣(𝑔−1 ⋅ 𝑥1, 𝑥1),
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giving rise to 𝜎𝐴([ℓ0]), 𝜎𝐴([ℓ1]) ∈ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)), and [𝑀ℓ0 ], [𝑀ℓ1 ] ∈ 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐴) as in
Corollary II.3.5.

For any closed subgroup 𝐻 of 𝐺 preserving 𝑌, let 𝜂𝐻 ∶ 𝐶0(𝑌 ,𝐴)𝐻 → 𝐴 be the ∗-homomorphism given
by evaluating at 𝑥0, giving a class [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐻, 𝐴). For 𝐴 = ℂ, [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 /𝐻),ℂ)
is nonzero if and only if 𝐻 acts cocompactly on 𝑌.

If there exists a closed subgroup 𝐻 of 𝐺 such that 𝐻 preserves 𝑌 and acts by pin𝑐 automorphisms
and [𝜂𝐻] is nonzero then 𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺

𝑛 (ℂ,𝐶0(𝐺)) is nonzero and not equal to 𝜎𝐴([ℓ1]).
If 𝐺 itself preserves 𝑌, acts by spin𝑐 automorphisms, and [𝜂𝐺] is nonzero then 𝑟𝐺,1([𝑀ℓ0 ]) ∈

𝐾𝐾𝑛(𝐴 ⋊𝑟 𝐺,𝐴) is nonzero and not equal to 𝑟𝐺,1([𝑀ℓ1 ]).

We emphasise that 𝑌 may have infinitely many path components (which, since 𝑌 is a manifold, are
the same as the connected components). Theorem II.3.7 will be a consequence of

Theorem II.3.8. Let 𝐺 be a locally compact group acting properly and isometrically on a CAT(0)
space (𝑋, 𝑑). Let 𝐴 be a 𝐺-C*-algebra. Suppose that there is a complete subspace 𝑌 of 𝑋 such that

• every path component of 𝑌 is a convex subset of 𝑋;
• 𝑌 is isometric to a spin𝑐 Riemannian 𝑛-manifold;
• 𝑌 contains a neighbourhood of a point 𝑥0 ∈ 𝑋; and
• 𝐺 preserves 𝑌 and acts by spin𝑐 automorphisms.

Let 𝑥1 ∈ 𝑋 be a point not in 𝑌 but with 𝑆𝑥1
(𝑋) isometric to a sphere 𝐒𝑚−1 ⊆ ℝ𝑚. Let 𝑉0 be the

Clifford module /𝑆𝑥0
for 𝒞𝓁𝑛, with /𝑆 the fundamental spinor bundle on 𝑌. Let 𝑉1 be a Clifford module

for 𝒞𝓁𝑚. Define the weights

ℓ0 ∶ 𝐺 → End𝑉0 ℓ1 ∶ 𝐺 → End𝑉1
𝑔 ↦ 𝑑(𝑔−1𝑥0, 𝑥0)𝑣(𝑔−1𝑥0, 𝑥0) 𝑔 ↦ 𝑑(𝑔−1 ⋅ 𝑥1, 𝑥1)𝑣(𝑔−1 ⋅ 𝑥1, 𝑥1),

giving rise to 𝜎𝐴([ℓ0]), 𝜎𝐴([ℓ1]) ∈ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)) and [𝑀ℓ0 ], [𝑀ℓ1 ] ∈ 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐴) as in Corol-
lary II.3.5.

Let 𝛼𝑌 ∈ 𝐾𝐾𝐺
𝑛 (𝐶0(𝑌 ), ℂ) be the Atiyah–Singer Dirac class and let 𝐺𝐶0(𝑌 ,𝐴) be the partial

imprimitivity 𝐶0(𝑌 ,𝐴)𝐺-𝐶0(𝑌 ,𝐴) ⋊ 𝐺-bimodule of Theorem A.2.6. With 𝜂𝐺 ∶ 𝐶0(𝑌 ,𝐴)𝐺 → 𝐴 the
∗-homomorphism given by evaluating at 𝑥0,

[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 𝑟𝐺,1([𝑀ℓ0 ]) = [𝜂𝐺] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐺, 𝐴)

and
[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 𝑟𝐺,1([𝑀ℓ1 ]) = 0 ∈ 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴).

We use here the idea of the Baum–Connes assembly map; see e.g. [Val02, §6.2]. Indeed, suppose
that 𝐴 = ℂ and 𝑌 /𝐺 is compact. Let 𝜆 ∶ ℂ → 𝐶(𝑌 /𝐺) the inclusion given by the unit. Then

[𝜆] ⊗𝐶(𝑌 /𝐺) [𝐺𝐶0(𝑌 )] ⊗𝐶0(𝑌 )⋊𝐺 𝑗𝐺𝑟 (𝛼𝑌) ∈ 𝐾𝐾𝑛(ℂ,𝐶∗
𝑟 (𝐺))

is the result of the Baum–Connes assembly map applied to 𝛼𝑌.
We shall complete the Proof of Theorem II.3.8 in §II.3.4, on p. 79, but, for now, let us show how it

implies Theorem II.3.7.

Proof of Theorem II.3.7. First, we remark that, since 𝑌 is complete, it is closed. Further, since each
path component 𝑍 of 𝑌 is a convex subspace of a CAT(0) space, 𝑍 is also CAT(0). Since 𝑍 is
furthermore complete and (isometric to) a Riemannian manifold, it is a Hadamard manifold.
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Next, if 𝐻 ≠ 𝐺, we may use the injection 𝜙 ∶ 𝐻 ↪ 𝐺, as in Corollary II.1.11, to obtain classes

𝜙∗𝑟𝜙(𝜎𝐴([ℓ0])), 𝜙∗𝑟𝜙(𝜎𝐴([ℓ1])) ∈ 𝐾𝐾𝐻(ℂ,𝐶0(𝐻)).

Of course, if 𝜙∗𝑟𝜙(𝜎𝐴([ℓ0])) is nontrivial, 𝜎𝐴([ℓ0]) is nontrivial and, if 𝜙∗𝑟𝜙(𝜎𝐴([ℓ0])) ≠ 𝜙∗𝑟𝜙(𝜎𝐴([ℓ1])),
𝜎𝐴([ℓ0]) ≠ 𝜎𝐴([ℓ1]). Since 𝐻 still acts properly and isometrically on (𝑋, 𝑑), we may assume without
loss of generality, for the rest of the proof, that 𝐺 = 𝐻.

Second, suppose that 𝐺 does not preserve the spin𝑐 structure on 𝑌 but only the pin𝑐 structure.
As discussed in §II.1.1, 𝐺 has an index 2 subgroup 𝐺+ which preserves the spin𝑐 structure. Let
𝜄 ∶ 𝐺+ → 𝐺 be the inclusion map. As above, it will suffice to show that 𝜄∗𝑟𝜄(𝜎𝐴([ℓ0])) is nontrivial and
𝜄∗𝑟𝜄(𝜎𝐴([ℓ0])) ≠ 𝜄∗𝑟𝜄(𝜎𝐴([ℓ1])). Since 𝐺+ still acts cocompactly, properly, and isometrically, we may
assume without loss of generality, that 𝐺+ = 𝐺, that is, 𝐺 acts by spin𝑐 automorphisms on 𝑌.

Let us also assume that 𝑉0 = /𝑆𝑥0
, with /𝑆 the fundamental spinor bundle on 𝑌; otherwise we

reverse the spin𝑐 structure on 𝑌; see §II.1.1. We are now in the situation of Theorem II.3.8. If
[𝜂𝐺] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐺, 𝐴) is nonzero, 𝑟𝐺,1([𝑀ℓ0 ]) is nonzero and not equal to 𝑟𝐺,1([𝑀ℓ1 ]).

We also obtain the following Corollary of Theorem II.3.8.

Corollary II.3.9. Let 𝐺 be a locally compact group acting properly and isometrically on a CAT(0)
space (𝑋, 𝑑). Let 𝐴 be a 𝐺-C*-algebra. Suppose that there is a complete subspace 𝑌 of 𝑋 such that

• every path component of 𝑌 is a convex subset of 𝑋;

• 𝑌 is isometric to a spin𝑐 Riemannian 𝑛-manifold;

• 𝑌 contains a neighbourhood of a point 𝑥0 ∈ 𝑋; and

• 𝐺 preserves 𝑌 and acts by spin𝑐 automorphisms.

Let 𝛼𝑌 ∈ 𝐾𝐾𝐺
𝑛 (𝐶0(𝑌 ), ℂ) be the Atiyah–Singer Dirac class. Let 𝐺𝐶0(𝑌 ,𝐴) be the partial imprimitivity

𝐶0(𝑌 ,𝐴)𝐺-𝐶0(𝑌 ,𝐴) ⋊ 𝐺-bimodule of Theorem A.2.6. Let 𝜂𝐺 ∶ 𝐶0(𝑌 ,𝐴)𝐺 → 𝐴 the ∗-homomorphism
given by evaluating at 𝑥0, defining a class [𝜂𝐺] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐺, 𝐴). If [𝜂𝐺] is nonzero then

[𝐺𝐶0(𝑌 ,𝐴)] ⊗ 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ∈ 𝐾𝐾𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴 ⋊𝑟 𝐺)

is nonzero.
In particular, suppose that 𝐴 = ℂ and 𝑌 /𝐺 is compact, so that [𝜂𝐺] ∈ 𝐾𝐾0(𝐶(𝑌 /𝐺),ℂ) is nonzero.

With 𝜆 ∶ ℂ → 𝐶(𝑌 /𝐺) the inclusion given by the unit, the result

[𝜆] ⊗𝐶(𝑌 /𝐺) [𝐺𝐶0(𝑌 )] ⊗𝐶0(𝑌 )⋊𝐺 𝑗𝐺𝑟 (𝛼𝑌) ∈ 𝐾𝐾𝑛(ℂ,𝐶∗
𝑟 (𝐺))

of the Baum–Connes assembly map applied to 𝛼𝑌 is nonzero.

Instead of proceeding immediately to prove Theorem II.3.8, we give a number of examples showing
its application, in §§II.3.1, II.3.2, and II.3.3. In §II.3.4, we give a number of Lemmas for the Proof of
Theorem II.3.8, which finally appears on p. 79.

II.3.1 Hadamard manifolds

Recall that a Hadamard manifold is a simply connected complete Riemannian manifold with non-
positive sectional curvature. Let us restate Theorem II.3.7 in the context of Hadamard manifolds. For
a Riemannian manifold 𝑋, we make the natural identification of the space of directions 𝑆𝑥𝑋 at 𝑥 ∈ 𝑋
with the unit cotangent sphere at 𝑥 ∈ 𝑋, so that 𝑣(𝑥, 𝑦) ∈ 𝑇 ∗

𝑦𝑋.
We have the following Corollary of Theorem II.3.7.
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Corollary II.3.10. Let 𝐺 be a locally compact group acting isometrically on a spin𝑐 Hadamard
𝑛-manifold 𝑋. Pick a point 𝑥0 ∈ 𝑋. Let 𝑉 be an irreducible Clifford module for the Clifford algebra
𝒞𝓁(𝑇 ∗

𝑥0
𝑋) of the cotangent space at 𝑥0. Define the self-adjoint weight ℓ ∶ 𝐺 → End𝑉 by

ℓ(𝑔) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0)𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0).

Then ℓ is translation-bounded.
Suppose further that 𝐺 acts properly on 𝑋. Let 𝐴 be a 𝐺-C*-algebra. We obtain an isometrically

𝐺̂-equivariant unbounded Kasparov module

(𝐴 ⋊𝑟 𝐺,𝐿2(𝐺, 𝑉 ⊗ 𝐴)𝐴,𝑀ℓ)

representing [𝑀ℓ] ∈ 𝐾𝐾𝐺
𝑛 (𝐴 ⋊𝑟 𝐺,𝐴) and a 𝐺-equivariant unbounded Kasparov module

(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉 )𝐶0(𝐺,𝐴), ℓ)

representing 𝜎𝐴([ℓ]) ∈ 𝐾𝐾𝐺
𝑛 (𝐴,𝐶0(𝐺,𝐴)).

For any closed subgroup 𝐻 of 𝐺, let 𝜂𝐻 ∶ 𝐶0(𝑋,𝐴)𝐻 → 𝐴 be the homomorphism given by evaluating
at 𝑥0, giving a class [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑋,𝐴)𝐻, 𝐴). For 𝐴 = ℂ, [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑋/𝐻),ℂ) is nonzero if
and only if 𝐻 acts cocompactly on 𝑋.

If there exists a closed subgroup 𝐻 of 𝐺 which acts by pin𝑐 automorphisms and such that [𝜂𝐻] is
nonzero then 𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺

∗ (ℂ,𝐶0(𝐺)) is nonzero.
If 𝐺 itself acts by spin𝑐 automorphisms and [𝜂𝐺] is nonzero then 𝑟𝐺,1([𝑀ℓ]) ∈ 𝐾𝐾𝑛(𝐴 ⋊𝑟 𝐺,𝐴) is

nonzero.

Example II.3.11. Consider the semidirect product ℝ⋊𝜑ℝ, where, for 𝑡 ∈ ℝ, 𝜑(𝑡) is the automorphism
𝑥 ↦ 𝑒𝑡𝑥 of ℝ. The group ℝ ⋊𝜑 ℝ is of course isomorphic to the affine group of the real line. There
is an isometric action of ℝ ⋊𝜑 ℝ on the real hyperbolic plane ℝ𝐇2. In terms of Poincaré half-plane
model, this left action is given by

(𝑥, 𝑠) ⋅ 𝑧 = 𝑥 + 𝑒𝑠𝑧 (𝑧 ∈ ℂ).

This is an action by Möbius transformations, which can be seen by the injection ℝ ⋊𝜑 ℝ ↪ 𝑆𝐿(2,ℝ)
given by

(𝑥, 𝑠) ↦ (𝑒𝑠/2 𝑒−𝑠/2𝑥
0 𝑒−𝑠/2 ).

To define a weight on ℝ ⋊𝜑 ℝ using Corollary II.3.10, it will actually be easier to view ℝ𝐇2 in terms
of the Poincaré disc model. Let 𝐶 = ( 1 −𝑖

1 𝑖 ) ∈ 𝑆𝐿(2,ℝ). The Möbius transform defined by 𝐶 maps
the upper half-plane conformally to the unit disc. We compute that

𝐶(𝑒−𝑠(−𝑥 + 𝑖)) = 𝑒−𝑠(−𝑥 + 𝑖) − 𝑖
𝑒−𝑠(−𝑥 + 𝑖) + 𝑖

= 𝑥 − 𝑖 + 𝑒𝑠𝑖
𝑥 − 𝑖 − 𝑒𝑠𝑖

= 𝑥2 + 1 − 𝑒2𝑠 + 2𝑥𝑒𝑠𝑖
𝑥2 + (1 + 𝑒𝑠)2

and

|𝐶(𝑒−𝑠(−𝑥 + 𝑖))| =
√(𝑥2 + (1 − 𝑒𝑠)2)(𝑥2 + (1 + 𝑒𝑠)2)

𝑥2 + (1 + 𝑒𝑠)2
= √𝑥2 + (1 − 𝑒𝑠)2

𝑥2 + (1 + 𝑒𝑠)2
.

The distance in the hyperbolic metric from 0 in the Poincaré disc to 𝑧 is given by 𝑑(0, 𝑧) = 2 arctanh |𝑧|.
Choosing the basepoint 0 in the Poincaré disc, one can use Corollary II.3.10 to produce the weight
ℓ ∶ 𝑆𝐿(2,ℝ) → 𝒞𝓁2 ≅ Endℂ2 given by

ℓ(𝑥, 𝑠) = 2𝑥𝑒𝑠𝛾1 − (𝑥2 + 1 − 𝑒2𝑠)𝛾2
√4𝑥2𝑒2𝑠 + (𝑥2 + 1 − 𝑒2𝑠)2

2 arctanh√𝑥2 + (1 − 𝑒𝑠)2
𝑥2 + (1 + 𝑒𝑠)2

.
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Example II.3.12. Let 𝐺 be a reductive Lie group and 𝐾 its maximal compact subgroup. We assume
that 𝐺/𝐾 admits a 𝐺-equivariant spin𝑐 structure. Let 𝔤 = 𝔨 ⊕ 𝔭 be the Cartan decomposition, giving
a diffeomorphism 𝜋 ◦ exp ∶ 𝔭 → 𝐺/𝐾. The Killing form 𝐵 on 𝔤 restricts to a (positive definite) inner
product on 𝔭. By e.g. [Hel01, Theorem IV.3.3(iii)], for any 𝑋 ∈ 𝔭, 𝜋 ◦ exp(𝑡𝑋) is a geodesic on
𝐺/𝐾 passing through 𝑒𝐾 with speed ‖𝑋‖ = 𝐵(𝑋,𝑋)1/2. With 𝑥 = 𝑒𝐾 and 𝑔 = 𝑘 exp(𝑋) ∈ 𝐾exp(𝔭),
𝑑(𝑔−1𝐾, 𝑒𝐾) = ‖𝑋‖ and 𝑣(𝑔−1𝐾, 𝑒𝐾) = 𝑋‖𝑋‖−1 ∈ 𝔭 ⊆ 𝒞𝓁(𝔭,𝐵). Hence, we can take ℓ to be given
by ℓ(𝑘 exp(𝑋)) = 𝑋.

For any 𝐺-C*-algebra 𝐴, we obtain that 𝜎𝐴([ℓ]) and 𝑟𝐺,1([𝑀ℓ]) ∈ 𝐾𝐾𝑛(𝐴 ⋊𝑟 𝐺,𝐴) are nonzero.
Let Γ be a closed cocompact subgroup of 𝐺 and ℓ|Γ the restriction of ℓ to Γ. We similarly obtain that
𝜎𝐴([ℓ|Γ]) and 𝑟Γ̂,1([𝑀ℓ|Γ ]) ∈ 𝐾𝐾𝑛(𝐴 ⋊𝑟 Γ,𝐴) are nonzero.

The following Remark, as well as placing our construction of directed weights in context, will be
important for the proof of Theorem II.3.8.
Remark II.3.13. Let 𝐺 be a locally compact group acting by spin𝑐 isometries on a spin𝑐 Hadamard
𝑛-manifold 𝑋. Fix 𝑥0 ∈ 𝑋 and let 𝜌 ∶ 𝑋 → [0,∞) be given by 𝜌(𝑥) = 𝑑(𝑥0, 𝑥). Recall from §II.1.1 that
the dual Dirac element 𝛽 ∈ 𝐾𝐾𝐺

𝑛 (ℂ,𝐶0(𝑋)) is represented by the uniformly 𝐺-equivariant unbounded
Kasparov module

(ℂ, Γ0(𝑋, /𝑆)𝐶0(𝑋), 𝜌𝑑𝜌)

where 𝜌𝑑𝜌 ∈ Ω1𝑋 acts on Γ𝑐(𝑋, /𝑆) by Clifford multiplication. As a section of 𝑇 ∗𝑋, 𝑑𝜌 is given by
(𝑑𝜌)(𝑥) = 𝑣(𝑥0, 𝑥) ∈ 𝑇 ∗

𝑥𝑋. Hence, also as a section of 𝑇 ∗𝑋, 𝜌𝑑𝜌 is given by (𝜌𝑑𝜌)(𝑥) = 𝑑(𝑥0, 𝑥)𝑣(𝑥0, 𝑥).
Suppose that 𝐺 acts properly on 𝑋. Let 𝜔 ∶ 𝐶0(𝑋) → 𝐶0(𝐺) be the 𝐺-equivariant ∗-homomorphism

given by
𝜔(𝑓)(𝑔) = 𝑓(𝑔 ⋅ 𝑥0),

i.e. evaluation on the orbit of 𝑥0. We extend 𝜔 to a map Γ0(𝑋, /𝑆) → 𝐶0(𝐺, /𝑆𝑥0
) by

𝜔(𝜎)(𝑔) = 𝑔−1 ⋅ 𝜎(𝑔 ⋅ 𝑥0).

Applied to 𝜌𝑑𝜌,

𝜔(𝜌𝑑𝜌)(𝑔) = 𝑑(𝑥0, 𝑔 ⋅ 𝑥0)𝑔−1 ⋅ 𝑣(𝑥0, 𝑔 ⋅ 𝑥0) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0)𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0).

That is, with 𝑉 = /𝑆𝑥0
and ℓ as in Corollary II.3.10, 𝜔(𝜌𝑑𝜌) = ℓ. We thereby obtain that

𝛽 ⊗𝐶0(𝑋) [𝜔] = [ℓ],

where [𝜔] ∈ 𝐾𝐾𝐺
0 (𝐶0(𝑋), 𝐶0(𝐺)).

II.3.2 Trees

Given a tree Γ, we equip its geometric realisation |Γ| with the standard metric, in which edge is
taken to be isometric to the unit interval [0, 1]. With this metric, |Γ| is a CAT(0) space. For ease of
exposition, we shall conflate Γ with its geometric realisation |Γ|.

By the bi-infinite line, we mean the tree Circ∞ with vertex set (Circ∞)0 = ℤ and edge set
(Circ∞)1 = ℤ, with 𝑜(𝑛) = 𝑛 and 𝑡(𝑛) = 𝑛 + 1. In other words, Circ∞ is the Cayley graph of ℤ with
the generator 1 ∈ ℤ.

We have the following Corollary of Theorem II.3.7.

Corollary II.3.14. Let 𝐺 be a locally compact group acting on a tree Γ. Choose a point 𝑥0 ∈ Γ in the
interior of an edge. Identify the space of directions at 𝑥0 with 𝐒0 = {+1,−1}. Define the function
ℓ ∶ 𝐺 → ℂ by

ℓ0(𝑔) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0)𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0).
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Then ℓ is translation bounded.
Suppose, further, that 𝐺 acts properly on Γ or, equivalently, that the stabiliser group of every vertex

is compact. Let 𝐴 be a 𝐺-C*-algebra. We obtain an isometrically 𝐺̂-equivariant unbounded Kasparov
module

(𝐴 ⋊𝑟 𝐺,𝐿2(𝐺,𝐴)𝐴,𝑀ℓ0)

representing [𝑀ℓ0 ] ∈ 𝐾𝐾𝐺
1 (𝐴 ⋊𝑟 𝐺,𝐴) and a 𝐺-equivariant unbounded Kasparov module

(𝐴,𝐶0(𝐺,𝐴)𝐶0(𝐺,𝐴), ℓ0)

representing 𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺
1 (𝐴,𝐶0(𝐺,𝐴)).

Let 𝑌 be a subgraph of Γ, containing 𝑥0 and isomorphic to the disjoint union of copies of the
bi-infinite line. (Note that this could be anything from one copy to infinitely many copies.) Let 𝑥1 ∈ Γ
be a point in the interior of an edge not in 𝑌 and define ℓ1 analogously to ℓ0.

For any closed subgroup 𝐻 of 𝐺 preserving 𝑌, let 𝜂𝐻 ∶ 𝐶0(𝑌 ,𝐴)𝐻 → 𝐴 be the ∗-homomorphism given
by evaluating at 𝑥0, giving a class [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐻, 𝐴). For 𝐴 = ℂ, [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 /𝐻),ℂ)
is nonzero if and only if 𝐻 acts cocompactly on 𝑌.

If there exists a closed subgroup 𝐻 of 𝐺 such that 𝐻 preserves 𝑌 and [𝜂𝐻] is nonzero then
𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺

1 (ℂ,𝐶0(𝐺)) is nonzero and not equal to 𝜎𝐴([ℓ1]).
If 𝐺 itself preserves 𝑌 and preserves the orientation on 𝑌, and [𝜂𝐺] is nonzero, then 𝑟𝐺,1([𝑀ℓ0 ]) ∈

𝐾𝐾1(𝐴 ⋊𝑟 𝐺,𝐴) is nonzero and not equal to 𝑟𝐺,1([𝑀ℓ1 ]).

Our construction bears a strong superficial resemblance to the element 𝛾 ∈ 𝐾𝐾𝐺
0 (ℂ,ℂ) built in

[JV84] for a locally compact group 𝐺 acting on a tree. The dual Green–Julg map gives an element
Ψ𝐺(𝛾) ∈ 𝐾𝐾𝐺

0 (𝐶∗
𝑢(𝐺),ℂ). Let 𝜏 be the quotient map 𝐶∗

𝑢(𝐺) → 𝐶∗
𝑟 (𝐺). Then, with the class [ℓ0]

of Corollary II.3.14, 𝜏∗([ℓ0]) is an element of 𝐾𝐾𝐺
1 (𝐶∗

𝑢(𝐺),ℂ). Of course, because the parities are
different, 𝜏∗([ℓ0]) is not equal to Ψ𝐺(𝛾). But we can say more: if 𝐺 is an infinite discrete group, by
Remark II.1.17, the map

(Ψ𝐺)−1 ◦ 𝜏∗𝐺 ◦ 𝑟𝐺,1 ∶ 𝐾𝐾𝐺
∗ (𝐶∗

𝑟 (𝐺),ℂ) → 𝐾𝐾𝐺
∗ (ℂ,ℂ)

does not have 𝛾 in its image. Hence, no spectral triple for the C*-algebra of 𝐺 built using a weight as
in §II.2.3 could represent Ψ𝐺(𝛾).

In a number of examples, we shall discuss the relationship of Corollary II.3.14 to the Pimsner
exact sequences of [Pim86], which we outlined in §II.1.2. Let us first make contact with the extension
classes (II.1.5) and (II.1.7). Let 𝐺 be a locally compact group acting on a tree Γ. Denote by Σ the
quotient graph Γ/𝐺. Recall from §II.1.2 that for edges 𝑦 ∈ Σ1, the injections 𝜎𝑦 ∶ 𝐺𝑦 → 𝐺𝑜(𝑦) and
𝜎𝑦 ∶ 𝐺𝑦 → 𝐺𝑡(𝑦) have open image and give rise to homomorphisms 𝜎𝑦 ∶ 𝐶∗

𝑟 (𝐺𝑦) → 𝐶∗
𝑟 (𝐺𝑜(𝑦)) and

𝜎𝑦 ∶ 𝐶∗
𝑟 (𝐺𝑦) → 𝐶∗

𝑟 (𝐺𝑡(𝑦)). Let

𝜎∗ = ∑
𝑦∈Σ1

(𝜎∗
𝑦 − 𝜎∗

𝑦).

If the action of 𝐺 on the Γ is proper or, equivalently, all stabiliser groups are compact, the six-term
exact sequence for K-homology (II.1.8) becomes

0 𝐾0(𝐶∗
𝑟 (𝐺)) ⨁𝑃∈Σ0 𝐾0(𝐶∗

𝑟 (𝐺𝑃)) ⨁𝑦∈Σ1 𝐾0(𝐶∗
𝑟 (𝐺𝑦)) 𝐾1(𝐶∗

𝑟 (𝐺)) 0𝜎∗
,

(II.3.15)
implying that 𝐾0(𝐶∗

𝑟 (𝐺)) ≅ ker 𝜎∗ and 𝐾1(𝐶∗
𝑟 (𝐺)) ≅ coker 𝜎∗.
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Remark II.3.16. Let 𝐺 be a locally compact group acting on a tree 𝑋. Recall from §II.1.2 the six-term
exact sequence

𝐾𝐾𝐺
0 (𝐶0(𝑋1), 𝐶0(𝐺)) 𝐾𝐾𝐺

0 (𝐶0(𝑋0), 𝐶0(𝐺)) 𝐾𝐾𝐺
0 (ℂ,𝐶0(𝐺))

𝐾𝐾𝐺
1 (ℂ,𝐶0(𝐺)) 𝐾𝐾𝐺

1 (𝐶0(𝑋0), 𝐶0(𝐺)) 𝐾𝐾𝐺
1 (𝐶0(𝑋1), 𝐶0(𝐺))

and the associated extension class, given as a 𝐺-equivariant bounded Kasparov module by

(ℂ,𝐶0(𝑋1)𝐶0(𝑋1), 2𝜒𝑃 − 1).

The multiplier 2𝜒𝑃 − 1 is the function on 𝑋1 with value +1 on 𝑋1
𝑃 and −1 elsewhere. In other words,

(2𝜒𝑃 − 1)(𝑦) = 𝑣(𝑃 , 𝑦).

Suppose that 𝐺 acts properly on Γ. Let 𝜔 ∶ 𝐶0(Γ1) → 𝐶0(𝐺) be the 𝐺-equivariant ∗-homomorphism
given by

𝜔(𝑓)(𝑔) = 𝑓(𝑔 ⋅ 𝑥0),

i.e. evaluation on the orbit of 𝑥0. Applied to 2𝜒𝑃 − 1,

𝜔(2𝜒𝑃 − 1)(𝑔) = 𝑣(𝑃 , 𝑔 ⋅ 𝑥0) = 𝑣(𝑔−1 ⋅ 𝑃 , 𝑥0).

That is, with 𝑉 = /𝑆𝑥0
and ℓ as in Corollary II.3.10, 𝜔(𝜌𝑑𝜌) is equal to ℓ|ℓ| up to a difference in

𝐶0(𝐺,End𝑉 ). We thereby obtain that

[ℓ] = [(ℂ,𝐶0(𝑋1)𝐶0(𝑋1), 2𝜒𝑃 − 1)] ⊗𝐶0(𝑋) [𝜔]

where [𝜔] ∈ 𝐾𝐾𝐺
0 (𝐶0(𝑋), 𝐶0(𝐺)).

(a)

𝑥0

𝑥1

𝑥2

(b)

Figure II.1: The Cayley graph of 𝐹2 and some points on it.
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(a) (b) (c)

Figure II.2: Subgraphs for 𝐹2

Example II.3.17. Consider the free group 𝐹𝑛 on 𝑛 generators. The Cayley graph of 𝐹𝑛 is a tree Γ, on
which every vertex has order 𝑛. The quotient graph consists of one vertex with 𝑛 loops. For instance,
for 𝐹2, the Cayley graph is pictured in Figure II.1(a) (although not isometrically and only up to a
certain resolution). For 𝐺 = 𝐹𝑛 acting on its Cayley graph, the sequence (II.3.15) becomes

0 ℤ ℤ ℤ𝑛 ℤ𝑛 00 .

The group C*-algebra of 𝐹𝑛 has K-theory and K-homology

𝐾0(𝐶∗
𝑟 (𝐹𝑛)) = ℤ = 𝐾0(𝐶∗

𝑟 (𝐹𝑛)) 𝐾1(𝐶∗
𝑟 (𝐹𝑛)) = ℤ𝑛 = 𝐾1(𝐶∗

𝑟 (𝐹𝑛));

see [Cun83, §3(1)].
For simplicity, let us restrict the discussion to 𝐹2, generated by 𝑎 and 𝑏. The graph Γ is pictured in

Figure II.1(a); we take 𝑎 to move the central horizontal line one step rightward and 𝑏 to move the
central vertical line one step upward. Let 𝑥0, 𝑥1, and 𝑥2 be the points on Γ shown in Figure II.1(b) and
define ℓ0, ℓ1, and ℓ2 from each, as in Corollary II.3.14. The bi-infinite line in Figure II.2(a) is preserved
by the subgroup ⟨𝑎⟩ ≅ ℤ. The bi-infinite line in Figure II.2(b) is preserved by the subgroup ⟨𝑎𝑏⟩ ≅ ℤ.
By taking 𝑌 to be, in turn, each of the bi-infinite lines in Figures II.2(a) and II.2(b), Corollary II.3.14
implies that [ℓ0], [ℓ1], and [ℓ2] are all nonzero and distinct. By considering the family of bi-infinite lines
in Figure II.2(c), preserved by 𝐹2, we obtain that 𝑟𝐹2,1([𝑀ℓ0 ]) is nonzero and not equal to 𝑟𝐹2,1([𝑀ℓ1 ]).
Indeed, 𝑟𝐹2,1([𝑀ℓ0 ]) and 𝑟𝐹2,1([𝑀ℓ1 ]) generate 𝐾0(𝐶∗

𝑟 (𝐹2)) ≅ ℤ2.
The construction of Corollary II.3.14 admits of an interpretation in term of words in the group. Any

element of the free group 𝐹2 can be written as a unique shortest word. Let the weights ℓ𝑎, ℓ𝑏 ∶ 𝐹𝑛 → ℂ
be given on a word 𝑤 by

ℓ𝑎(𝑤) =
⎧{
⎨{⎩

+|𝑤| 𝑤 ends in 𝑎
−|𝑤| otherwise

ℓ𝑏(𝑤) =
⎧{
⎨{⎩

+|𝑤| 𝑤 ends in 𝑏
−|𝑤| otherwise

.

One can verify that ℓ𝑎 = ℓ0 and ℓ𝑏 = ℓ1.

One could more generally interpret Corollary II.3.14 in terms of words on a graph of groups [Ser80,
§I.4–5]. We do not pursue this here.

Example II.3.18. Let 𝑚,𝑛 > 1. The free product ℤ/𝑚ℤ ∗ ℤ/𝑛ℤ acts on the infinite biregular tree Γ
of valencies 𝑚 and 𝑛. The group acts transitively on the set of edges. For example, ℤ/4ℤ ∗ ℤ/3ℤ acts
on the tree pictured in Figure II.3(a). The generating subgroups ℤ/4ℤ and ℤ/3ℤ stabilise the points
thus marked in the Figure. For ℤ/𝑚ℤ ∗ ℤ/𝑛ℤ, the sequence (II.3.15) becomes

0 ℤ𝑚+𝑛−1 ℤ𝑚 ⊕ℤ𝑛 ℤ 0 0(1,−1) .
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ℤ/4ℤ ℤ/3ℤ

(a)

𝑥0

𝑥1

𝑥2

(b)

Figure II.3: The tree associated with ℤ/4ℤ ∗ ℤ/3ℤ and some points on it.

The group C*-algebra of ℤ/𝑚ℤ ∗ ℤ/𝑛ℤ has K-theory and K-homology

𝐾0(𝐶∗
𝑟 (ℤ/𝑚ℤ ∗ ℤ/𝑛ℤ)) = ℤ𝑚+𝑛−1 = 𝐾0(𝐶∗

𝑟 (ℤ/𝑚ℤ ∗ ℤ/𝑛ℤ))
𝐾1(𝐶∗

𝑟 (ℤ/𝑚ℤ ∗ ℤ/𝑛ℤ)) = 0 = 𝐾1(𝐶∗
𝑟 (ℤ/𝑚ℤ ∗ ℤ/𝑛ℤ));

see [Cun83, §3(2)].
For simplicity, let us restrict the discussion to ℤ/4ℤ ∗ℤ/3ℤ, generated by 𝑎 ∈ ℤ/4ℤ and 𝑏 ∈ ℤ/3ℤ.

The tree Γ is pictured in Figure II.3(a); we take 𝑎 to rotate anticlockwise around the point marked
ℤ/4ℤ and 𝑏 to rotate anticlockwise around the point marked ℤ/3ℤ. Let 𝑥0, 𝑥1, and 𝑥2 be the points
on Γ shown in Figure II.3(b) and define ℓ0, ℓ1, and ℓ2 from each, as in Corollary II.3.14. The bi-infinite
line in Figure II.4(a) is preserved by the subgroup ⟨𝑎𝑏⟩ ≅ ℤ. The bi-infinite line in Figure II.4(b) is
preserved by the subgroup ⟨𝑎𝑏2⟩ ≅ ℤ. The bi-infinite line in Figure II.4(c) is preserved by the subgroup
⟨𝑎2𝑏⟩ ≅ ℤ. By taking 𝑌 to be, in turn, each of these bi-infinite lines, Corollary II.3.14 implies that [ℓ0],
[ℓ1], and [ℓ2] are all nonzero and distinct.

Because the action of ℤ/4ℤ ∗ ℤ/3ℤ on its tree is transitive on the edges, we cannot use Corollary
II.3.14 to detect the nontriviality of 𝑟 ̂ℤ/4ℤ∗ℤ/3ℤ,1([𝑀ℓ0 ]) ∈ 𝐾𝐾1(𝐶∗

𝑟 (ℤ/4ℤ ∗ ℤ/3ℤ),ℂ). Indeed, since

(a) (b) (c)

Figure II.4: Subgraphs for ℤ/4ℤ ∗ ℤ/3ℤ.
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𝐾𝐾1(𝐶∗
𝑟 (ℤ/4ℤ ∗ ℤ/3ℤ),ℂ) = 0, we conclude that

𝑟 ̂ℤ/4ℤ∗ℤ/3ℤ,1([𝑀ℓ0 ]) = 𝑟 ̂ℤ/4ℤ∗ℤ/3ℤ,1([𝑀ℓ1 ]) = 𝑟 ̂ℤ/4ℤ∗ℤ/3ℤ,1([𝑀ℓ2 ]) = 0.

Example II.3.19. Take ℤ/2ℤ to be the subgroup {+1,−1} of the quaternion group 𝑄8 and consider
the amalgamated product 𝑄8 ∗ℤ/2ℤ 𝑄8. The amalgamated product 𝑄8 ∗ℤ/2ℤ 𝑄8 acts on the tree in
Figure II.1(a). The quaternion group 𝑄8 has 5 irreducible complex representations: four of dimension
one and one of dimension two. Hence

𝐶∗(𝑄8) ≅ ℂ ⊕ ℂ⊕ℂ⊕ℂ⊕𝑀2(ℂ) 𝐾0(𝐶∗(𝑄8)) ≅ ℤ5.

Further,
𝐶∗(ℤ/2ℤ) ≅ ℂ ⊕ ℂ 𝐾0(𝐶∗(ℤ/2ℤ)) ≅ ℤ2.

All the one dimensional representations of 𝑄8 restrict to the trivial representation of ℤ/2ℤ. The two
dimensional representation of 𝑄8 restricts to two copies of the (only) nontrivial representation of ℤ/2ℤ.
Hence, with

𝜎∗(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) = (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 − 𝑦1 − 𝑦2 − 𝑦3 − 𝑦4, 2𝑥5 − 2𝑦5),

we have the exact sequence

0 ℤ8 ℤ5 ⊕ℤ5 ℤ2 ℤ/2ℤ 0𝜎∗

in K-homology. Because the action of 𝑄8 ∗ℤ/2ℤ 𝑄8 on the tree is transitive on the edges, we cannot
use Corollary II.3.14 to detect the nontriviality of 𝑟 ̂𝑄8∗ℤ/2ℤ𝑄8,1([𝑀ℓ0 ]) ∈ 𝐾𝐾1(𝐶∗

𝑟 (𝑄8 ∗ℤ/2ℤ 𝑄8), ℂ). By
Remark II.3.16, it is in fact a torsion class, generating 𝐾1(𝐶∗

𝑟 (𝑄8 ∗ℤ/2ℤ 𝑄8)) ≅ ℤ/2ℤ.

II.3.3 CAT(0) cell complexes

Another context in which the conditions of Proposition II.3.4 may be naturally satisfied is when 𝑋 is a
CAT(0) cell complex. If we choose 𝑥0 to be in an open 𝑛-cell then 𝑆𝑥0

𝑋 is isometric to 𝐒𝑛−1 [BH99,
§7.14]. We shall consider two well-studied families of CAT(0) cell complexes: buildings and CAT(0)
cube complexes. Throughout this section, we assume every cell complex has a bound on the dimension
of its cells.

Apart from trees, the first family of CAT(0) complexes to be extensively studied were buildings.
These arise in the study of reductive Lie groups over nonarchimedean local fields, for which the
Bruhat–Tits building is the natural analogue of the symmetric space 𝐺/𝐾 for a connected Lie group
and its maximal compact subgroup 𝐾. For more details on buildings, we refer to [Bro89, Tho18].

Definition II.3.20. e.g. [Tho18, Definition 1.18] Let 𝐼 be a finite set, of size 𝑛, and (𝑚𝑖𝑗)𝑖,𝑗∈𝐼 a
symmetric matrix with values in ℕ>0 ∪ {∞} such that 𝑚𝑖𝑗 = 1 if and only if 𝑖 = 𝑗. The weighed graph
associated with (𝑚𝑖𝑗)𝑖,𝑗∈𝐼 is a Coxeter diagram; conventionally one does not include the edges with
𝑚𝑖𝑗 ∈ {1, 2} as this is sufficient to recontruct (𝑚𝑖𝑗)𝑖,𝑗∈𝐼. The Coxeter group of (𝑚𝑖𝑗)𝑖,𝑗∈𝐼 is the group
with presentation

𝑊 = ⟨{𝑠𝑖}𝑖∈𝐼 ∣ ∀𝑖, 𝑗 ∈ 𝐼, (𝑠𝑖𝑠𝑗)𝑚𝑖𝑗 = 1⟩.

Here, if 𝑚𝑖𝑗 = ∞, we mean that no additional constraint is to be placed on 𝑠𝑖𝑠𝑗. Denote by 𝑆 = {𝑠𝑖}𝑖∈𝐼
the set of generators. The pair (𝑊, 𝑆) is a Coxeter system.

A Coxeter system is an abstract generalisation of a group of reflections. Associated to a Coxeter
system (𝑊, 𝑆) is its Coxeter complex, a connected simplicial complex of dimension 𝑛 − 1 on which 𝑊
acts with fundamental domain a single top-dimensional simplex [Cas23, Corollary 4.0.7]. However, 𝑊
does not necessarily act properly on the Coxeter complex; when it does, (𝑊, 𝑆) is called a simplicial
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Coxeter system [Cas23, Definition 3.2.11]. Lannér’s Theorem states that, when (𝑊, 𝑆) is a simplicial
Coxeter system, its Coxeter complex is a tiling of 𝐒𝑛−1, ℝ𝑛−1, or ℝ𝐇𝑛−1 and 𝑊 acts by reflections
[Cas23, Theorem 3.2.12]. In each of these three cases, (𝑊, 𝑆) is called spherical, Euclidean, or hyperbolic,
respectively. Spherical, Euclidean, and hyperbolic Coxeter systems have a well-known classification;
see e.g. [Cas23, §2.4, Tables 2.2–4].

Definition II.3.21. [Bro89, §IV.1] [Tho18, Definition 6.1] A building of type (𝑊, 𝑆) is a simplicial
complex Δ which is the union of apartments, subcomplexes isomorphic to the Coxeter complex of
(𝑊, 𝑆), such that

• Any two cells of Δ lie in a common apartment; and
• For any two apartments 𝐴 and 𝐵, there is an isomorphism between them fixing their intersection.

The maximal simplices of Δ are called chambers.
Suppose that (𝑊, 𝑆) is Euclidean or hyperbolic, so that the apartments are (tilings of) Euclidean

or hyperbolic space. The geometric realisation |Δ| of Δ can be equipped with a metric in which every
apartment is isometric to Euclidean or hyperbolic space, making |Δ| a CAT(0) space [Tho18, Theorem
7.14].

Euclidean buildings of dimension 1 are trees without valence-1 vertices, with the apartments the
bi-infinite lines [Tho18, Example 6.5]. Buildings of dimension higher than 1 are difficult to visualise
[JV87, Examples] but a gallant attempt is made in [BS22].

Groups acting on Euclidean buildings have been studied in the context of the Baum–Connes
conjecture in [JV87, Jul89, KS91].

For ease of exposition, we shall conflate Δ with its geometric realisation |Δ|. We have the following
Corollary of Theorem II.3.7.

Corollary II.3.22. Let 𝐺 be a locally compact group acting on a Euclidean or hyperbolic building Δ of
dimension 𝑛. Choose a point 𝑥0 ∈ Δ which lies in the interior of a chamber 𝐶0, so that its space of
directions is isometric to 𝐒𝑛−1. Let 𝑉 be an irreducible Clifford module for 𝒞𝓁𝑛. Define the self-adjoint
weight ℓ ∶ 𝐺 → End𝑉 by

ℓ0(𝑔) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0)𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0).
Then ℓ0 is translation-bounded.

Suppose further that 𝐺 acts properly on Δ. Let 𝐴 be a 𝐺-C*-algebra. We obtain an isometrically
𝐺̂-equivariant unbounded Kasparov module

(𝐴 ⋊𝑟 𝐺,𝐿2(𝐺, 𝑉 ⊗ 𝐴)𝐴,𝑀ℓ0)

representing [𝑀ℓ0 ] ∈ 𝐾𝐾𝐺
𝑛 (𝐴 ⋊𝑟 𝐺,𝐴) and a 𝐺-equivariant unbounded Kasparov module

(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉 )𝐶0(𝐺,𝐴), ℓ0)

representing 𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺
𝑛 (𝐴,𝐶0(𝐺,𝐴)).

Let 𝑌 be a subcomplex of Δ, containing 𝐶0 and consisting of the union of a collection of mutually
disjoint apartments of Δ. Note that 𝑌 could be just a single apartment containing 𝑥0.

Let 𝑥1 be a point of Δ not in 𝑌 and define ℓ1 analogously to ℓ0.
For any closed subgroup 𝐻 of 𝐺 preserving 𝑌, let 𝜂𝐻 ∶ 𝐶0(𝑌 ,𝐴)𝐻 → 𝐴 be the ∗-homomorphism given

by evaluating at 𝑥0, giving a class [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐻, 𝐴). For 𝐴 = ℂ, [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 /𝐻),ℂ)
is nonzero if and only if 𝐻 acts cocompactly on 𝑌.

If there exists a closed subgroup 𝐻 of 𝐺 such that 𝐻 preserves 𝑌 and [𝜂𝐻] is nonzero then
𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺

𝑛 (𝐴,𝐶0(𝐺,𝐴)) is nonzero and not equal to 𝜎𝐴([ℓ1]).
Choose an orientation on 𝑌, that is, an orientation on each apartment in 𝑌. If 𝐺 itself preserves 𝑌

and its orientation, and [𝜂𝐺] is nonzero, then 𝑟𝐺,1([𝑀ℓ0 ]) ∈ 𝐾𝐾𝑛(𝐴 ⋊𝑟 𝐺,𝐴) is nonzero and not equal
to 𝑟𝐺,1([𝑀ℓ1 ]).
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Example II.3.23. Let 𝐺 be a reductive Lie group over a nonarchimedean local field 𝑘; see e.g. [RTW15].
Choose a maximal 𝑘-split torus 𝑇 = (𝑘×)𝑛, where 𝑛 is the 𝑘-rank. Associated with 𝐺 is its Bruhat–Tits
building Δ, a Euclidean building with 𝑛-dimensional apartments whose Coxeter system is determined
by the normaliser of 𝑇 in 𝐺. The group 𝐺 acts properly and isometrically on its Bruhat–Tits building.
Further, the action is strongly transitive, meaning that 𝐺 acts transitively on the set of apartments
and, for every apartment 𝐵, the stabiliser group 𝐺𝐵 acts transitively on the chambers in 𝐵 [Tho18,
Definition 9.5].

Let 𝑥0 ∈ Δ be a point in the interior of a chamber 𝐶0. Let 𝐵0 be an apartment containing 𝐶0.
By strong transitivity, 𝐺𝐵0

acts cocompactly on 𝐵0 and we thus obtain from Corollary II.3.22 that
[ℓ0] ∈ 𝐾𝐾𝐺

𝑛 (ℂ,𝐶0(𝐺)) is nontrivial. If 𝑥1 is a point in the interior of a chamber 𝐶1 not in 𝐵0, [ℓ0] ≠ [ℓ1].
Because the action of 𝐺 on Δ is strongly transitive, we cannot use Corollary II.3.22 to determine
whether 𝑟𝐺,1([𝑀ℓ0 ]) is nontrivial.

CAT(0) cube complexes are another important family of CAT(0) cell complexes; for further details
we refer to [NR98].

Definition II.3.24. [NR98, §2.2] A cube complex is a metric cell complex Δ in which every cell is
isometric to a unit Euclidean cube and the glueing maps are isometries. We call a maximal cell of Δ a
maximal cube. A flat of a cube complex is an isometrically embedded copy of Euclidean space ℝ𝑛 for
some 𝑛.

The conditions making a cube complex CAT(0) are quite tractable; we refer to [NR98, §2.2]. Groups
acting on CAT(0) cube complexes have been studied in the context of the Baum–Connes conjecture in
[BGH19, BGHN20].

We have the following Corollary of Theorem II.3.7.

Corollary II.3.25. Let 𝐺 be a locally compact group acting on a CAT(0) cube complex Δ. Choose
a point 𝑥0 ∈ Δ which lies in the interior of a maximal cube 𝐶0, of dimension 𝑛, so that its space of
directions is isometric to 𝐒𝑛−1. Let 𝑉 be an irreducible Clifford module for 𝒞𝓁𝑛. Define the self-adjoint
weight ℓ ∶ 𝐺 → End𝑉 by

ℓ0(𝑔) = 𝑑(𝑔−1 ⋅ 𝑥0, 𝑥0)𝑣(𝑔−1 ⋅ 𝑥0, 𝑥0).

Then ℓ0 is translation-bounded.
Suppose further that 𝐺 acts properly on Δ. Let 𝐴 be a 𝐺-C*-algebra. We obtain an isometrically

𝐺̂-equivariant unbounded Kasparov module

(𝐴 ⋊𝑟 𝐺,𝐿2(𝐺, 𝑉 ⊗ 𝐴)𝐴,𝑀ℓ0)

representing [𝑀ℓ0 ] ∈ 𝐾𝐾𝐺
𝑛 (𝐴 ⋊𝑟 𝐺,𝐴) and a 𝐺-equivariant unbounded Kasparov module

(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉 )𝐶0(𝐺,𝐴), ℓ0)

representing 𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺
𝑛 (𝐴,𝐶0(𝐺,𝐴)).

Let 𝑌 be a subcomplex of Δ, containing 𝐶0 and consisting of the union of a collection of mutually
disjoint flats of Δ. Note that 𝑌 could be just a single flat containing 𝐶0. Let 𝑥1 be a point of Δ not in
𝑌 and define ℓ1 analogously to ℓ0.

For any closed subgroup 𝐻 of 𝐺 preserving 𝑌, let 𝜂𝐻 ∶ 𝐶0(𝑌 ,𝐴)𝐻 → 𝐴 be the ∗-homomorphism given
by evaluating at 𝑥0, giving a class [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐻, 𝐴). For 𝐴 = ℂ, [𝜂𝐻] ∈ 𝐾𝐾0(𝐶0(𝑌 /𝐻),ℂ)
is nonzero if and only if 𝐻 acts cocompactly on 𝑌.

If there exists a closed subgroup 𝐻 of 𝐺 such that 𝐻 preserves 𝑌 and [𝜂𝐻] is nonzero then
𝜎𝐴([ℓ0]) ∈ 𝐾𝐾𝐺

𝑛 (𝐴,𝐶0(𝐺,𝐴)) is nonzero and not equal to 𝜎𝐴([ℓ1]).
Choose an orientation on 𝑌, that is, an orientation on each of the disjoint flats making up 𝑌. If

𝐺 itself preserves 𝑌 and its orientation, and [𝜂𝐺] is nonzero, then 𝑟𝐺,1([𝑀ℓ0 ]) ∈ 𝐾𝐾𝑛(𝐴 ⋊𝑟 𝐺,𝐴) is
nonzero and not equal to 𝑟𝐺,1([𝑀ℓ1 ]).
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A well-studied family of CAT(0) groups are the right-angled Artin groups; for more details we refer
to [Cha07].

Definition II.3.26. [Cha07, §3.1,6] Let Γ be a finite graph without loops. The right-angled Artin group
𝐴Γ associated with Γ is the group with generators (𝑠𝑖)𝑖∈Γ0 and relations 𝑠𝑖𝑠𝑗 = 𝑠𝑗𝑠𝑖 for (𝑖, 𝑗) ∈ Γ1.
The Salvetti complex 𝑆Γ is the space constructed from tori 𝕋#𝐶0 for each clique 𝐾 ⊆ Γ, glued
according to the partial order on the cliques. By construction, the fundamental group of 𝑆Γ is 𝐴Γ.
The universal cover 𝑆Γ is a CAT(0) cube complex. The group 𝐴Γ acts properly and cocompactly on
𝑆Γ (for properness, see e.g. [Mun14, Theorem 81.5]).

When the graph Γ has no edges, 𝐴Γ is the free group on the generators (𝑠𝑖)𝑖∈Γ0 and 𝑆Γ is its Cayley
graph. When the graph Γ is complete, 𝐴Γ is the free abelian group on the generators (𝑠𝑖)𝑖∈Γ0 and 𝑆Γ
is the cubical tiling of ℝ#Γ0 . For graphs of size up to three, we have the following classification.

Γ

𝐴Γ ℤ ℤ2 𝐹2 ℤ3 ℤ× 𝐹2 ℤ ∗ ℤ2 𝐹3

Fundamental
domain for 𝑆Γ

Example II.3.27. Let Γ be a finite graph without loops and let 𝐴Γ be the associated right-angled
Artin group. Let Δ = 𝑆Γ be the universal cover of the Salvetti complex. Let 𝑥0 ∈ 𝑆Γ be a point in the
interior of a maximal cube 𝐶0, which will be a cell corresponding to a maximal clique 𝐾 of Γ. Let
𝑛 = dim𝐶0 = #𝐾0. Define ℓ0 ∶ 𝐺 → End𝑉 as in Corollary II.3.25.

By [Cha07, §3.2], the clique 𝐾 gives rise to a subgroup 𝐴𝐾 ≤ 𝐴Γ isomorphic to ℤ𝑛. There is a
subgroup conjugate to 𝐴𝐾 ≅ ℤ𝑛 which preserves the flat 𝐹 containing 𝐶0, which is isometric to ℝ𝑛.
Applying Corollary II.3.25, we see that [ℓ0] ∈ 𝐾𝐾𝐺

𝑛 (ℂ,𝐶0(𝐺)) is nonzero.
Let 𝑌 be the orbit of the flat 𝐹 containing 𝐶0. This is a collection of copies of ℝ𝑛 on which 𝐺 acts

cocompactly and preserving the orientation. Applying Corollary II.3.25, 𝑟𝐺,1([𝑀ℓ0 ]) ∈ 𝐾𝐾1(𝐶∗
𝑟 (𝐺),ℂ)

is nonzero.

II.3.4 Pairing with a Dirac class

In this section, we prove Theorem II.3.8, on p. 79. The strategy is to use the constructive unbounded
Kasparov product, then to reduce to the case of a connected manifold, and finally to use Remark
II.3.13 to complete the pairing.

Lemma II.3.28. Let (𝑋, 𝑑) be a CAT(0) space. Let 𝑥0 ∈ 𝑋 be such that 𝑆𝑥0
(𝑋) is isometric to

𝐒𝑚−1 ⊂ ℝ𝑚. Let 𝑉 be a Clifford module for 𝒞𝓁𝑚 and define ℓ̃ ∶ 𝑋 → End𝑉 by

ℓ̃ ∶ 𝑥 ↦ 𝑑(𝑥, 𝑥0)𝑣(𝑥, 𝑥0).

We have, for 𝑥, 𝑦 ∈ 𝑋,
∥ℓ̃(𝑥) − ℓ̃(𝑦)∥ ≤ 𝑑(𝑥, 𝑦).

Hence ℓ is Lipschitz continuous from 𝑋 to End𝑉. Also, the absolute value |ℓ̃| is a Lipschitz continuous
function on 𝑋. If 𝛾1,… , 𝛾𝑚 are the generators of 𝒞𝓁𝑚,

ℓ̃(𝑥) =
𝑚
∑
𝑖=1

⟨ℓ̃(𝑥) ∣ 𝛾𝑖⟩𝛾𝑖.

For every 𝑖 ∈ [1..𝑚], the functions ⟨ℓ̃ ∣ 𝛾𝑖⟩ are also Lipschitz continuous.



72 Chapter II. Noncommutative-geometric group theory

Of course, for any subset 𝑌 of 𝑋, equipped with the restricted metric, the restrictions of |ℓ̃| and
⟨ℓ̃ ∣ 𝛾𝑖⟩ to 𝑌 are Lipschitz continuous functions on 𝑌.

Proof. First, |ℓ̃(𝑥)| = 𝑑(𝑥, 𝑥0), so |ℓ| is clearly Lipschitz continuous. Next, we have, where the norm is
in End𝑉,

∥ℓ̃(𝑥) − ℓ̃(𝑦)∥ = ∥𝑑(𝑥, 𝑥0)𝑣(𝑥, 𝑥0) − 𝑑(𝑦, 𝑥0)𝑣(𝑦, 𝑥0)∥ .

This is the length of the third side of a Euclidean triangle with the other side lengths 𝑑(𝑥, 𝑥0) and
𝑑(𝑦, 𝑥0) and the opposite angle arccos⟨𝑣(𝑥, 𝑥0), 𝑣(𝑦, 𝑥0)⟩. We can compare this to the triangle in 𝑋
with vertices at 𝑥0, 𝑥, and 𝑦. The CAT(0) property guarantees that

∥ℓ̃(𝑥) − ℓ̃(𝑦)∥ = ∥𝑑(𝑥, 𝑥0)𝑣(𝑥, 𝑥0) − 𝑑(𝑦, 𝑥0)𝑣(𝑦, 𝑥0)∥ ≤ 𝑑(𝑥, 𝑦).

Hence, ℓ̃ is a Lipschitz continuous function from 𝑋 to End𝑉. For each 𝑖 ∈ [1..𝑛], the function

𝑤 ↦ 1
2
(𝑤𝛾𝑖 + 𝛾𝑖𝑤)

is Lipschitz continuous from End𝑉 to ℂ. So ⟨ℓ̃ ∣ 𝛾𝑖⟩ = 1
2(ℓ𝛾𝑖 + 𝛾𝑖ℓ) is Lipschitz continuous.

Next, we have the following as a special case of Proposition A.2.9.

Proposition II.3.29. Let 𝐺 be a locally compact group acting properly, isometrically, and by spin𝑐

automorphisms on a Riemannian 𝑛-manifold 𝑌. Let 𝐴 be a 𝐺-C*-algebra. Let

(𝐶0(𝑌 ), 𝐿2(𝑌 , /𝑆), /𝐷)

be the Atiyah–Singer Dirac spectral triple representing the class 𝛼 ∈ 𝐾𝐾𝐺
𝑛 (𝐶0(𝑌 ), ℂ). Let 𝐺𝐶0(𝑌 ,𝐴) be

the partial imprimitivity 𝐶0(𝑌 ,𝐴)𝐺-𝐶0(𝑌 ,𝐴) ⋊𝑟 𝐺-bimodule of Corollary A.2.7. Define a right action
of 𝐶𝑐(𝐺,𝐴) ⊆ 𝐴 ⋊𝑟 𝐺 on Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴) by

(𝜉𝑓)(𝑥) = ∫
𝐺
𝑔 ⋅ (𝜉(𝑔−1𝑥)𝑓(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔) (𝜉 ∈ Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴), 𝑓 ∈ 𝐶𝑐(𝐺,𝐴))

and a 𝐶𝑐(𝐺,𝐴)-valued inner product by

⟨𝜉1 ∣ 𝜉2⟩(𝑔) = ∫
𝑌
⟨𝜉1(𝑥) ∣ 𝑔 ⋅ 𝜉2(𝑔−1𝑥)⟩

/𝑆⊗𝐴
Δ𝐺(𝑔−1)1/2vol𝐠(𝑥) (𝜉1, 𝜉2 ∈ Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴)).

The completion of Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴) is a Hilbert 𝐴 ⋊𝑟 𝐺-module Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴). The Kasparov product

[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝑟𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼)) ∈ 𝐾𝐾𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴 ⋊𝑟 𝐺)

is represented by
(𝐶0(𝑌 ,𝐴)𝐺, Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴)𝐴⋊𝑟𝐺

, /𝐷 ⊗ 1)

where, by a slight abuse of notation, we denote by /𝐷 ⊗ 1 its closure on Γ∞
𝑐 (𝑌 , /𝑆 ⊗ 𝐴).

Proposition II.3.30. Let 𝐺 be a locally compact group acting properly and isometrically on a CAT(0)
space (𝑋, 𝑑). Let 𝐴 be a 𝐺-C*-algebra. Suppose that there is a complete subspace 𝑌 of 𝑋 such that

• every path component of 𝑌 is a convex subset of 𝑋;
• 𝑌 is isometric to a spin𝑐 Riemannian 𝑛-manifold; and
• 𝐺 preserves 𝑌 and acts by spin𝑐 automorphisms.
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Let 𝑥0 ∈ 𝑋 be such that 𝑆𝑥0
(𝑋) is isometric to 𝐒𝑚−1 ⊂ ℝ𝑚. Let 𝑉 be a Clifford module for 𝒞𝓁𝑚 and

define

ℓ ∶ 𝐺 → End𝑉 ℓ̃ ∶ 𝑋 → End𝑉
𝑔 ↦ 𝑑(𝑔−1𝑥0, 𝑥0)𝑣(𝑔−1𝑥0, 𝑥0) 𝑥 ↦ 𝑑(𝑥, 𝑥0)𝑣(𝑥, 𝑥0).

Let [𝑀ℓ] ∈ 𝐾𝐾𝐺
𝑚(𝐴 ⋊𝑟 𝐺,𝐴) be the class of

(𝐴 ⋊𝑟 𝐺,𝐿2(𝐺, 𝑉 ⊗ 𝐴)𝐴,𝑀ℓ ⊗ 1).

Let
(𝐶0(𝑌 ), 𝐿2(𝑌 , /𝑆), /𝐷)

be the Atiyah–Singer Dirac spectral triple representing the class 𝛼𝑌 ∈ 𝐾𝐾𝐺
𝑛 (𝐶0(𝑌 ), ℂ). Let 𝐺𝐶0(𝑌 ,𝐴)

be the partial imprimitivity 𝐶0(𝑌 ,𝐴)𝐺-𝐶0(𝑌 ,𝐴) ⋊ 𝐺-bimodule of Theorem A.2.6. Then the Kasparov
product

[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 𝑟𝐺,1([𝑀ℓ])

in 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴) is represented by

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1).

Proof. First, by Proposition II.3.29, [𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) is represented by

(𝐶0(𝑌 ,𝐴)𝐺, Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴)𝐴⋊𝑟𝐺
, /𝐷 ⊗ 1).

Let us begin by examining the internal tensor product Hilbert module Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴)⊗̃𝐴⋊𝑟𝐺𝐿2(𝐺, 𝑉 ⊗𝐴).
For 𝜁 ∈ Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴) and 𝜉 ∈ 𝐶𝑐(𝐺, 𝑉 ⊗ 𝐴), by the balancing over 𝐶𝑐(𝐺,𝐴), we may consider
𝜁 ⊗̃ 𝜉 ∈ Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴) ⊗𝐶𝑐(𝐺,𝐴) 𝐶𝑐(𝐺, 𝑉 ⊗ 𝐴) as an element of Γ𝑐(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴), given by

(𝜁 ⊗̃ 𝜉)(𝑥) = ∫
𝐺
𝑔 ⋅ 𝜁(𝑔−1𝑥) ⊗̃ 𝛼𝑔(𝜉(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔).

Indeed, this shows that Γ𝑐(𝑌 , /𝑆⊗𝐴)⊗𝐶𝑐(𝐺,𝐴)𝐶𝑐(𝐺, 𝑉 ⊗𝐴) = Γ𝑐(𝑌 , /𝑆⊗̃𝑉 ⊗𝐴). For 𝜁1, 𝜁2 ∈ Γ𝑐(𝑌 , /𝑆⊗𝐴),
recall from Proposition II.3.29 that their 𝐴 ⋊𝑟 𝐺-valued inner product is given by

⟨𝜁1 ∣ 𝜁2⟩(𝑔) = ∫
𝑌
⟨𝜁1(𝑥) ∣ 𝑔 ⋅ 𝜁2(𝑔−1𝑥)⟩

/𝑆⊗𝐴
Δ𝐺(𝑔−1)1/2vol𝐠(𝑥).

For 𝜉1, 𝜉2 ∈ 𝐶𝑐(𝐺, 𝑉 ⊗ 𝐴) ⊆ 𝐿2(𝐺, 𝑉 ⊗ 𝐴), we have

⟨𝜁1 ⊗̃ 𝜉2 ∣ 𝜁2 ⊗̃ 𝜉2⟩ = ⟨𝜉1∣ ⟨𝜁1 ∣ 𝜁2⟩𝜉1⟩

= ∫
𝐺
𝛼𝑔−1(⟨𝜉1(𝑔)∣ (⟨𝜁1 ∣ 𝜁2⟩𝜉1)(𝑔)⟩𝑉⊗𝐴

)𝑑𝜇(𝑔)

= ∫
𝐺
∫
𝐺
𝛼𝑔−1(⟨𝜉1(𝑔)∣ ⟨𝜁1 ∣ 𝜁2⟩(ℎ)𝛼ℎ(𝜉1(ℎ−1𝑔))⟩

𝑉⊗𝐴
)𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
∫
𝑌
𝛼𝑔−1(⟨𝜉1(𝑔)∣ ⟨𝜁1(𝑥) ∣ ℎ ⋅ 𝜁2(ℎ−1𝑥)⟩

/𝑆⊗𝐴
𝛼ℎ(𝜉1(ℎ−1𝑔))⟩

𝑉⊗𝐴
)

×Δ𝐺(ℎ−1)1/2vol𝐠(𝑥)𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
∫
𝑌
𝛼𝑔−1(⟨𝜉1(𝑔)∣ ⟨𝜁1(𝑥) ∣ 𝑔ℎ ⋅ 𝜁2((𝑔ℎ)−1𝑥)⟩

/𝑆⊗𝐴
𝛼𝑔ℎ(𝜉1(ℎ−1))⟩

𝑉⊗𝐴
)

×Δ𝐺((𝑔ℎ)−1)1/2vol𝐠(𝑥)𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
∫
𝑌
𝛼𝑔−1(⟨𝜉1(𝑔)∣ ⟨𝜁1(𝑔𝑥) ∣ 𝑔ℎ ⋅ 𝜁2(ℎ−1𝑥)⟩

/𝑆⊗𝐴
𝛼𝑔ℎ(𝜉1(ℎ−1))⟩

𝑉⊗𝐴
)

×Δ𝐺((𝑔ℎ)−1)1/2vol𝐠(𝑥)𝑑𝜇(𝑔)𝑑𝜇(ℎ)
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= ∫
𝐺
∫
𝐺
∫
𝑌
𝛼𝑔−1(⟨𝜉1(𝑔)∣ 𝛼𝑔(⟨𝑔−1 ⋅ 𝜁1(𝑔𝑥) ∣ ℎ ⋅ 𝜁2(ℎ−1𝑥)⟩

/𝑆⊗𝐴
)𝛼𝑔ℎ(𝜉1(ℎ−1))⟩

𝑉⊗𝐴
)

×Δ𝐺((𝑔ℎ)−1)1/2vol𝐠(𝑥)𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
∫
𝑌
⟨𝛼𝑔−1(𝜉1(𝑔))∣ ⟨𝑔−1 ⋅ 𝜁1(𝑔𝑥) ∣ ℎ ⋅ 𝜁2(ℎ−1𝑥)⟩

/𝑆⊗𝐴
𝛼ℎ(𝜉1(ℎ−1))⟩

𝑉⊗𝐴

×Δ𝐺((𝑔ℎ)−1)1/2vol𝐠(𝑥)𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
∫
𝑌
⟨𝛼𝑔(𝜉1(𝑔−1))∣ ⟨𝑔 ⋅ 𝜁1(𝑔−1𝑥) ∣ ℎ ⋅ 𝜁2(ℎ−1𝑥)⟩

/𝑆⊗𝐴
𝛼ℎ(𝜉1(ℎ−1))⟩

𝑉⊗𝐴

×Δ𝐺((𝑔ℎ)−1)1/2vol𝐠(𝑥)𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
∫
𝑌
⟨𝑔 ⋅ 𝜁1(𝑔−1𝑥) ⊗̃ 𝛼𝑔(𝜉1(𝑔−1))∣ ℎ ⋅ 𝜁2(ℎ−1𝑥) ⊗̃ 𝛼ℎ(𝜉1(ℎ−1))⟩

/𝑆⊗̃𝑉 ⊗𝐴

×Δ𝐺((𝑔ℎ)−1)1/2vol𝐠(𝑥)𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝑌
⟨(𝜁1 ⊗̃ 𝜉2)(𝑥)∣ (𝜁2 ⊗̃ 𝜉2)(𝑥)⟩vol𝐠(𝑥).

So Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴) ⊗̃𝐴⋊𝑟𝐺 𝐿2(𝐺, 𝑉 ⊗ 𝐴) is isomorphic to 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴).
We shall show that

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)

is the constructive unbounded Kasparov product for

(𝐶0(𝑌 ,𝐴)𝐺, Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴)𝐴⋊𝑟𝐺
, /𝐷 ⊗ 1) ⊗𝐴⋊𝑟𝐺 (𝐴 ⋊𝑟 𝐺,𝐿2(𝐺, 𝑉 ) ⊗ 𝐴𝐴,𝑀ℓ ⊗ 1).

To apply [LM19, Theorem 7.4], we need to check the connection condition, that 1⊗̃𝑀ℓ̃⊗1 has bounded
commutators, and that /𝐷 ⊗̃ 1 ⊗ 1 and 1 ⊗̃ 𝑀ℓ̃ ⊗ 1 weakly anticommute.

First, 1 ⊗̃ 𝑀ℓ̃ ⊗ 1 commutes with the representation of 𝐶0(𝑌 ,𝐴)𝐺. Second, let 𝜁 ∈ Γ𝑐(𝑌 , /𝑆 ⊗ 𝐴)
and consider the operator 𝑇𝜁 ∈ Hom∗(𝐿2(𝐺, 𝑉 ⊗ 𝐴), 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)) given by

(𝑇𝜁𝜉)(𝑥) = (𝜁 ⊗̃ 𝜉)(𝑥) = ∫
𝐺
𝑔 ⋅ 𝜁(𝑔−1𝑥) ⊗̃ 𝛼𝑔(𝜉(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)

for 𝜉 ∈ 𝐶𝑐(𝐺, 𝑉 ⊗ 𝐴). We have

(((1 ⊗̃ 𝑀ℓ̃ ⊗ 1)𝑇𝜁 − 𝑇𝜁(𝑀ℓ ⊗ 1))𝜉)(𝑥) = ∫
𝐺
𝑔 ⋅ 𝜁(𝑔−1𝑥) ⊗̃ (ℓ̃(𝑥) − ℓ(𝑔−1))𝛼𝑔(𝜉(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔).

Let 𝜋 ∶ 𝐴 → 𝐵(𝐻𝜋) be an irreducible representation of 𝐴 and let 𝜂 ∈ 𝐻𝜋, so that 𝜉 ⊗ 𝜂 ∈ 𝐿2(𝐺, 𝑉 ⊗
𝐴) ⊗𝜋 𝐻𝜋. With 𝜉2 ∈ 𝐶𝑐(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴) ⊆ 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴), we compute

∣⟨𝜉2 ⊗ 𝜂∣ ((1 ⊗̃ 𝑀ℓ̃ ⊗ 1)𝑇𝜁 − 𝑇𝜁(𝑀ℓ ⊗ 1))𝜉 ⊗ 𝜂⟩∣

≤ ∫
𝑌
∫
𝑁
∣⟨𝜉2(𝑥) ⊗ 𝜂∣ 𝑔 ⋅ 𝜁(𝑔−1𝑥) ⊗̃ (ℓ̃(𝑥) − ℓ(𝑔−1))𝛼𝑔(𝜉(𝑔−1)) ⊗ 𝜂⟩∣Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)vol𝐠(𝑥)

≤ ∫
𝐺
∫
𝑁
‖𝜉2(𝑥) ⊗ 𝜂‖∥ℓ̃(𝑥) − ℓ(𝑔−1)∥‖𝑔 ⋅ 𝜁(𝑔−1𝑥)‖‖𝛼𝑔(𝜉(𝑔−1)) ⊗ 𝜂‖Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)vol𝐠(𝑥).

Next, by Lemma II.3.28,

𝑐 ∶= sup
𝑥∈supp𝜁,𝑔∈𝐺

∥ℓ̃(𝑔−1𝑥) − ℓ(𝑔−1)∥ ≤ sup
𝑥∈supp𝜁,𝑔∈𝐺

𝑑(𝑔−1 ⋅ 𝑥, 𝑔−1 ⋅ 𝑥0) = sup
𝑥∈supp𝜁

𝑑(𝑥, 𝑥0),
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which is finite by the compactness of supp 𝜁. Furthermore, we note that, if for some 𝑔, ℎ ∈ 𝐺, we know
that 𝑔−1𝑥, ℎ−1𝑥 ∈ supp 𝜁. In particular, 𝑥 ∈ 𝑔(supp 𝜁) ∩ ℎ(supp 𝜁) which implies that

𝑔(supp 𝜁) ∩ ℎ(supp 𝜁) ≠ ∅.

By the properness of the action of 𝐺 on 𝑌 and the compactness of supp 𝜁, we obtain that 𝑔−1ℎ is
guaranteed to be in some compact subset 𝐾 of 𝐺, independent of 𝑥. We denote by 𝜒𝐾 the characteristic
function of 𝐾. Putting 𝜉2 = ((1 ⊗̃ 𝑀ℓ̃ ⊗ 1)𝑇𝜁 − 𝑇𝜁(𝑀ℓ ⊗ 1))𝜉, we estimate that

∥((1 ⊗̃ 𝑀ℓ̃ ⊗ 1)𝑇𝜁 − 𝑇𝜁(𝑀ℓ ⊗ 1))𝜉 ⊗ 𝜂∥
2

≤ ∫
𝑌
∫
𝐺
∫
𝐺
∥ℓ̃(𝑥) − ℓ(ℎ−1)∥‖ℎ ⋅ 𝜁(ℎ−1𝑥)‖‖𝛼ℎ(𝜉(ℎ−1)) ⊗ 𝜂‖Δ𝐺(ℎ−1)1/2

× ∥ℓ̃(𝑥) − ℓ(𝑔−1)∥‖𝑔 ⋅ 𝜁(𝑔−1𝑥)‖‖𝛼𝑔(𝜉(𝑔−1)) ⊗ 𝜂‖Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)vol𝐠(𝑥)

≤ ∫
𝐺
∫
𝐺
(∫

𝑋
‖𝑔 ⋅ 𝜁(𝑔−1𝑥)‖‖ℎ ⋅ 𝜁(ℎ−1𝑥)‖vol𝐠(𝑥))

× ‖𝛼𝑔(𝜉(𝑔−1)) ⊗ 𝜂‖‖𝛼ℎ(𝜉(ℎ−1)) ⊗ 𝜂‖𝜒𝐾(𝑔−1ℎ)Δ𝐺(𝑔−1ℎ−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

× sup
𝑥∈𝑌 ,𝑔∈𝐺∣𝑔−1𝑥∈supp𝜁

∥ℓ̃(𝑥) − ℓ(𝑔−1)∥
2

≤ 𝑐2 ∫
𝑁
∫
𝑁
(∫

𝑋
‖𝑔 ⋅ 𝜁(𝑔−1𝑥)‖2vol𝐠(𝑥))

1/2
(∫

𝑌
‖ℎ ⋅ 𝜁(ℎ−1𝑥)‖2vol𝐠(𝑥))

1/2

× ‖𝛼𝑔(𝜉(𝑔−1)) ⊗ 𝜂‖‖𝛼ℎ(𝜉(ℎ−1)) ⊗ 𝜂‖𝜒𝐾(𝑔−1ℎ)Δ𝐺(𝑔−1ℎ−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= 𝑐2(∫
𝑋
‖𝜁(𝑥)‖2vol𝐠(𝑥))

×∫
𝐺
∫
𝐺
‖𝛼𝑔(𝜉(𝑔−1)) ⊗ 𝜂‖‖𝛼ℎ(𝜉(ℎ−1)) ⊗ 𝜂‖𝜒𝐾(𝑔−1ℎ)Δ𝐺(𝑔−1ℎ−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= 𝑐2(∫
𝑋
‖𝜁(𝑥)‖2vol𝐠(𝑥))

×∫
𝐺
∫
𝐺
‖𝛼𝑔(𝜉(𝑔−1)) ⊗ 𝜂‖‖𝛼𝑔ℎ(𝜉(ℎ−1𝑔−1)) ⊗ 𝜂‖𝜒𝐾(ℎ)Δ𝐺(𝑔−1)Δ𝐺(ℎ−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= 𝑐2(∫
𝑋
‖𝜁(𝑥)‖2vol𝐠(𝑥))

×∫
𝐺
∫
𝐺
‖𝛼𝑔−1(𝜉(𝑔)) ⊗ 𝜂‖‖𝛼𝑔−1ℎ(𝜉(ℎ−1𝑔)) ⊗ 𝜂‖𝜒𝐾(ℎ)Δ𝐺(ℎ−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

≤ 𝑐2 ∫
𝐺
(∫

𝐺
‖𝛼𝑔−1(𝜉(𝑔)) ⊗ 𝜂‖2𝑑𝜇(𝑔))

1/2
(∫

𝐺
‖𝛼𝑔−1ℎ(𝜉(ℎ−1𝑔)) ⊗ 𝜂‖𝑑𝜇(𝑔))

1/2

× 𝜒𝐾(ℎ)Δ𝐺(ℎ−1)1/2𝑑𝜇(ℎ)(∫
𝑋
‖𝜁(𝑥)‖2vol𝐠(𝑥))

= 𝑐2‖𝜉 ⊗ 𝜂‖2 ∫
𝐺
𝜒𝐾(ℎ)Δ𝐺(ℎ−1)1/2𝑑𝜇(ℎ)(∫

𝑋
‖𝜁(𝑥)‖2vol𝐠(𝑥))

≤ 𝑐2‖𝜉 ⊗ 𝜂‖2 ∫
𝐺
𝜇(𝐾) sup

ℎ∈𝐾
Δ𝐺(ℎ−1)1/2(∫

𝑋
‖𝜁(𝑥)‖2vol𝐠(𝑥))

= 𝑐′2‖𝜉 ⊗ 𝜂‖2

for 0 ≤ 𝑐′ < ∞ independent of 𝜉 and 𝜂. Now, by Lemma A.3.3,

∥(1 ⊗̃ 𝑀ℓ̃ ⊗ 1)𝑇𝜁 − 𝑇𝜁(𝑀ℓ ⊗ 1)∥ ≤ 𝑐′ < ∞.
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This gives us the condition [LM19, Theorem 7.4(i)].
We finally check that /𝐷⊗̃1⊗1 and 1 ⊗̃𝑀ℓ̃⊗1 weakly anticommute. If 𝛾1,… , 𝛾𝑚 are the generators

of 𝒞𝓁𝑚,

ℓ̃(𝑥) =
𝑚
∑
𝑖=1

⟨ℓ̃(𝑥) ∣ 𝛾𝑖⟩𝛾𝑖.

The components ⟨ℓ̃ ∣ 𝛾𝑖⟩ are Lipschitz continuous functions on 𝑌 by Lemma II.3.28. We may therefore
say that

( /𝐷 ⊗̃ 1 ⊗ 1)(1 ⊗̃ 𝑀ℓ̃ ⊗ 1) + (1 ⊗̃ 𝑀ℓ̃ ⊗ 1)( /𝐷 ⊗̃ 1 ⊗ 1) =
𝑚
∑
𝑖=1

[ /𝐷,𝑀⟨ℓ̃∣𝛾𝑖⟩] ⊗̃ 𝛾𝑖 ⊗ 1

is bounded below, and we are done.

We now make a basic observation about the fixed point algebra of a manifold with multiple path
components.

Lemma II.3.31. Let 𝐺 be a locally compact group acting properly on a manifold 𝑌. Let 𝐴 be
a 𝐺-C*-algebra. Let 𝑍 be a path component of 𝑌 and let 𝐺𝑍 be its stabiliser group. There is
an isomorphism between 𝐶0(𝑍,𝐴)𝐺𝑍 and 𝐶0(𝐺𝑍,𝐴)𝐺. Consequently, 𝐶0(𝑌 ,𝐴)𝐺 is isomorphic to
𝐶0(𝑍,𝐴)𝐺𝑍 ⊕𝐶0(𝑌 ∖ 𝐺𝑍,𝐴)𝐺.

Proof. First, the action of 𝐺 takes path components of 𝑌 to path components. If for some 𝑔 ∈ 𝐺 there
exist 𝑥, 𝑦 ∈ 𝑍 such that 𝑔𝑥 = 𝑦 then 𝑔 must be in the stabiliser group 𝐺𝑍 of 𝑍. Hence (𝐺𝑍)/𝐺 is the
same as 𝑍/𝐺𝑍. Remark also that the orbit 𝐺𝑍 and its complement in 𝑌 are manifolds.

Let 𝑓 ∈ 𝐶0(𝑍,𝐴)𝐺𝑍 ⊆ 𝐶𝑏(𝑍,𝐴). By definition of the fixed point algebra, we have

𝑓(𝑠𝑧) = 𝛼𝑠(𝑓(𝑧))

for 𝑠 ∈ 𝐺𝑍 and 𝑧 ∈ 𝑍. We first extend 𝑓 to a function 𝑓 ∈ 𝐶𝑏(𝐺𝑍,𝐴) by the formula

𝑓(𝑔𝑧) = 𝛼𝑔(𝑓(𝑧))

for 𝑔 ∈ 𝐺 and 𝑧 ∈ 𝑍. To see that this is well-defined, suppose that 𝑔𝑧 = ℎ𝑦 for 𝑔, ℎ ∈ 𝐺 and 𝑦, 𝑧 ∈ 𝑍,
and note that

𝛼𝑔(𝑓(𝑧)) = 𝛼𝑔(𝑓((ℎ𝑔−1)−1𝑦)) = 𝛼ℎ𝑔−1(𝛼𝑔(𝑓(𝑦))) = 𝛼ℎ(𝑓(𝑦)).

Note also that, for any ℎ ∈ 𝐺,

𝑓(ℎ𝑔𝑧) = 𝛼ℎ𝑔(𝑓(𝑧)) = 𝛼ℎ(𝑓(𝑔𝑧)).

Recalling that (𝐺𝑍)/𝐺 = 𝑍/𝐺𝑍 and that 𝑥 ↦ ‖𝑓(𝑥)‖ gives an element of 𝐶0(𝑍/𝐺𝑍), we obtain that
𝑓 ∈ 𝐶0(𝐺𝑍,𝐴)𝐺.

On the other hand, if 𝑓 ∈ 𝐶0(𝐺𝑍,𝐴)𝐺 ⊆ 𝐶𝑏(𝐺𝑍,𝐴), its restriction to 𝑍 gives an element 𝑓|𝑍 ∈
𝐶0(𝑍,𝐴)𝐺𝑍 .

Proposition II.3.32. Let 𝐺 be a locally compact group acting properly and isometrically on a CAT(0)
space (𝑋, 𝑑). Let 𝐴 be a 𝐺-C*-algebra. Suppose that there is a complete subspace 𝑌 of 𝑋 such that

• every path component of 𝑌 is a convex subset of 𝑋;

• 𝑌 is isometric to a spin𝑐 Riemannian 𝑛-manifold; and

• 𝐺 preserves 𝑌 and acts by spin𝑐 automorphisms.
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Let 𝑥0 ∈ 𝑋 be such that 𝑆𝑥0
(𝑋) is isometric to 𝐒𝑚−1 ⊂ ℝ𝑚. Let 𝑉 be a Clifford module for 𝒞𝓁𝑚 and

define

ℓ ∶ 𝐺 → End𝑉 ℓ̃ ∶ 𝑋 → End𝑉
𝑔 ↦ 𝑑(𝑔−1𝑥0, 𝑥0)𝑣(𝑔−1𝑥0, 𝑥0) 𝑥 ↦ 𝑑(𝑥, 𝑥0)𝑣(𝑥, 𝑥0).

The class of
(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)

in 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴) is equal to zero if 𝑥0 ∉ 𝑌 and, if 𝑥0 ∈ 𝑌, to the class of

𝜅∗
𝑌0
((𝐶0(𝑌0, 𝐴)𝐺𝑌0 , 𝐿2(𝑌0, /𝑆|𝑌0

⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗ 1 ⊗ 1 + 1 ⊗𝑀ℓ̃|𝑌0⊗1))

for the connected component 𝑌0 of 𝑌 containing 𝑥0, where the homomorphism 𝜅𝑌0
∶ 𝐶0(𝑌 ,𝐴)𝐺 →

𝐶0(𝑌0, 𝐴)
𝐺𝑌0 is given by restricting to 𝑌0.

Proof. Suppose that 𝑥0 ∈ 𝑌0. We first notice that

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)
= (𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌0, /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)

⊕ (𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 ∖ 𝑌0, /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)

and, since the image of the representation of 𝐶0(𝑌 ,𝐴)𝐺 on 𝐿2(𝑌0, /𝑆 ⊗̃ 𝑉 ⊗𝐴) is equal to 𝐶0(𝑌0, 𝐴)𝐺𝑌0 ,

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌0, /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)
= 𝜅∗

𝑌0
((𝐶0(𝑌0, 𝐴)𝐺𝑌0 , 𝐿2(𝑌0, /𝑆|𝑌0

⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗ 1 ⊗ 1 + 1 ⊗𝑀ℓ̃|𝑌0⊗1)).

Therefore, letting 𝑌 ′ = 𝑌 ∖ 𝑌0 if 𝑥0 ∈ 𝑌0 or 𝑌 ′ = 𝑌 if 𝑥0 ∉ 𝑌, it will suffice to show that

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 ′, /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)

represents the zero class in 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴).
First, ℓ|𝑌 ′ is a nonvanishing continuous function from 𝑌 ′ to 𝒞𝓁𝑛. Indeed, since 𝑌 is closed in 𝑋,

|ℓ|𝑌 ′ | is bounded below by some 𝜀 > 0; cf. [BH99, Proposition II.2.4]. The operator 𝑠 = 𝑀sgn ℓ|𝑌′ is
self-adjoint and unitary and commutes with the left action of 𝐶0(𝑌 ,𝐴)𝐺 on 𝐿2(𝑌 ′, /𝑆|𝑌 ′ ⊗̃ 𝑉 ). Let
𝑓 ∶ ℝ → ℝ be any Lipschitz continuous function which takes 𝑥 ↦ 𝑥−1 for 𝑥 ≥ 𝜀. If 𝛾1,… , 𝛾𝑚 are the
generators of 𝒞𝓁𝑚,

𝑠 =
𝑚
∑
𝑖=1

⟨𝑠 ∣ 𝛾𝑖⟩𝛾𝑖 =
𝑚
∑
𝑖=1

|ℓ̃|−1⟨ℓ̃ ∣ 𝛾𝑖⟩𝛾𝑖 =
𝑚
∑
𝑖=1

𝑓(|ℓ̃|)⟨ℓ̃ ∣ 𝛾𝑖⟩𝛾𝑖.

We see by Lemma II.3.28 that each ⟨𝑠 ∣ 𝛾𝑖⟩ is a Lipschitz continuous function on 𝑌 ′. Hence

( /𝐷 ⊗̃ 1 + 1 ⊗̃ 𝑀ℓ̃|𝑌′
)(1 ⊗ 𝑠) + (1 ⊗ 𝑠)( /𝐷 ⊗̃ 1 + 1 ⊗̃ 𝑀ℓ̃|𝑍)

=
𝑚
∑
𝑖=1

[ /𝐷, ⟨𝑠 ∣ 𝛾𝑖⟩] ⊗̃ 𝛾𝑖 + 1 ⊗̃ 2𝑀|ℓ̃|𝑍|

is semi-bounded below. Therefore

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 ′, /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃ ⊗ 1)

is positively degenerate, in the sense of Definition I.1.12, and so represents 0 ∈ 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴).
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Lemma II.3.33. Let 𝑋 be a locally compact Hausdorff space with a proper action of a locally compact
group 𝐺. Let 𝐴 be a 𝐺-C*-algebra. Let 𝐺𝐶0(𝑋,𝐴) be the partial imprimitivity 𝐶0(𝑋,𝐴)𝐺-𝐶0(𝑋,𝐴)⋊𝑟𝐺-
bimodule of Corollary A.2.7. Fix 𝑥0 ∈ 𝑋 and let 𝜔 ∶ 𝐶0(𝑋) → 𝐶0(𝐺) be the 𝐺-equivariant ∗-
homomorphism given by 𝜔(𝑓)(𝑔) = 𝑓(𝑔 ⋅ 𝑥0). Then

[𝐺𝐶0(𝑋,𝐴)] ⊗𝐶0(𝑋,𝐴)⋊𝑟𝐺 𝑗𝐺𝑟 (𝜎𝐴([𝜔])) ⊗ [𝐿2(𝐺,𝐴)] ∈ 𝐾𝐾0(𝐶0(𝑋,𝐴)𝐺, 𝐴)

is equal to the class of the homomorphism 𝜂 ∶ 𝐶0(𝑋,𝐴) → 𝐴 given by evaluation at 𝑥0.

Proof. Write
𝜔̃ ∶ 𝐶0(𝑋,𝐴) ⋊𝑟 𝐺 → 𝐶0(𝐺,𝐴) ⋊ 𝐺

for the homomorphism induced by 𝜔, given by

𝜔̃(𝑓)(ℎ, 𝑔) = 𝑓(ℎ, 𝑔 ⋅ 𝑥0) (𝑓 ∈ 𝐶𝑐(𝐺 ×𝑋,𝐴) ⊆ 𝐶0(𝑋,𝐴) ⋊ 𝐺).

Composing 𝜔̃ with the integrated representation of 𝐶0(𝐺,𝐴)⋊𝐺 on 𝐿2(𝐺,𝐴) produces a representation
𝜋 of 𝐶0(𝑋,𝐴) ⋊ 𝐺 on 𝐿2(𝐺,𝐴), given by

(𝜋(𝑓)𝜉)(𝑔) = ∫
𝐺
𝛼𝑔−1(𝜔̃(𝑓)(ℎ, 𝑔))𝜉(ℎ−1𝑔)𝑑𝜇(ℎ) = ∫

𝐺
𝛼𝑔−1(𝑓(ℎ, 𝑔 ⋅ 𝑥0))𝜉(ℎ−1𝑔)𝑑𝜇(ℎ)

for 𝑓 ∈ 𝐶𝑐(𝐺 ×𝑋,𝐴) and 𝜉 ∈ 𝐶𝑐(𝐺,𝐴). The image of 𝜋 is in End0𝐴(𝐿2(𝐺,𝐴)) ≅ 𝐶0(𝐺,𝐴) ⋊ 𝐺, so

(𝐶0(𝑋,𝐴) ⋊ 𝐺, 𝜋(𝐿2(𝐺,𝐴) ⊕ 0)𝐴, 0)

is an even unbounded Kasparov 𝐶0(𝑋,𝐴)⋊𝐺-𝐴-module, representing the class [𝜋] = 𝑗𝐺𝑟 ([𝜔])⊗𝐶0(𝐺,𝐴)⋊𝐺
[𝐿2(𝐺,𝐴)] ∈ 𝐾𝐾0(𝐶0(𝑋,𝐴)⋊𝐺,𝐴). Let us consider the induced left action of 𝐶0(𝑋,𝐴)𝐺 ⊆ 𝐶𝑏(𝑋,𝐴) ⊆
𝑀(𝐶0(𝑋,𝐴) ⋊ 𝐺) on 𝐿2(𝐺,𝐴). For 𝑓 ∈ 𝐶0(𝑋,𝐴)𝐺,

(𝜋(𝑓)𝜉)(𝑔) = 𝛼𝑔−1(𝑓(𝑔 ⋅ 𝑥0))𝜉(𝑔) = 𝑓(𝑥0)𝜉(𝑔)𝑑𝜇(𝑠).

Let 𝑐 be a cut-off function for the action of 𝐺 on 𝑋. Define 𝑝𝑐 ∈ 𝑀(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺), as in (A.2.5),
by

𝑝𝑐(𝑔, 𝑥) = 𝑐(𝑥)𝑐(𝑔−1𝑥)Δ𝐺(𝑔−1)1/2.

By Corollary A.2.7, 𝐺𝐶0(𝑋,𝐴) ≅ 𝑝𝑐(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺). Following [EE11, Lemma 3.9], define the vector
𝑐𝑥0

∈ 𝐶𝑐(𝐶,𝐴) ⊆ 𝐿2(𝐺,𝐴) by 𝑐𝑥0
(𝑔) = 𝑐(𝑔 ⋅ 𝑥0)Δ(𝑔−1)1/2. For 𝜉 ∈ 𝐶𝑐(𝐺,𝐴), we have

(𝜋(𝑝𝑐)𝜉)(𝑔) = ∫
𝐺
𝑝𝑐(𝑠, 𝑔 ⋅ 𝑥0)𝜉(𝑠−1𝑔)𝑑𝜇(𝑠)

= ∫
𝐺
𝑐(𝑔 ⋅ 𝑥0)𝑐(𝑠−1𝑔 ⋅ 𝑥0)Δ(𝑠−1)1/2𝜉(𝑠−1𝑔)𝑑𝜇(𝑠)

= ∫
𝐺
𝑐(𝑔 ⋅ 𝑥0)𝑐(𝑠−1 ⋅ 𝑥0)Δ(𝑠−1𝑔−1)1/2𝜉(𝑠−1)𝑑𝜇(𝑠)

= 𝑐𝑥0
(𝑔)∫

𝐺
𝑐(𝑠 ⋅ 𝑥0)Δ(𝑠−1)1/2𝜉(𝑠)𝑑𝜇(𝑠).

In other words, 𝜋(𝑝𝑐) projects 𝐿2(𝐺,𝐴) down to the right Hilbert 𝐴-submodule 𝑐𝑥0
𝐴. Hence

𝐺𝐶0(𝑋,𝐴) ⊗𝜋 𝐿2(𝐺,𝐴) ≅ 𝑝𝑐(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺) ⊗𝜋 𝐿2(𝐺,𝐴) = 𝜋(𝑝𝑐)𝐿2(𝐺,𝐴) = 𝑐𝑥0
𝐴.

The left action of 𝐶0(𝑋,𝐴)𝐺 on 𝑐𝑥0
𝐴 is given by 𝑓(𝑥0), as required.

Let us recall and finally prove



II.3. Directed length functions from actions on CAT(0) spaces 79

Theorem II.3.8. Let 𝐺 be a locally compact group acting properly and isometrically on a CAT(0)
space (𝑋, 𝑑). Let 𝐴 be a 𝐺-C*-algebra. Suppose that there is a complete subspace 𝑌 of 𝑋 such that

• every path component of 𝑌 is a convex subset of 𝑋;

• 𝑌 is isometric to a spin𝑐 Riemannian 𝑛-manifold;

• 𝑌 contains a neighbourhood of a point 𝑥0 ∈ 𝑋; and

• 𝐺 preserves 𝑌 and acts by spin𝑐 automorphisms.

Let 𝑥1 ∈ 𝑋 be a point not in 𝑌 but with 𝑆𝑥1
(𝑋) isometric to a sphere 𝐒𝑚−1 ⊆ ℝ𝑚. Let 𝑉0 be the

Clifford module /𝑆𝑥0
for 𝒞𝓁𝑛, with /𝑆 the fundamental spinor bundle on 𝑌. Let 𝑉1 be a Clifford module

for 𝒞𝓁𝑚. Define the weights

ℓ0 ∶ 𝐺 → End𝑉0 ℓ1 ∶ 𝐺 → End𝑉1
𝑔 ↦ 𝑑(𝑔−1𝑥0, 𝑥0)𝑣(𝑔−1𝑥0, 𝑥0) 𝑔 ↦ 𝑑(𝑔−1 ⋅ 𝑥1, 𝑥1)𝑣(𝑔−1 ⋅ 𝑥1, 𝑥1),

giving rise to 𝜎𝐴([ℓ0]), 𝜎𝐴([ℓ1]) ∈ 𝐾𝐾𝐺
∗ (𝐴,𝐶0(𝐺,𝐴)) and [𝑀ℓ0 ], [𝑀ℓ1 ] ∈ 𝐾𝐾𝐺

∗ (𝐴 ⋊𝑟 𝐺,𝐴) as in Corol-
lary II.3.5.

Let 𝛼𝑌 ∈ 𝐾𝐾𝐺
𝑛 (𝐶0(𝑌 ), ℂ) be the Atiyah–Singer Dirac class and let 𝐺𝐶0(𝑌 ,𝐴) be the partial

imprimitivity 𝐶0(𝑌 ,𝐴)𝐺-𝐶0(𝑌 ,𝐴) ⋊ 𝐺-bimodule of Theorem A.2.6. With 𝜂𝐺 ∶ 𝐶0(𝑌 ,𝐴)𝐺 → 𝐴 the
∗-homomorphism given by evaluating at 𝑥0,

[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 𝑟𝐺,1([𝑀ℓ0 ]) = [𝜂𝐺] ∈ 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐺, 𝐴)

and
[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 𝑟𝐺,1([𝑀ℓ1 ]) = 0 ∈ 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴).

Proof. Let 𝑌0 be the path component of 𝑌 containing 𝑥0, 𝐺𝑌0
its stabiliser group, and 𝜂𝐺,𝑌0

∶
𝐶0(𝑌0, 𝐴)

𝐺𝑌0 → 𝐴 the ∗-homomorphism given by evaluating at 𝑥0. Let 𝛼𝑌 ∈ 𝐾𝐾𝐺
𝑛 (𝐶0(𝑌 ), ℂ) be

the Atiyah–Singer Dirac class for 𝑌 and let 𝛼𝑌0
∈ 𝐾𝐾

𝐺𝑌0
𝑛 (𝐶0(𝑌0), ℂ) be the Atiyah–Singer Dirac class

for 𝑌0. We remark that 𝛼𝑌0
= 𝜄∗(𝛼𝑌) for the inclusion 𝜄 ∶ 𝑌0 ↪ 𝑌. Recall that, by Lemma II.3.31,

𝐶0(𝑌 ,𝐴)𝐺 is isomorphic to 𝐶0(𝑌0, 𝐴)𝐺𝑌0 ⊕𝐶0(𝑌 ∖𝐺𝑌0, 𝐴)𝐺. Let 𝜅𝑌0
∶ 𝐶0(𝑌 ,𝐴)𝐺 → 𝐶0(𝑌0, 𝐴)𝐺𝑌0 be the

∗-homomorphism given by restricting to the first term of the direct sum. Remark that 𝜂𝐺,𝑌0
◦𝜅𝑌0

= 𝜂𝐺.
Proposition II.3.30 tells us that, for 𝑗 ∈ {0, 1},

[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 [𝑀ℓ𝑗 ] ∈ 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴)

is represented by

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃𝑗 ⊗ 1).

Proposition II.3.32 tells us that

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃0 ⊗ 1)

and
𝜅∗
𝑌0
((𝐶0(𝑌0, 𝐴)𝐺𝑌0 , 𝐿2(𝑌0, /𝑆|𝑌0

⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗ 1 ⊗ 1 + 1 ⊗𝑀ℓ̃0|𝑌0⊗1))

have the same class in 𝐾𝐾0(𝐶0(𝑌 ,𝐴)𝐺, 𝐴) and that

(𝐶0(𝑌 ,𝐴)𝐺, 𝐿2(𝑌 , /𝑆 ⊗̃ 𝑉 ⊗ 𝐴)𝐴, /𝐷 ⊗̃ 1 ⊗ 1 + 1 ⊗̃ 𝑀ℓ̃1 ⊗ 1)
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has trivial class in 𝐾𝐾𝑚+𝑛(𝐶0(𝑌 ,𝐴)𝐺, 𝐴). That is,

[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 [𝑀ℓ0 ]

= [𝜅𝑌0
] ⊗𝐶0(𝑌0,𝐴)𝐺𝑌0 [𝐺𝑌0𝐶0(𝑌0, 𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌0

)) ⊗𝐴⋊𝑟𝐺 [𝑀ℓ0 ].

and
[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 [𝑀ℓ1 ] = 0.

Let 𝜔 ∶ 𝐶0(𝑌0) → 𝐶0(𝐺) be the 𝐺𝑌0
-equivariant ∗-homomorphism given by

𝜔(𝑓)(𝑔) = 𝑓(𝑔 ⋅ 𝑥0).

Since 𝑌0 is a spin𝑐 Hadamard manifold, with 𝐺𝑌0
acting by spin𝑐 isometries, there is a dual Dirac

element 𝛽𝑌0
∈ 𝐾𝐾

𝐺𝑌0
𝑛 (ℂ,𝐶0(𝑌0)) for which, by definition,

𝛼𝑌0
⊗ℂ 𝛽𝑌0

= 1 ∈ 𝐾𝐾
𝐺𝑌0
0 (𝐶0(𝑌0), 𝐶0(𝑌0)).

Further, by Remark II.3.13, 𝛽𝑌0
⊗𝐶0(𝑌0) [𝜔] = [ℓ0]. By Lemma II.3.33,

[𝐺𝐶0(𝑋,𝐴)] ⊗𝐶0(𝑋,𝐴)⋊𝑟𝐺 𝑗𝐺𝑟 (𝜎𝐴([𝜔])) ⊗ [𝐿2(𝐺,𝐴)] = [𝜂𝐺,𝑌0
] ∈ 𝐾𝐾0(𝐶0(𝑋,𝐴)𝐺, 𝐴)

where, as above, 𝜂𝐺,𝑌0
∶ 𝐶0(𝑌0, 𝐴)𝐺𝑌0 → 𝐴 is the ∗-homomorphism given by evaluating at 𝑥0. Putting

all this together,

[𝐺𝑌0𝐶0(𝑌0, 𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌0
)) ⊗𝐴⋊𝑟𝐺 [𝑀ℓ0 ]

= [𝐺𝑌0𝐶0(𝑌0, 𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌0
)) ⊗𝐴⋊𝑟𝐺 𝑗𝐺𝑟 (𝜎𝐴([ℓ0])) ⊗𝐶0(𝐺,𝐴)⋊𝑟𝐺 [𝐿2(𝐺,𝐴)]

= [𝐺𝑌0𝐶0(𝑌0, 𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌0
⊗ℂ 𝛽𝑌0

⊗𝐶0(𝑌0) [𝜔])) ⊗𝐶0(𝐺,𝐴)⋊𝑟𝐺 [𝐿2(𝐺,𝐴)]

= [𝐺𝑌0𝐶0(𝑌0, 𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴([𝜔])) ⊗𝐶0(𝐺,𝐴)⋊𝑟𝐺 [𝐿2(𝐺,𝐴)]
= [𝜂𝐺,𝑌0

]

and so

[𝐺𝐶0(𝑌 ,𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌)) ⊗𝐴⋊𝑟𝐺 [𝑀ℓ0 ]

= [𝜅𝑌0
] ⊗𝐶0(𝑌0,𝐴)𝐺𝑌0 [𝐺𝑌0𝐶0(𝑌0, 𝐴)] ⊗𝐶0(𝑌 ,𝐴)⋊𝐺 𝑗𝐺𝑟 (𝜎𝐴(𝛼𝑌0

)) ⊗𝐴⋊𝑟𝐺 [𝑀ℓ0 ]

= [𝜅𝑌0
] ⊗𝐶0(𝑌0,𝐴)𝐺𝑌0 [𝜂𝐺,𝑌0

]

= [𝜂𝐺],

as required.

II.4 The Kasparov product for group extensions
The understanding of group extensions in the framework of this Chapter is a microcosm of the more
general problem of the constructive unbounded Kasparov product. In particular, the constructive
product will often fail when approached naïvely, as we shall see in §§II.4.1 and II.4.2.

The external Kasparov product gives a map

𝐾𝐾𝐻(ℂ,𝐶0(𝐻)) ⊗ 𝐾𝐾𝑁(ℂ,𝐶0(𝑁)) → 𝐾𝐾𝐻×𝑁(ℂ,𝐶0(𝐻 ×𝑁))

for a direct product𝐻×𝑁 of groups. This map is constructive for unbounded Kasparov modules. Indeed,
if one has self-adjoint, proper, translation-bounded weights ℓ𝑁 ∶ 𝑁 → End𝑉𝑁 and ℓ𝐻 ∶ 𝐻 → End𝑉𝐻
then

ℓ𝐻×𝑁 ∶= 𝜋∗
1(ℓ𝐻) ⊗̃ 1 + 1 ⊗̃ 𝜋∗

2(ℓ𝑁) ∶ 𝐻 × 𝑁 → 𝑉𝐻×𝑁 ∶= 𝑉𝐻 ⊗̃ 𝑉𝑁
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is a self-adjoint, proper, translation-bounded weight, where 𝜋1 ∶ 𝐻 ×𝑁 → 𝐻 and 𝜋2 ∶ 𝐻 ×𝑁 → 𝑁 are
the projection homomorphisms.

More generally, let us consider short exact sequences

0 𝑁 𝐺 𝐻 0,𝜄 𝜋

of locally compact groups, that is, 𝜄 is a homeomorphism onto 𝜄(𝑁), a closed normal subgroup of 𝐺,
and 𝐻 is isomorphic to 𝐺/𝜄(𝑁) as a topological group; see [Wil07, §1.2.4] for more details.

Proposition II.4.1. Let
0 𝑁 𝐺 𝐻 0𝜄 𝜋

be an exact sequence of locally compact groups and let 𝐴 be a 𝐺-C*-algebra. Suppose that we have a
self-adjoint, proper, translation-bounded weight ℓ𝑁 ∶ 𝑁 → End𝑉𝑁. Define the weight ⏜ℓ𝑁 ∶ 𝐺 → End𝑉𝑁
by

⏜ℓ𝑁(𝑔) = ∫
𝐻
𝑐(𝑔𝑠)2ℓ𝑁(𝑠−1)𝑑𝜇𝑁(𝑠)

where 𝑐 ∈ 𝐶𝑏(𝐺) is a cut-off function for the right action of 𝑁 on 𝐺. Then

(𝐶0(𝐻,𝐴), 𝐶0(𝐺,𝐴 ⊗ 𝑉𝑁)𝐶0(𝐺,𝐴), ⏜ℓ𝑁 )

is a uniformly 𝐺-equivariant unbounded Kasparov module.
More generally, if ℓ̃𝑁 ∶ 𝐺 → 𝑉𝑁 is a self-adjoint weight such that

sup
𝑛∈𝑁

‖ℓ̃𝑁(𝜄(𝑛)) − ℓ𝑁(𝑛)‖ < ∞

then
(𝐶0(𝐻,𝐴), 𝐶0(𝐺,𝐴 ⊗ 𝑉𝑁)𝐶0(𝐺,𝐴), ℓ̃𝑁)

is a uniformly 𝐺-equivariant unbounded Kasparov module.

Proof. By Proposition II.2.32, ⏜ℓ𝑁(𝑔) is a self-adjoint weight. Further, the algebra 𝐶0(𝐻,𝐴) commutes
with the operator ⏜ℓ𝑁.

For the 𝐺-equivariance, observe that, for an implementer 𝑈𝑔 of the action, an algebra element
𝑓 ∈ 𝐶𝑐(𝐻,𝐴), and a vector 𝜉 ∈ 𝐶𝑐(𝐺,𝐴 ⊗ 𝑉𝑁),

((𝑈𝑔ℓ𝑈∗
𝑔 − ℓ)𝑓𝜉)(ℎ) = (ℓ(𝑔ℎ) − ℓ(ℎ))𝑓(𝜋(ℎ))𝜉(ℎ).

So
∥(𝑈𝑔

⏜ℓ𝑁 𝑈∗
𝑔 − ⏜ℓ𝑁)𝑓∥ ≤ ‖𝑓‖ sup

𝑘𝑢∈supp𝑓
∥⏜ℓ𝑁(𝑔𝑘𝑢) − ⏜ℓ𝑁(𝑘𝑢)∥ < ∞

by Proposition II.2.32. Furthermore, if we apply Lemma II.2.4 to the function from 𝐺 × 𝐺 to
End𝑉𝑁 given by (𝑔, ℎ) ↦ (ℓ(𝑔ℎ) − ℓ(ℎ))𝑓(ℎ), we obtain that 𝑔 ↦ (𝑈𝑔ℓ𝑈 ∗

𝑔 − ℓ)𝑓 is an element of
𝐶(𝐺,𝐶𝑏(𝐺,End𝑉𝑁)𝛽) and so ∗-strongly continuous into End∗(𝐶0(𝐺,𝐴⊗𝑉 )) ≅ 𝐶𝑏(𝐺,𝑀(𝐴)𝛽⊗End𝑉𝑁).

Again let 𝑓 ∈ 𝐶𝑐(𝐻,𝐴). By Proposition II.2.32,

(1 + ⏜ℓ
2
)−1|𝜋−1(supp(𝑓)) ∈ 𝐶0(𝜋−1(supp(𝑓)), End𝑉𝑁) ⊆ 𝐶0(𝐺,End𝑉𝑁).

So, for all 𝑎 ∈ 𝐴, 𝑎𝑓(1 + ℓ2)−1 ∈ 𝐶0(𝐺,𝐴 ⊗ End𝑉𝑁).



82 Chapter II. Noncommutative-geometric group theory

Theorem II.4.2. Let
0 𝑁 𝐺 𝐻 0𝜄 𝜋

be an exact sequence of locally compact groups and let 𝐴 be a 𝐺-C*-algebra. Suppose that we have
self-adjoint, proper, translation-bounded weights ℓ𝑁 ∶ 𝑁 → End𝑉𝑁 and ℓ𝐻 ∶ 𝐻 → End𝑉𝐻. Define the
weight ⏜ℓ𝑁 ∶ 𝐺 → End𝑉𝑁 by

⏜ℓ𝑁(𝑔) = ∫
𝐻
𝑐(𝑔𝑠)2ℓ𝑁(𝑠−1)𝑑𝜇𝑁(𝑠)

where 𝑐 ∈ 𝐶𝑏(𝐺) is a cut-off function for the right action of 𝑁 on 𝐺. Then

ℓ𝐺 ∶= 𝜋∗(ℓ𝐻) ⊗̃ 1 + 1 ⊗̃ ⏜ℓ𝑁 ∶ 𝐺 → 𝑉𝐺 ∶= 𝑉𝐻 ⊗̃ 𝑉𝑁

is a self-adjoint proper weight. If ⏜ℓ𝑁 is translation-bounded, then so is ℓ𝐺 and

𝐺(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉𝐺)𝐶0(𝐺,𝐴), ℓ𝐺)

represents the Kasparov product

𝐺(𝐴,𝐶0(𝐻,𝐴 ⊗ 𝑉𝐻)𝐶0(𝐻,𝐴), ℓ𝐻) ⊗𝐶0(𝐻,𝐴)
𝐺(𝐶0(𝐻,𝐴), 𝐶0(𝐺,𝐴 ⊗ 𝑉𝑁)𝐶0(𝐺,𝐴), ⏜ℓ𝑁 ). (II.4.3)

More generally, suppose that we have a self-adjoint, translation-bounded weight ℓ̃𝑁 ∶ 𝐺 → 𝑉𝑁 such that

sup
𝑛∈𝑁

‖ℓ̃𝑁(𝜄(𝑛)) − ℓ𝑁(𝑛)‖ < ∞.

Then ℓ𝐺 ∶= 𝜋∗(ℓ𝐻) ⊗̃ 1 + 1 ⊗̃ ℓ̃𝑁 ∶ 𝐺 → 𝑉𝐺 is a self-adjoint, proper, translation-bounded weight and

𝐺(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉𝐺)𝐶0(𝐺,𝐴), ℓ𝐺)

represents the Kasparov product (II.4.3).

Proof. It is immediate that ℓ𝐺 is self-adjoint. Instead of proving the properness of ℓ𝐺 directly we shall
make use of the constructive unbounded Kasparov product. First, for 𝜉 ∈ 𝐶𝑐(𝐻,𝐴 ⊗ 𝑉𝐻) and the
corresponding operator 𝑇𝜉 ∈ Hom∗(𝐶0(𝐺,𝐴 ⊗ 𝑉𝑁), 𝐶0(𝐺,𝐴 ⊗ 𝑉𝐺)),

(1 ⊗̃ ⏜ℓ𝑁)𝑇𝜉 − 𝑇𝜉 ⏜ℓ𝑁 = 0.

Second, 𝜋∗(ℓ𝐻) ⊗̃ 1 and 1 ⊗̃ ⏜ℓ𝑁 anticommute on the common core 𝐶𝑐(𝐺,𝐴 ⊗ 𝑉𝐺), which they also
preserve. Hence, by [LM19, Theorem 7.4],

𝑎(1 + ℓ2𝐺)−1 ∈ End0(𝐺,𝐴 ⊗ 𝑉𝐺) = 𝐶0(𝐺,𝐴 ⊗ End𝑉𝐺)

for all 𝑎 ∈ 𝐴. By considering the case 𝐴 = ℂ, we obtain that ℓ𝐺 is proper. Now, suppose that ⏜ℓ𝑁
is translation-bounded, making ℓ𝐺 translation-bounded as well. We obtain an unbounded Kasparov
module

𝐺(𝐴,𝐶0(𝐺,𝐴 ⊗ 𝑉𝐺)𝐶0(𝐺,𝐴), ℓ𝐺)

which represents the Kasparov product.
Now, instead, suppose we have a weight ℓ̃𝑁 as in the statement. The self-adjointness of ℓ𝐺 ∶=

𝜋∗(ℓ𝐻) ⊗̃ 1 + 1 ⊗̃ ℓ̃𝑁 ∶ 𝐺 → 𝑉𝐺 is immediate. Next, for all 𝑔 ∈ 𝐺,

sup
ℎ∈𝐺

∥ℓ𝐺(𝑔ℎ) − ℓ𝐺(ℎ)∥
2
= sup

ℎ∈𝐺
∥(ℓ𝐻(𝜋(𝑔ℎ)) − ℓ𝐻(𝜋(ℎ))) ⊗̃ 1 + 1 ⊗̃ (ℓ̃𝑁(𝑔ℎ) − ℓ̃𝑁(ℎ))∥

2

≤ sup
𝑠∈𝐻

∥ℓ𝐻(𝜋(𝑔)𝑠) − ℓ𝐻(𝑠)∥
2
+ sup

ℎ∈𝐺
∥ℓ̃𝑁(𝑔ℎ) − ℓ̃𝑁(ℎ)∥

2

< ∞.
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Remark that

ℓ̃𝑁(𝑔) − ⏜ℓ𝑁(𝑔) = ∫
𝐻
𝑐(𝑔𝑠)2(ℓ̃𝑁(𝑔) − ℓ𝑁(𝑠−1))𝑑𝜇𝑁(𝑠)

= ∫
𝐻
𝑐(𝑔𝑠)2(ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝜄(𝑠−1)) + ℓ̃𝑁(𝜄(𝑠−1)) − ℓ𝑁(𝑠−1))𝑑𝜇𝑁(𝑠)

and so

sup
𝑔∈𝐺

∥ℓ̃𝑁(𝑔) − ⏜ℓ𝑁(𝑔)∥ ≤ sup
𝑔∈𝐺

sup
𝑠∈𝑁∩𝑔−1 supp𝑐

∥ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝜄(𝑠−1))∥ + sup
𝑠∈𝑁

∥ℓ̃𝑁(𝜄(𝑠−1)) − ℓ𝑁(𝑠−1)∥

≤ sup
𝑔∈𝐺

sup
𝑠∈𝑁∩supp𝑐

∥ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝜄(𝑠−1)𝑔)∥ + sup
𝑠∈𝑁

∥ℓ̃𝑁(𝜄(𝑠−1)) − ℓ𝑁(𝑠−1)∥

< ∞

by the compactness of 𝑁 ∩ supp 𝑐 and the assumed bound. Hence, ℓ̃𝑁 − ⏜ℓ𝑁 ∈ 𝐶𝑏(𝐺,End𝑉 ). As
we have seen, 𝜋∗(ℓ𝐻) ⊗̃ 1 + 1 ⊗̃ ⏜ℓ𝑁 is proper (without any assumption on ⏜ℓ𝑁) and therefore so is
ℓ𝐺 = 𝜋∗(ℓ𝐻) ⊗̃ 1 + 1 ⊗̃ ℓ̃𝑁. The boundedness of the difference implies that the class in KK-theory is
the same.

Remark II.4.4. By Remark II.2.34, we can indeed take ℓ̃𝑁 = ⏜ℓ𝑁 in Theorem II.4.2, except that it may
not be translation-bounded. Implicit is the fact that, if any ℓ̃𝑁 exists fulfilling all the conditions of
Theorem II.4.2, then the collection of all such weights ℓ̃𝑁 forms an affine space containing ⏜ℓ𝑁. This is
not surprising; indeed, such weights are connections for the constructive unbounded Kasparov product;
cf. [Mes12].

We now turn to the reduced partial cross-sectional Fell bundles of §II.2.2.2.

Proposition II.4.5. Let
0 𝑁 𝐺 𝐻 0𝜄 𝜋

be an exact sequence of locally compact groups. Let ℬ be a fissured Fell bundle over 𝐺 and 𝒞 the
reduced partial-cross sectional Fell bundle over 𝐻 = 𝐺/𝑁. If ℓ𝐻 ∶ 𝐻 → End𝑉𝐻 is a self-adjoint, proper,
translation-bounded weight then

(𝐶∗
𝑟 (𝒞), (𝐿2(𝒞) ⊗ 𝑉𝐻)𝐶𝑁

,𝑀ℓ𝐻)

is an isometrically 𝐺̂-equivariant unbounded Kasparov module.

Proof. By Proposition II.2.23, 𝒞 is fissured. Applying Theorem II.2.24,

(𝐶∗
𝑟 (𝒞), (𝐿2(𝒞) ⊗ 𝑉𝐻)𝐶𝑁

,𝑀ℓ𝐻)

is an isometrically 𝐻̂-equivariant unbounded Kasparov module. However, since 𝐶∗
𝑟 (𝒞) is isomorphic to

𝐶∗
𝑟 (ℬ), it possesses a 𝐺̂-action. Further, since 𝐶𝑁 = 𝐶∗

𝑟 (ℬ𝑁), it too possesses a 𝐺̂-action, pulled back
from the 𝑁̂-action. The formula (II.2.11) gives a 𝐺̂-action on 𝐿2(𝒞), for the dense subset 𝐶𝑐(ℬ). It is
routine to check that these actions of 𝐺̂ are compatible. The fact that 𝑀ℓ acts by multiplication by
ℓ𝐻(𝜋(𝑔)) on each fibre 𝐵𝑔 of ℬ implies that it is isometrically 𝐺̂-equivariant.

Theorem II.4.6. Let
0 𝑁 𝐺 𝐻 0𝜄 𝜋

be an exact sequence of locally compact groups. Let ℬ be a fissured Fell bundle over 𝐺 and 𝒞 the
reduced partial-cross sectional Fell bundle over 𝐻 = 𝐺/𝑁.
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Let ℓ𝑁 ∶ 𝑁 → End𝑉𝑁 and ℓ𝐻 ∶ 𝐻 → End𝑉𝐻 be self-adjoint, proper, translation-bounded weights.
Suppose that we have a self-adjoint, translation-bounded weight ℓ̃𝑁 ∶ 𝐺 → 𝑉𝑁 such that

sup
𝑛∈𝑁

‖ℓ̃𝑁(𝜄(𝑛)) − ℓ𝑁(𝑛)‖ < ∞. (II.4.7)

Let ℓ𝐺 ∶= 𝜋∗(ℓ𝐻) ⊗̃ 1 + 1 ⊗̃ ℓ̃𝑁 ∶ 𝐺 → 𝑉𝐺 ∶= 𝑉𝐻 ⊗̃ 𝑉𝑁. The unbounded Kasparov module

𝐺(𝐶∗
𝑟 (ℬ), (𝐿2(ℬ) ⊗ 𝑉𝐺)𝐵𝑒

,𝑀ℓ𝐺)

represents the Kasparov product

𝐺(𝐶∗
𝑟 (𝒞), (𝐿2(𝒞) ⊗ 𝑉𝐻)𝐶𝑁

,𝑀ℓ𝐻) ⊗𝐶∗
𝑟(ℬ𝑁)

𝐺(𝐶∗
𝑟 (ℬ𝑁), (𝐿2(ℬ𝑁) ⊗ 𝑉𝑁)𝐵𝑒

,𝑀ℓ𝑁).

Recall that, by definition, 𝐶𝑁 = 𝐶∗
𝑟 (ℬ𝑁) and that there is an isomorphism 𝐶∗

𝑟 (𝒞) ≅ 𝐶∗
𝑟 (ℬ), so the

statement is sensible.

Proof. First, recall from §II.2.2.2 the isomorphism

𝐿2(𝒞) ⊗𝐶𝑁
𝐿2(ℬ𝐻) ≅ 𝐿2(ℬ)

of Hilbert 𝐵𝑒-modules. Second, 𝜋∗(ℓ𝐻) ⊗̃ 1 and 1 ⊗̃ ℓ̃𝑁 anticommute, so the positivity condition of
Theorem I.4.3 is satisfied. We therefore need only to check the connection condition.

Let 𝜁 ∈ 𝐶𝑐(ℬ)⊗𝑉𝐻 ⊆ 𝐿2(𝒞)⊗𝑉𝐻 and consider the operator 𝑇𝜁 ∈ Hom∗(𝐿2(ℬ𝑁)⊗𝑉𝑁, 𝐿2(ℬ)⊗𝑉𝐺)
given by

(𝑇𝜁𝜉)(𝑔) = ∫
𝑁
𝜁(𝑔𝑛) ⊗̃ 𝜉(𝑛−1)𝑑𝜇𝑁(𝑛)

for 𝜉 ∈ 𝐶𝑐(ℬ𝑁) ⊗ 𝑉𝑁 and 𝑔 ∈ 𝐺. We have

𝑀ℓ𝐺𝑇𝜁 − 𝑇𝜁𝑀ℓ𝑁 = (1 ⊗̃ 𝑀ℓ̃𝑁
)𝑇𝜁 − 𝑇𝜁𝑀𝜄∗(ℓ̃𝑁) + 𝑇𝜁𝑀𝜄∗(ℓ̃𝑁)−ℓ𝑁

+ (𝑀𝜋∗(ℓ𝐻) ⊗̃ 1)𝑇𝜁.

The final two terms are both bounded, by the assumption (II.4.7), so it will suffice for the connection
condition to show that the remainder is also bounded. Still with 𝜉 ∈ 𝐶𝑐(ℬ𝑁) ⊗ 𝑉𝑁, for 𝑔 ∈ 𝐺,

(((1 ⊗̃ 𝑀ℓ̃𝑁
)𝑇𝜁 − 𝑇𝜁𝑀𝜄∗(ℓ̃𝑁))𝜉)(𝑔) = ∫

𝑁
𝜁(𝑔𝑛) ⊗̃ (ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝑛−1))𝜉(𝑛−1)𝑑𝜇𝑁(𝑛).

Let 𝜋 ∶ 𝐵𝑒 → 𝐵(𝐻𝜋) be an irreducible representation of 𝐵𝑒 and let 𝜂 ∈ 𝐻𝜋, so that 𝜉 ⊗ 𝜂 ∈
(𝐿2(ℬ𝑁) ⊗ 𝑉𝑁) ⊗𝜋 𝐻𝜋. With 𝜉2 ∈ 𝐶𝑐(ℬ) ⊗ 𝑉𝐺 ⊆ 𝐿2(ℬ) ⊗ 𝑉𝐺, we compute

∣⟨𝜉2 ⊗ 𝜂∣ ((1 ⊗̃ 𝑀ℓ̃𝑁
)𝑇𝜁 − 𝑇𝜁𝑀𝜄∗(ℓ̃𝑁))𝜉 ⊗ 𝜂⟩∣

≤ ∫
𝐺
∫
𝑁
∣⟨𝜉2(𝑔) ⊗ 𝜂∣ 𝜁(𝑔𝑛) ⊗̃ (ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝑛−1))𝜉(𝑛−1) ⊗ 𝜂⟩∣𝑑𝜇𝑁(𝑛)𝑑𝜇𝐺(𝑔)

≤ ∫
𝐺
∫
𝑁
‖𝜉2(𝑔) ⊗ 𝜂‖∥ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝑛−1)∥‖𝜁(𝑔𝑛)‖‖𝜉(𝑛−1) ⊗ 𝜂‖𝑑𝜇𝑁(𝑛)𝑑𝜇𝐺(𝑔).

Next, we let
𝑐 = sup

𝑔∈supp𝜁,𝑛∈𝐻
∥ℓ̃𝑁(𝑔𝑛) − ℓ̃𝑁(𝑛)∥,
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which is finite by the compactness of supp 𝜁 and Lemma II.2.4. Putting 𝜉2 = ((1⊗̃𝑀ℓ̃𝑁
)𝑇𝜁−𝑇𝜁𝑀𝜄∗(ℓ̃𝑁))𝜉,

we estimate that

∥((1 ⊗̃ 𝑀ℓ̃𝑁
)𝑇𝜁 − 𝑇𝜁𝑀𝜄∗(ℓ̃𝑁))𝜉 ⊗ 𝜂∥

2

≤ ∫
𝐺
∫
𝑁
∫
𝑁
∥ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝑠−1)∥‖𝜁(𝑔𝑠)‖‖𝜉(𝑠−1) ⊗ 𝜂‖

× ∥ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝑛−1)∥‖𝜁(𝑔𝑛)‖‖𝜉(𝑛−1) ⊗ 𝜂‖𝑑𝜇𝑁(𝑠)𝑑𝜇𝑁(𝑛)𝑑𝜇𝐺(𝑔)

≤ ∫
𝑁
∫
𝑁
(∫

𝐺
‖𝜁(𝑔𝑠)‖‖𝜁(𝑔𝑛)‖𝑑𝜇𝐺(𝑔))

× ‖𝜉(𝑠−1) ⊗ 𝜂‖‖𝜉(𝑛−1) ⊗ 𝜂‖𝜒(supp𝜁)−1(supp𝜁)(𝑠−1𝑛)𝑑𝜇𝑁(𝑠)𝑑𝜇𝑁(𝑛)

× sup
𝑔∈𝐺,𝑛∈𝐻∣𝑔𝑛∈supp𝜁

∥ℓ̃𝑁(𝑔) − ℓ̃𝑁(𝑛−1)∥
2

≤ 𝑐2 ∫
𝑁
∫
𝑁
(∫

𝐺
‖𝜁(𝑔𝑠)‖2𝑑𝜇𝐺(𝑔))

1/2
(∫

𝐺
‖𝜁(𝑔𝑛)‖2𝑑𝜇𝐺(𝑔))

1/2

× ‖𝜉(𝑠−1) ⊗ 𝜂‖‖𝜉(𝑛−1) ⊗ 𝜂‖𝜒(supp𝜁)−1(supp𝜁)(𝑠−1𝑛)𝑑𝜇𝑁(𝑠)𝑑𝜇𝑁(𝑛)

= 𝑐2(∫
𝐺
‖𝜁(𝑔)‖2𝑑𝜇𝐺(𝑔))∫

𝑁
∫
𝑁
Δ𝐺(𝑠−1)1/2Δ𝐺(𝑛−1)1/2

× ‖𝜉(𝑠−1) ⊗ 𝜂‖‖𝜉(𝑛−1) ⊗ 𝜂‖𝜒(supp𝜁)−1(supp𝜁)(𝑠−1𝑛)𝑑𝜇𝑁(𝑠)𝑑𝜇𝑁(𝑛)

= ∫
𝑁
∫
𝑁
Δ𝐺(𝑠−1)Δ𝐺(𝑛−1)1/2‖𝜉(𝑠−1) ⊗ 𝜂‖‖𝜉(𝑛−1𝑠−1) ⊗ 𝜂‖𝜒(supp𝜁)−1(supp𝜁)(𝑛)𝑑𝜇𝑁(𝑛)𝑑𝜇𝑁(𝑠)

× 𝑐2(∫
𝐺
‖𝜁(𝑔)‖2𝑑𝜇𝐺(𝑔))

= ∫
𝑁
∫
𝑁
‖𝜉(𝑠) ⊗ 𝜂‖‖𝜉(𝑛−1𝑠) ⊗ 𝜂‖𝑑𝜇𝑁(𝑠)𝜒(supp𝜁)−1(supp𝜁)(𝑛)Δ𝐺(𝑛−1)1/2𝑑𝜇𝑁(𝑛)

× 𝑐2(∫
𝐺
‖𝜁(𝑔)‖2𝑑𝜇𝐺(𝑔))

≤ 𝑐2 ∫
𝑁
(∫

𝑁
‖𝜉(𝑠) ⊗ 𝜂‖2𝑑𝜇𝑁(𝑠))

1/2
(∫

𝑁
‖𝜉(𝑛−1𝑠) ⊗ 𝜂‖2𝑑𝜇𝑁(𝑠))

1/2

× 𝜒(supp𝜁)−1(supp𝜁)(𝑛)Δ𝐺(𝑛−1)1/2𝑑𝜇𝑁(𝑛)(∫
𝐺
‖𝜁(𝑔)‖2𝑑𝜇𝐺(𝑔))

= 𝑐2‖𝜉 ⊗ 𝜂‖2 ∫
𝑁
𝜒(supp𝜁)−1(supp𝜁)(𝑛)Δ𝐺(𝑛−1)1/2𝑑𝜇𝑁(𝑛)(∫

𝐺
‖𝜁(𝑔)‖2𝑑𝜇𝐺(𝑔))

≤ 𝑐2‖𝜉 ⊗ 𝜂‖2𝜇𝑁((supp 𝜁)−1(supp 𝜁)) sup
𝑛∈(supp𝜁)−1(supp𝜁)

Δ𝐺(𝑛−1)1/2(∫
𝐺
‖𝜁(𝑔)‖2𝑑𝜇𝐺(𝑔))

= 𝑐′2‖𝜉 ⊗ 𝜂‖2

for 0 ≤ 𝑐′ < ∞ independent of 𝜉 and 𝜂. Now, taking the supremum over irreducible representations
𝜋 ∶ 𝐵𝑒 → 𝐵(𝐻𝜋), Lemma A.3.3 yields

∥(1 ⊗̃ 𝑀ℓ̃𝑁
)𝑇𝜁 − 𝑇𝜁𝑀𝜄∗(ℓ̃𝑁)∥ ≤ 𝑐′ < ∞

and we are done.

Example II.4.8. The universal cover of 𝑆𝐿(2,ℝ) fits into the exact sequence

0 ℤ 𝑆𝐿(2,ℝ) 𝑆𝐿(2,ℝ) 0𝜄 𝜋 .
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As this is a central extension, we may represent elements of 𝑆𝐿(2,ℝ) as pairs in 𝑆𝐿(2,ℝ) × ℤ, with
the multiplication law

(𝑔1, 𝑛1)(𝑔2, 𝑛2) = (𝑔1𝑔2, 𝑛1 + 𝑛2 +𝑊(𝑔1, 𝑔2))

for some 2-cocycle 𝑊. A remarkably simple explicit form for 𝑊 is given in [Asa70, Theorem 2]. If we
define sgn ∶ 𝑆𝐿(2,ℝ) → {−1, 0,+1} by

sgn(𝑎 𝑏
𝑐 𝑑) =

⎧{
⎨{⎩

sgn(𝑐) 𝑐 ≠ 0
sgn(𝑎) = sgn(𝑑) 𝑐 = 0

,

we may let

𝑊(𝑔1, 𝑔2) =

⎧{{
⎨{{⎩

+1 +1 = sgn(𝑔1) = sgn(𝑔2) = − sgn(𝑔1𝑔2)
−1 −1 = sgn(𝑔1) = sgn(𝑔2) = − sgn(𝑔1𝑔2)
0 otherwise

.

To produce a weight ℓ̃ℤ, we cannot simply take (𝑔, 𝑛) ↦ 𝑛 as this is not continuous. To remedy the
situation, we appeal to the Iwasawa decomposition of 𝑆𝐿(2,ℝ). Following [Asa70, §1-1], any element
of 𝑆𝐿(2,ℤ) can be uniquely decomposed as

𝑔 = (1 𝑥
1)(𝑦1/2

𝑦−1/2)(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) = 𝑦−1/2 (𝑥sin 𝜃 + 𝑦 cos 𝜃 𝑥 cos 𝜃 − 𝑦 sin 𝜃

sin 𝜃 cos 𝜃 )

where 𝑥 + 𝑖𝑦 is a point in the upper-half plane and 𝜃 ∈ [−𝜋, 𝜋). We have

sgn(𝑔) =

⎧{{
⎨{{⎩

sgn(𝜃) 𝜃 ∈ (−𝜋, 0) ∪ (0, 𝜋)
+1 𝜃 = 0
−1 𝜃 = −𝜋

=
⎧{
⎨{⎩

+1 𝜃 ∈ [0, 𝜋)
−1 𝜃 ∈ [−𝜋, 0)

.

By [Asa70, §1-2], the function ℓ̃ℤ ∶ 𝑆𝐿(2,ℝ) → ℂ given by

ℓ̃ℤ(𝑔, 𝑛) =
𝜃
2𝜋

+ 𝑛

is continuous. By [Asa70, (5)], with arg ∶ ℂ ∖ {0} → [−𝜋, 𝜋),

ℓ̃ℤ((𝑔1, 𝑛1)(𝑔2, 𝑛2)) =
𝜃2
2𝜋

+ 𝑛2 +
1
2𝜋

arg((𝑥2 + 𝑖𝑦2) sin 𝜃1 + cos 𝜃1) + 𝑛1

and so
ℓ̃ℤ((𝑔1, 𝑛1)(𝑔2, 𝑛2)) − ℓ̃ℤ(𝑔2, 𝑛2) =

1
2𝜋

arg((𝑥2 + 𝑖𝑦2) sin 𝜃1 + cos 𝜃1) + 𝑛1

is bounded by |𝑛1| + 1
2 . (This latter is just a consequence of the boundedness of the cocycle 𝑊.) For

the open neighbourhood
𝑈 = {(𝑔, 0) ∣ 𝜃 ∈ (−𝜋, 𝜋)}

of the identity (𝑒, 0) ∈ 𝑆𝐿(2,ℝ),

sup
(𝑔1,𝑛1)∈𝑈,(𝑔2,𝑛2)∈𝑆𝐿(2,ℝ)

∥ℓ̃ℤ((𝑔1, 𝑛1)(𝑔2, 𝑛2)) − ℓ̃ℤ(𝑔2, 𝑛2)∥ ≤ 1
2
.

Hence ℓ̃ℤ is translation bounded. Also, for 𝑒 the identity in 𝑆𝐿(2,ℝ),

sup
𝑛∈ℤ

‖ℓ̃ℤ(𝑒, 𝑛) − ℓℤ(𝑛)‖ = 0,

so we may apply Theorems II.4.2 and II.4.6.
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Remark II.4.9. In low dimensions, real and complex Lie algebras and groups can be classified up to
isomorphism. For 3-dimensional real Lie groups, this is the Bianchi classification. Unless otherwise
specified, we use the notation of [OV94, §§7.1.1–2]. In [TB16], the sectional curvatures of Riemannian
metrics of a Lie group for each Lie algebra in the Bianchi classification are computed. The following
table summarises the details relevant to us.

Lie group 𝐺 Lie algebra 𝔤 𝐺/𝐾 CAT(⋅) dim𝐺/𝐾 Type
ℝ3

ℝ3

ℝ3 0 3

abelian
ℝ2 ×𝕋 ℝ2 0 2
ℝ × 𝕋2 ℝ 0 1
𝕋3 {pt} − 0
𝖧3 𝔥3(ℝ)

𝖧3 + 3
nilpotent

𝖧3/𝑍(𝖧3(ℤ)) ℝ2 0 2

𝑆𝐿(2,ℝ)
𝔰𝔩(2,ℝ)

𝑆𝐿(2,ℝ) + 3
semisimple

𝑆𝐿𝑘/2(2,ℝ) (𝑘∈ℕ) ℝ𝐇2 − 2
𝑆𝑈(2)

𝔰𝔲(2) {pt} − 0 semisimple
𝑆𝑂(3)
𝑅3 𝔯3(ℝ) 𝑅3 − 3 solvable
𝑅3,1 𝔯3,1(ℝ) ℝ𝐇3

−
3

solvable
𝑅3,𝜆 (𝜆∈(0,+1))

𝔯3,𝜆(ℝ) 𝑅3,𝜆𝑅3,𝜆 (𝜆∈[−1,0)) +
𝑅2 ×ℝ

𝔯2(ℝ) ⊕ ℝ
ℝ𝐇2 ×ℝ 0

𝑅2 ×𝕋 ℝ𝐇2 − 2
𝑅′

3,𝜆 (𝜆∈ℝ∖{0}) 𝔯′3,𝜆 ℝ𝐇3 −
3

solvable𝐸(2)
𝔢(2)

ℝ3 0
𝐸𝑘(2) (𝑘∈ℕ) ℝ2 0 2

All the CAT(0) (and a fortoiri CAT(−1)) entries fall under the aegis of Proposition II.3.4. Only three
entries in the table fail to be CAT(0): the Heisenberg group, the universal cover of 𝑆𝐿(2,ℝ), and the
1-parameter family 𝑅3,𝜆 for 𝜆 ∈ [−1, 0). We have just seen that 𝑆𝐿(2,ℝ) can be readily dealt with.
In the next section, we will build spectral triples for semidirect products ℝ𝑛 ⋊ ℝ, of which 𝑅3,𝜆, and
indeed several other entries in the table, are a special case. In §II.4.2, we will build a spectral triple for
the Heisenberg group.

II.4.1 A family of semidirect products

Fix 𝑋 ∈ 𝔤𝔩(𝑛,ℝ) and define a homomorphism 𝜑 ∶ ℝ → 𝐺𝐿(𝑛,ℝ) by 𝜑(𝑡) = exp(𝑡𝑋). The semidirect
product ℝ𝑛 ⋊𝜑 ℝ consists of elements of the Cartesian product ℝ𝑛 ×ℝ with the product law

(𝑥, 𝑠)(𝑦, 𝑡) = (𝑥 + 𝜑(𝑠)𝑦, 𝑠 + 𝑡).

There is an exact sequence

0 ℝ𝑛 ℝ𝑛 ⋊𝜑 ℝ ℝ 0𝜄 𝜋 .



88 Chapter II. Noncommutative-geometric group theory

Let (𝑣𝑖)𝑛𝑖=1 be a basis of ℝ𝑛. To simplify notation, we will also write (𝑣𝑖)𝑛𝑖=1 for their images in 𝒞𝓁𝑛.
Let 𝑉ℝ𝑛 be a Clifford module for 𝒞𝓁𝑛 and define a weight ℓℝ𝑛 ∶ ℝ𝑛 → End𝑉ℝ𝑛 by

ℓℝ𝑛(𝑥) =
𝑛
∑
𝑗=1

⟨𝑥 ∣ 𝑒𝑗⟩𝑣𝑗

for 𝑥 ∈ ℝ𝑛, where (𝑒𝑗)𝑛𝑗=1 is the standard basis of ℝ𝑛. A possible candidate for ℓ̃ℝ𝑛 ∶ ℝ𝑛 ⋊𝜑 ℝ → 𝑉ℝ𝑛

would be given by
ℓ̃ℝ𝑛(𝑥, 𝑠) = ℓℝ𝑛(𝑥).

Indeed,
sup
𝑥∈ℝ𝑛

‖ℓ̃ℝ𝑛(𝜄(𝑥)) − ℓℝ𝑛(𝑥)‖ = 0. (II.4.10)

However, when we come to check the translation-boundedness of ℓ̃ℝ𝑛 , we find that

ℓ̃ℝ𝑛((𝑥, 𝑠)(𝑦, 𝑡)) − ℓ̃ℝ𝑛(𝑦, 𝑡) =
𝑛
∑
𝑗=1

⟨𝑥 + (𝜑(𝑠) − 1)𝑦 ∣ 𝑒𝑗⟩𝑣𝑗

which will not be bounded in (𝑦, 𝑡) ∈ ℝ𝑛 ⋊𝜑 ℝ unless 𝑋 = 0. Thinking more carefully (or taking the
crossed product on the left), we could define

ℓ̃ℝ𝑛(𝑥, 𝑠) = ℓℝ𝑛(𝜑(−𝑠)𝑥).

As in (II.4.10), we still have
sup
𝑥∈ℝ𝑛

‖ℓ̃ℝ𝑛(𝜄(𝑥)) − ℓℝ𝑛(𝑥)‖ = 0,

but now
ℓ̃ℝ𝑛((𝑥, 𝑠)(𝑦, 𝑡)) − ℓ̃ℝ𝑛(𝑦, 𝑡) =

𝑛
∑
𝑗=1

⟨𝜑(−𝑠 − 𝑡)𝑥 ∣ 𝑒𝑗⟩𝑣𝑗.

Hence

∥ℓ̃ℝ𝑛((𝑥, 𝑠)(𝑦, 𝑡)) − ℓ̃ℝ𝑛(𝑦, 𝑡)∥
2
=

𝑛
∑
𝑖,𝑗=1

⟨𝜑(−𝑠 − 𝑡)𝑥 ∣ 𝑒𝑖⟩⟨𝜑(−𝑠 − 𝑡)𝑥 ∣ 𝑒𝑗⟩⟨𝑣𝑖 ∣ 𝑣𝑗⟩

=
𝑛
∑
𝑖,𝑗=1

⟨𝜑(−𝑠 − 𝑡)𝑥 ∣ 𝑒𝑖⟩⟨𝑣𝑖 ∣ 𝑣𝑗⟩⟨𝑒𝑗 ∣ 𝜑(−𝑠 − 𝑡)𝑥⟩

= ‖𝑇𝜑(−𝑠 − 𝑡)𝑥‖2

≤ ‖𝑇 ‖2‖𝜑(−𝑡)‖2‖𝜑(−𝑠)𝑥‖2

where 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is the linear map taking 𝑒𝑖 ↦ 𝑣𝑖. Now ‖𝜑(−𝑡)‖ = ‖ exp(−𝑡𝑋)‖. If 𝑋 ∈ 𝔬(𝑛,ℝ),
sup𝑡∈ℝ ‖𝜑(−𝑡)‖ = 1 and ℓ̃ℝ𝑛 is translation bounded; otherwise sup𝑡∈ℝ ‖𝜑(−𝑡)‖ = ∞ and ℓ̃ℝ𝑛 is not
translation bounded. Indeed, since the C*-algebra of a semidirect product can be written as a crossed
product C*-algebra, this is just Definition IV.3.12 applied to this example.

To deal with this latter case, we will ‘logarithmically dampen’ the weight ℓℝ𝑛 , for which we need
the following Lemma. This is inspired by [GMR19]; we shall give a fuller account in §III.1.4.

Lemma II.4.11. Let 𝐿 ∶ ℝ𝑛 → ℝ𝑛 be given by

𝐿(𝑥1,… , 𝑥𝑛) =
log(1 + ‖𝑥‖)

1 + ‖𝑥‖
(𝑥1,… , 𝑥𝑛).

For 𝑥, 𝑦 ∈ ℝ𝑛 and 𝛼 > 0,

‖𝐿(𝑥 + 𝛼𝑦) − 𝐿(𝑦)‖ ≤ 2(𝛼 + 1 + 𝛼−1)(1 + ‖𝑥‖)2.



II.4. The Kasparov product for group extensions 89

The estimate is by no means optimal; the important thing is that it is independent of 𝑦 and
continuous in 𝑥 and 𝛼.

Proof. First,

∥ 𝑥 + 𝛼𝑦
1 + ‖𝑥 + 𝛼𝑦‖

− 𝑦
1 + ‖𝑦‖

∥ = ∥ 𝛼−1𝑥 + 𝑦
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

− 𝑦
1 + ‖𝑦‖

∥

= ∥ 𝛼−1𝑥
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

+ 𝑦1 + ‖𝑦‖ − 𝛼−1 − ‖𝛼−1𝑥 + 𝑦‖)
(𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖)(1 + ‖𝑦‖)

∥

≤ ∥ 𝛼−1𝑥
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

∥ + ∣1 + ‖𝑦‖ − 𝛼−1 − ‖𝛼−1𝑥 + 𝑦‖
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

∣

= 𝛼−1‖𝑥‖
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

+ ∣ 1 + ‖𝑦‖
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

− 1∣

=
𝛼−1‖𝑥‖ + ∣1 + ‖𝑦‖ − 𝛼−1 − ‖𝛼−1𝑥 + 𝑦‖∣

𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

≤ 2𝛼−1‖𝑥‖ + |1 − 𝛼−1|
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

.

Using this, we have

‖𝐿(𝑥 + 𝛼𝑦) − 𝐿(𝑦)‖ = ∥log(1 + ‖𝑥 + 𝛼𝑦‖)
1 + ‖𝑥 + 𝛼𝑦‖

(𝑥 + 𝛼𝑦) − log(1 + ‖𝑦‖)
1 + ‖𝑦‖

𝑦∥

≤ ∣ log(1 + ‖𝑥 + 𝛼𝑦‖) − log(1 + ‖𝑦‖)∣ ‖𝑥 + 𝛼𝑦‖
1 + ‖𝑥 + 𝛼𝑦‖

+ log(1 + ‖𝑦‖)∥ 𝑥 + 𝛼𝑦
1 + ‖𝑥 + 𝛼𝑦‖

− 𝑦
1 + ‖𝑦‖

∥

≤ ∣ log(𝛼) + log 𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖
1 + ‖𝑦‖

∣

+ ‖𝑦‖2𝛼
−1‖𝑥‖ + |1 − 𝛼−1|

𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

≤ | log 𝛼| + max{ log 𝛼−1 + 𝛼−1‖𝑥‖ + ‖𝑦‖
1 + ‖𝑦‖

, log 1 + 𝛼−1‖𝑥‖ + ‖𝛼−1𝑥 + 𝑦‖
𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

}

+ (‖𝛼−1𝑥 + 𝑦‖ + 𝛼−1‖𝑥‖)2𝛼
−1‖𝑥‖ + |1 − 𝛼−1|

𝛼−1 + ‖𝛼−1𝑥 + 𝑦‖

≤ | log 𝛼| + max{0, log(𝛼−1 + 𝛼−1‖𝑥‖), log(𝛼 + ‖𝑥‖)}

+max{1, 2‖𝑥‖ + |𝛼 − 1|} + 𝛼−1‖𝑥‖(2‖𝑥‖ + |𝛼 − 1|)
≤ 2| log 𝛼| + log(1 + ‖𝑥‖) + 2‖𝑥‖ + 𝛼 + 1 + 2𝛼−1‖𝑥‖2 + ‖𝑥‖ + 𝛼−1‖𝑥‖
≤ 2𝛼 + 2 + 𝛼−1 + (4 + 𝛼−1)‖𝑥‖ + 2𝛼−1‖𝑥‖2

≤ 2(𝛼 + 1 + 𝛼−1)(1 + ‖𝑥‖)2

as required.

We now define a new weight ℓ′ℝ𝑛 ∶ ℝ𝑛 → End𝑉ℝ𝑛 by

ℓ′ℝ𝑛(𝑥) = 𝐿(ℓℝ𝑛(𝑥)) = 𝐿(
𝑛
∑
𝑗=1

⟨𝑥 ∣ 𝑒𝑗⟩𝑣𝑗)
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where by a slight abuse of notation we consider each 𝑣𝑗 as an element of ℝ𝑛 and ℓ′ℝ𝑛(𝑥) as an
element of 𝒞𝓁𝑛. The self-adjointness, properness, and translation-boundedness of ℓ′ℝ𝑛 follow from the
corresponding properties of ℓℝ𝑛 , Lemma II.4.11, and the fact that ‖𝐿(𝑥)‖ → ∞ as ‖𝑥‖ → ∞. Now let
ℓ̃′ℝ𝑛 ∶ ℝ𝑛 ⋊𝜑 ℝ → 𝑉ℝ𝑛 be given by

ℓ̃′ℝ𝑛(𝑥, 𝑠) = ℓ′ℝ𝑛(‖𝜑(−𝑠)‖−1𝜑(−𝑠)𝑥) = 𝐿(‖𝜑(−𝑠)‖−1
𝑛
∑
𝑗=1

⟨𝜑(−𝑠)𝑥 ∣ 𝑒𝑗⟩𝑣𝑗). (II.4.12)

Our dividing by the norm of 𝜑(−𝑠) can be compared to [KK20, Definition 4.6]. Again, as in (II.4.10),

sup
𝑥∈ℝ𝑛

‖ℓ̃′ℝ𝑛(𝜄(𝑥)) − ℓ′ℝ𝑛(𝑥)‖ = 0.

Applying Lemma II.4.11 and recalling that 𝜑(𝑡) = exp(𝑡𝑋),

∥ℓ̃′ℝ𝑛((𝑥, 𝑠)(𝑦, 𝑡)) − ℓ̃′ℝ𝑛(𝑦, 𝑡)∥

= ∥𝐿(‖𝜑(−𝑠 − 𝑡)‖−1
𝑛
∑
𝑗=1

⟨𝜑(−𝑠 − 𝑡)𝑥 + 𝜑(−𝑡)𝑦 ∣ 𝑒𝑗⟩𝑣𝑗)−𝐿(‖𝜑(−𝑡)‖−1
𝑛
∑
𝑗=1

⟨𝜑(−𝑡)𝑦 ∣ 𝑒𝑗⟩𝑣𝑗)∥

≤ 2( ‖𝜑(−𝑡)‖
‖𝜑(−𝑠 − 𝑡)‖

+ 1 + ‖𝜑(−𝑠 − 𝑡)‖
‖𝜑(−𝑡)‖

)(1 + ‖𝜑(−𝑠 − 𝑡)‖−1‖𝑇𝜑(−𝑠 − 𝑡)𝑥‖)2

≤ 2(‖𝜑(𝑠)‖ + 1 + ‖𝜑(−𝑠)‖)(1 + ‖𝑇 ‖‖𝑥‖)2

≤ 2(1 + 2𝑒|𝑠|‖𝑋‖)(1 + ‖𝑇 ‖‖𝑥‖)2,

where 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is again the linear map taking 𝑒𝑖 ↦ 𝑣𝑖. Hence

sup
(𝑦,𝑡)∈ℝ𝑛⋊𝜑ℝ

∥ℓ̃′ℝ𝑛((𝑥, 𝑠)(𝑦, 𝑡)) − ℓ̃′ℝ𝑛(𝑦, 𝑡)∥ < ∞

for all (𝑥, 𝑠) ∈ ℝ𝑛 ⋊𝜑 ℝ. For the neighbourhood 𝑈 = {(𝑥, 𝑠) ∈ ℝ𝑛 ⋊𝜑 ℝ ∣ ‖𝑥‖ < 1, |𝑠| < 1} of the
identity (0, 0),

sup
(𝑥,𝑠)∈𝑈,(𝑦,𝑡)∈ℝ𝑛⋊𝜑ℝ

∥ℓ̃′ℝ𝑛((𝑥, 𝑠)(𝑦, 𝑡)) − ℓ̃′ℝ𝑛(𝑦, 𝑡)∥ ≤ 2(1 + 2𝑒‖𝑋‖)(1 + ‖𝑇 ‖)2 < ∞.

Hence ℓ̃′ℝ𝑛 is translation-bounded and we can apply Theorems II.4.2 and II.4.6.
This construction is, of course, quite ugly. It may well be the case, for a particular 𝜑, that ℝ𝑛 ⋊𝜑 ℝ

admits a left invariant Riemannian metric of nonpositive sectional curvature, in which case we can
build a directed length function as in §II.3.

Example II.4.13. Let us consider the special case 𝑛 = 1, making the arbitrary choice 𝑋 = 1 so that
𝜑(𝑡) = 𝑒𝑡. Define the weight ℓℝ ∶ ℝ → ℂ by 𝑥 ↦ 𝑥. Combining the weight (II.4.12) with 𝜋 ∗ (ℓℝ)
produces the self-adjoint, proper, translation-bounded weight ℓ′ ∶ ℝ ⋊𝜑 ℝ → 𝒞𝓁2 ≅ Endℂ2 given by

ℓ′(𝑥, 𝑠) = 𝑠𝛾2 +
𝑥

1 + |𝑥|
log(1 + |𝑥|)𝛾1.

However, already in Example II.3.11, we constructed a weight ℓ ∶ ℝ ⋊𝜑 ℝ → 𝒞𝓁2 ≅ Endℂ2, given by

ℓ(𝑥, 𝑠) = 2𝑥𝑒𝑠𝛾1 − (𝑥2 + 1 − 𝑒2𝑠)𝛾2
√4𝑥2𝑒2𝑠 + (𝑥2 + 1 − 𝑒2𝑠)2

2 arctanh√𝑥2 + (1 − 𝑒𝑠)2
𝑥2 + (1 + 𝑒𝑠)2

,
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from the action of ℝ ⋊𝜑 ℝ on ℝ𝐇2. One can check that ℓ(0, 𝑠) = 𝑠𝛾2 and

ℓ(𝑥, 0) = 2 sgn(𝑥)𝛾1 − |𝑥|𝛾2√
4 + 𝑥2

log(1 + 1
2𝑥

2).

In particular, ℓ and ℓ′ agree for 𝑥 = 0 and both have a ‘logarithmic’ behaviour in the 𝑥 direction.
However, the difference ℓ − ℓ′ is not bounded and, furthermore, the difference sgn(ℓ) − sgn(ℓ′) does
not vanish at infinity, so it is not clear that they will give the same class in 𝐾𝐾ℝ⋊𝜑ℝ

0 (ℂ,𝐶0(ℝ ⋊𝜑 ℝ)).
However, one can also check that, for any 𝑡 ∈ [0, 1], 𝑡ℓ + (1 − 𝑡)ℓ′ is a self-adjoint, proper, translation-
bounded weight. Hence, (𝐶0(ℝ ⋊𝜑 ℝ),𝐶0(ℝ ⋊𝜑 ℝ,ℂ2), ℓ) and (𝐶0(ℝ ⋊𝜑 ℝ),𝐶0(ℝ ⋊𝜑 ℝ,ℂ2), ℓ′) are
homotopic and indeed do have the same class.

Even though, by the homotopy, we know (𝐶0(ℝ ⋊𝜑 ℝ),𝐶0(ℝ ⋊𝜑 ℝ,ℂ2), ℓ) represents the Kasparov
product

(ℂ,𝐶0(ℝ)𝐶0(ℝ), ℓℝ) ⊗𝐶0(ℝ) (𝐶0(ℝ), 𝐶0(ℝ ⋊𝜑 ℝ)),⏜ℓℝ)), (II.4.14)

it does not satisfy the Kucerovsky conditions. The positivity condition of Theorem I.4.3 fails, in
particular, because

𝑠 −(𝑥2 + 1 − 𝑒2𝑠)
√4𝑥2𝑒2𝑠 + (𝑥2 + 1 − 𝑒2𝑠)2

is not bounded below. However, we can factorise (𝐶0(ℝ ⋊𝜑 ℝ),𝐶0(ℝ ⋊𝜑 ℝ,ℂ2), ℓ) as

(ℂ,𝐶0(ℝ)𝐶0(ℝ), 𝐿(ℓℝ)) ⊗𝐶0(ℝ) (𝐶0(ℝ), 𝐶0(ℝ ⋊𝜑 ℝ)), 𝜋∗(ℓℝ)).

Here, the left-hand Kasparov module is for the normal subgroup ℝ of ℝ⋊𝜑 ℝ, rather than the quotient
ℝ = (ℝ ⋊𝜑 ℝ)/ℝ as in II.4.14. We remark that one cannot write the left hand module as

(ℂ,𝐶0(ℝ)𝐶0(ℝ), ℓℝ),

as one would expect, because it is not ℝ⋊𝜑 ℝ-equivariant. The explanation of this requires the idea of
conformal equivariance; see §III.2 and, in particular, Example III.2.1. Now the conditions of Theorem
I.4.3 admit almost of a visual demonstration. For the positivity condition,

ℓ(𝑥, 𝑠)𝐿(ℓℝ(𝑥))𝛾1 + 𝐿(ℓℝ(𝑥))𝛾1ℓ(𝑥, 𝑠) = 2𝐿(𝑥) 2𝑥𝑒𝑠

√4𝑥2𝑒2𝑠 + (𝑥2 + 1 − 𝑒2𝑠)2
2 arctanh√𝑥2+(1−𝑒𝑠)2

𝑥2+(1+𝑒𝑠)2 ≥ 0.

This is just the statement that geodesics in the Poincaré half-plane model from 𝑒−𝑠(−𝑥+ 𝑖) to 𝑖 always
travel from left to right. On the other hand, the connection condition follows from the fact that

‖ℓ(𝑥, 𝑠) − ℓℝ(𝑠)𝛾2‖ = ‖ℓ((𝑥, 0)(0, 𝑠)) − ℓ(0, 𝑠)‖ ≤ ‖ℓ(𝑥, 0)‖

is uniformly bounded in 𝑠 for 𝑥 in any compact subset of ℝ.

II.4.2 The Heisenberg group

Let 𝖧3 be the 3-dimensional Heisenberg group. In the 3 × 3-matrix presentation, we can write

𝖧3 =
⎧{
⎨{⎩
𝑔 ∈ 𝑀3(ℝ) ∶ 𝑔 = ⎛⎜⎜

⎝

1 𝑎 𝑐
0 1 𝑏
0 0 1

⎞⎟⎟
⎠

⎫}
⎬}⎭

.

The group 𝖧3 is a central extension of ℝ2 by ℝ, fitting into the exact sequence

0 ℝ 𝖧3 ℝ2 0.𝜄 𝜋



92 Chapter II. Noncommutative-geometric group theory

Define the Euclidean weights

ℓℝ ∶ ℝ → ℂ ℓℝ2 ∶ ℝ2 → 𝒞𝓁2 = Endℂ2

𝑐 ↦ 𝑐 (𝑎, 𝑏) ↦ 𝑎𝛾1 + 𝑏𝛾2

Let us naïvely define a weight ℓ̃ℝ ∶ 𝖧3 → ℂ by ℓ̃ℝ(𝑔) = 𝑐. First,

sup
𝑐∈ℝ

‖ℓ̃ℝ(𝜄(𝑐)) − ℓℝ(𝑐)‖ = 0.

Alas, with

𝑔 = ⎛⎜⎜
⎝

1 𝑎 𝑐
1 𝑏

1

⎞⎟⎟
⎠

ℎ = ⎛⎜⎜
⎝

1 𝑎′ 𝑐′
1 𝑏′

1

⎞⎟⎟
⎠

𝑔ℎ = ⎛⎜⎜
⎝

1 𝑎 + 𝑎′ 𝑐 + 𝑐′ + 𝑎𝑏′
1 𝑏 + 𝑏′

1

⎞⎟⎟
⎠

one can see that
ℓ̃ℝ(𝑔ℎ) − ℓ̃ℝ(ℎ) = 𝑐 + 𝑎𝑏′

is not bounded in ℎ. This cannot be remedied by a procedure similar to the one in §II.4.1. Indeed,
there we had a semidirect product and here we have a central extension, presenting two very different
behaviours.

However, consider the weight ℓ ∶ 𝖧3 → Endℂ2 given by

ℓ𝖧3
∶ ⎛⎜⎜
⎝

1 𝑎 𝑐
1 𝑏

1

⎞⎟⎟
⎠

↦ (𝑎𝛾1 + 𝑏𝛾2)(𝑎2 + 𝑏2)1/2 + 𝑐𝛾3.

When 𝑐 = 0,

ℓ𝖧3

⎛⎜⎜
⎝

1 𝑎 0
1 𝑏

1

⎞⎟⎟
⎠

= (𝑎𝛾1 + 𝑏𝛾2)(𝑎2 + 𝑏2)1/2 = ℓℝ2 |ℓℝ2 |.

For this reason, we may consider ℓ𝖧3
to be a ‘2nd order’ weight. The development of a framework

to handle such higher order weights will have to wait until §IV.3.1. Although ℓ𝖧3
is self-adjoint and

proper, indeed

(1 + ℓ(ℎ)2)1/2 = (1 + (𝑎′2 + 𝑏′2)2 + 𝑐′2)
1/2

,

it is not translation-bounded. We can, however, compute that

ℓ(𝑔ℎ) − ℓ(ℎ) = ((𝑎 + 𝑎′)𝛾1 + (𝑏 + 𝑏′)𝛾2)((𝑎 + 𝑎′)2 + (𝑏 + 𝑏′)2)
1/2

+ (𝑐 + 𝑐′ + 𝑎𝑏′)𝛾3
− (𝑎′𝛾1 + 𝑏′𝛾2)(𝑎′

2 + 𝑏′2)1/2 + 𝑐′𝛾3
= (𝑎′𝛾1 + 𝑏′𝛾2)(((𝑎 + 𝑎′)2 + (𝑏 + 𝑏′)2)1/2 − (𝑎′2 + 𝑏′2)1/2)

+ (𝑎𝛾1 + 𝑏𝛾2)((𝑎 + 𝑎′)2 + (𝑏 + 𝑏′)2)1/2 + (𝑐 + 𝑎𝑏′)𝛾3.

Hence (ℓ(𝑔ℎ) − ℓ(ℎ)) (1+ℓ(ℎ)2)−1/4 is uniformly bounded in ℎ ∈ 𝐺. A slight generalisation of Theorem
II.2.24 then shows that, for 𝑓 ∈ 𝐶𝑐(𝖧3), the operator [𝑀ℓ, 𝑓](1+𝑀2

ℓ )−1/4 = [𝑀ℓ, 𝑓]⟨𝑀ℓ⟩−1/2 is bounded
where 𝑀ℓ is multiplication by ℓ. We arrive at the order-2 spectral triple

(𝐶∗(𝖧3), 𝐿2(𝖧3, ℂ2),𝑀ℓ),

which one can check has nontrivial class in 𝐾𝐾1(𝐶∗(𝖧3), ℂ).
In Example III.2.10 we shall examine the conformal geometry of this order-2 spectral triple. In

Example IV.1.13 we shall place it in context and in §IV.3.1 make a similar construction, with nontrivial
class in KK-theory, for all simply connected nilpotent Lie groups and their cocompact closed subgroups
which, in particular, include all finitely generated, torsion-free, nilpotent groups.
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In this Chapter, we extend unbounded KK-theory to encompass conformal group and quantum
group equivariance. This new framework allows us to treat conformal actions on both manifolds and
noncommutative spaces. As examples, we present unbounded representatives of Kasparov’s γ-element
for the real and complex Lorentz groups and display the conformal 𝑆𝐿𝑞(2)-equivariance of the standard
spectral triple of the Podleś sphere. In pursuing descent for conformally equivariant cycles, we are
led to a new framework for representing Kasparov classes. Our new representatives are unbounded,
possess a dynamical quality, and also include known twisted spectral triples. We define an equivalence
relation on these new representatives whose classes form an abelian group surjecting onto KK-theory.
The technical innovation which underpins these results is a novel multiplicative perturbation theory.

III.1 Conformal transformations from a multiplicative perturbation
theory

We begin by recalling a few facts about ternary rings of operators. Ring- or algebra-like objects with
ternary product operations are known also as triple systems, and come in Lie, Jordan, and associative
varieties, the latter in two kinds. In the context of abstract operator algebras there are C*- and
W*-ternary rings, due to [Zet83].

93
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Definition III.1.1. A ternary ring of operators on a Hilbert 𝐵-module 𝐸 is a collection 𝒳 ⊆ End∗(𝐸)
which is closed under the operation

(𝑥, 𝑦, 𝑧) ↦ 𝑥𝑦∗𝑧.

We will not by default assume that a ternary ring of operators is norm-closed.
In the sense of [RW98, Lemma 2.16], a ternary ring of operators 𝒳 is a right pre-Hilbert span(𝒳∗𝒳)-

module. Its completion 𝒳 is then a right Hilbert span(𝒳∗𝒳)-module. By similar considerations on
the left, 𝒳 is a Morita equivalence span(𝒳𝒳∗)-span(𝒳∗𝒳)-bimodule. We remark that, for instance,
span(𝒳𝒳∗𝒳) = 𝒳.

In particular, every norm-closed ternary ring of operators is a Morita equivalence bimodule in a
natural way. By [Zet83, Theorem 2.6], any Hilbert C*-module can be represented as a norm-closed
ternary ring of operators on some Hilbert space 𝐻.

The implicit presence of ternary rings of operators will be a feature of many of our definitions.
This occurs because, just as the Leibniz rule makes the domain of a commutator with a self-adjoint
operator 𝐷 a ∗-algebra, the domain of a mixed commutator 𝑎 ↦ 𝐷1𝑎 − 𝑎𝐷2 is naturally closed under
the ternary product. Indeed, if, for 𝑎, 𝑏, 𝑐 ∈ End∗(𝐸),

𝐷1𝑎 − 𝑎𝐷2 𝐷1𝑏 − 𝑏𝐷2 𝐷1𝑐 − 𝑐𝐷2

are bounded, then [𝐷1, 𝑎𝑏∗], [𝐷2, 𝑎∗𝑏], and 𝐷1𝑎𝑏∗𝑐 − 𝑎𝑏∗𝑐𝐷2 (and all other like permutations) are
bounded. This can also be seen by writing 𝐷1 and 𝐷2 as diagonal entries of a two-by-two matrix and
placing 𝑎, 𝑏, 𝑐 in the upper-right corner.

We will formulate our definition of conformal transformation for higher order cycles.

Definition III.1.2. A conformal transformation (𝑈, 𝜇) from one order- 1
1−𝛼 cycle, (𝐴,𝐸𝐵, 𝐷1), to

another, (𝐴,𝐸′
𝐵, 𝐷2), is a unitary map 𝑈 ∶ 𝐸 → 𝐸′, intertwining the representations of 𝐴, and an

(even) invertible operator 𝜇 ∈ End∗(𝐸) which is even if the module is graded, satisfying the following.
We require that 𝐴 ⊆ span(𝐴ℳ) ∩ span(ℳ𝐴), where ℳ is the set of 𝑎 ∈ End∗(𝐸) such that the
operators

(𝑈∗𝐷2𝑈𝑎 − 𝑎𝜇𝐷1𝜇∗)𝜇−1∗⟨𝐷1⟩−𝛼 ⟨𝐷2⟩−𝛼𝑈(𝑈 ∗𝐷2𝑈𝑎 − 𝑎𝜇𝐷1𝜇∗)

are bounded and 𝑎, 𝑎𝜇, 𝑎𝜇−1∗ ∈ Lip∗𝛼(𝐷1).

Remarks III.1.3.

1. The easiest way for the closure condition to be satisfied is if 1 ∈ ℳ; for nonunital 𝐴 an approximate
unit might be found to lie in ℳ.

2. We have ℳℳ∗ℳ ⊆ ℳ and so ℳ is a ternary ring of operators, in general not norm-closed.

3. Conformal transformations are generally neither reversible nor composable. This latter occurs
very easily for two noncommuting conformal factors 𝜇 and 𝜈. We ultimately address this issue
with the conformisms of §III.4.2.

In §III.1.3, on p. 106, we will prove the following Theorem.

Theorem III.1.4. Let (𝑈, 𝜇) be a conformal transformation from the order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷1)

to the order- 1
1−𝛼 cycle (𝐴,𝐸′

𝐵, 𝐷2). Then the bounded transforms (𝐴,𝐸𝐵, 𝐹𝐷1
) and (𝐴,𝐸′

𝐵, 𝐹𝐷2
) are

unitarily equivalent up to locally compact perturbation via the unitary 𝑈. That is

(𝑈∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎 ∈ End0(𝐸)

for all 𝑎 ∈ 𝐴. Hence [(𝐴,𝐸𝐵, 𝐹𝐷1
)] = [(𝐴,𝐸′

𝐵, 𝐹𝐷2
)] ∈ 𝐾𝐾(𝐴,𝐵) (and also [(𝐴,𝐸𝐵, 𝐷1)] =

[(𝐴,𝐸′
𝐵, 𝐷2)]).
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III.1.1 Motivating examples

Example III.1.5. cf. [Dun20, Lemma 2.8] The simplest nontrivial example of a conformal transforma-
tion between unbounded cycles can be contructed from an unbounded cycle (𝐴,𝐸𝐵, 𝐷) and a positive
number 𝜅. The pair (id, 𝜅1/2) is a conformal transformation from (𝐴,𝐸𝐵, 𝐷) to (𝐴,𝐸𝐵, 𝜅𝐷).

On a geodesically complete Riemannian manifold 𝑋, there are two standard spectral triples. One
relies on a spin𝑐 structure and takes the form (𝐶0(𝑋), 𝐿2(𝑋, /𝑆), /𝐷), where /𝑆 is a spinor bundle and
/𝐷 is the Atiyah–Singer Dirac operator. The other depends on only the orientation and Riemannian
metric, taking the form (𝐶0(𝑋), 𝐿2(Ω∗𝑋), 𝑑 + 𝛿) where 𝑑 is the exterior derivative on differential forms
Ω∗𝑋 and 𝛿 is its adjoint, the codifferential, their sum being the Hodge–de Rham Dirac operator. We
consider the effect of a conformal change of metric on both these spectral triples.

Example III.1.6. The behaviour of the Atiyah–Singer Dirac operator under conformal transformations
was first recorded in [Hit74, Proof of Proposition 1.3]. In the context of noncommutative geometry, see
also [Bär07, Proof of Theorem 3.1]. Let (𝑋, 𝐠) and (𝑋, 𝐡) be Riemannian spin𝑐 manifolds such that
𝐡 = 𝑘2𝐠. Let /𝑆𝐠 and /𝑆𝐡 be their associated spinor bundles. There is a canonical fibrewise isometry

𝜓 ∶ /𝑆𝐠 → /𝑆𝐡.

Let /𝐷𝐠 ∶ Γ∞(/𝑆𝐠) → Γ∞(/𝑆𝐠) and /𝐷𝐡 ∶ Γ∞(/𝑆𝐡) → Γ∞(/𝑆𝐡) be the corresponding Dirac operators. Then,
by e.g. [Hij86, Proposition 4.3.1],

/𝐷𝐡 = 𝑘(−𝑛−1)/2 ◦ 𝜓 ◦ /𝐷𝐠 ◦ 𝜓−1 ◦ 𝑘(𝑛−1)/2.

Although 𝜓 is a fibrewise isometry, the induced map 𝑉 ∶ 𝐿2(𝑋, /𝑆𝐠) → 𝐿2(𝑋, /𝑆𝐡) is not unitary, as
the volume form changes. With the relation vol𝐡 = 𝑘𝑛vol𝐠, we find that 𝑉 ∗ = 𝑘𝑛𝑉 −1. The polar
decomposition is

𝑈 = 𝑉 (𝑉 ∗𝑉 )−1/2 = 𝑘−𝑛/2𝑉

and we find that
/𝐷𝐡 = 𝑘−1/2𝑈 /𝐷𝐠𝑈

∗𝑘−1/2

or, in other words,
𝑈∗ /𝐷𝐡𝑈 = 𝑘−1/2 /𝐷𝐠𝑘

−1/2.

In terms of Definition III.1.2, if (𝑋, 𝐠) is complete and the conformal factor 𝑘 and its inverse are
bounded (which is automatic if 𝑋 is compact), then (𝑈, 𝑘−1/2) is a conformal transformation from
(𝐶0(𝑋), 𝐿2(𝑋, /𝑆𝐠), /𝐷𝐠) to (𝐶0(𝑋), 𝐿2(𝑋, /𝑆𝐡), /𝐷𝐡). (Note that there is need for the derivative of the
conformal factor to be globally bounded.)

Example III.1.7. Next, we consider the Hodge–de Rham Dirac operator. As before, let (𝑋, 𝐠) and
(𝑋, 𝐡) be Riemannian manifolds such that 𝐡 = 𝑘2𝐠. Consider the two inner products on Ω∗𝑋 given by
𝐠 and 𝐡, which we will label ⟨⋅, ⋅⟩𝐠 and ⟨⋅, ⋅⟩𝐡. We will call the resulting Hilbert spaces 𝐿2(Ω∗𝑋,𝐠)
and 𝐿2(Ω∗𝑋,𝐡). There is an obvious map

𝑉 ∶ 𝐿2(Ω∗𝑋,𝐠) → 𝐿2(Ω∗𝑋,𝐡)

given by the identity on Ω∗𝑋, in other words, for 𝜔 ∈ Ω∗𝑋 ⊆ 𝐿2(Ω∗𝑋,𝐠), 𝑉 ∶ 𝜔 ↦ 𝜔. Its adjoint is
given on homogenous forms 𝜔 by 𝑉 ∗ ∶ 𝜔 ↦ 𝑘𝑛−2|𝜔|𝜔. Observe that if 𝑛 is even the restriction of 𝑉 to
the middle degree forms is unitary. We make the (rather trivial) observation that

𝑉 𝑉 ∗ ∶ 𝜔 ↦ 𝑘𝑛−2|𝜔|𝜔 𝑉 ∗𝑉 ∶ 𝜔 ↦ 𝑘𝑛−2|𝜔|𝜔. (III.1.8)
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The unitary in the polar decomposition 𝑈 = 𝑉 (𝑉 ∗𝑉 )−1/2 = (𝑉 𝑉 ∗)−1/2𝑉 is given by

𝑈 ∶ 𝜔 ↦ 𝑘(−𝑛+2|𝜔|)/2𝜔 𝑈∗ ∶ 𝜔 ↦ 𝑘(𝑛−2|𝜔|)/2𝜔.

The exterior derivative 𝑑 does not depend on the metric, but its adjoint the codifferential does, so
we use the notation 𝛿𝐠 and 𝛿𝐡 to distinguish the two codifferentials acting on Ω∗𝑋. The invariance
of the exterior derivative means that 𝑑𝑉 = 𝑉 𝑑. With care over which inner product is being used,
(𝑉 𝑑)∗ = 𝛿𝐠𝑉 ∗ and (𝑑𝑉 )∗ = 𝑉 ∗𝛿𝐡. So, 𝛿𝐠𝑉 ∗ = 𝑉 ∗𝛿𝐡 and we obtain the relations

𝑉 (𝑑 + 𝛿𝐠)𝑉 ∗ = 𝑑(𝑉 𝑉 ∗) + (𝑉 𝑉 ∗)𝛿𝐡

and

𝑈(𝑑 + 𝛿𝐠)𝑈 ∗ = (𝑉 𝑉 ∗)−1/2𝑉 (𝑑 + 𝛿𝐠)𝑉 ∗(𝑉 𝑉 ∗)−1/2 = (𝑉 𝑉 ∗)−1/2𝑑(𝑉 𝑉 ∗)1/2 + (𝑉 𝑉 ∗)1/2𝛿𝐡(𝑉 𝑉 ∗)−1/2.

On a differential form 𝜔 of degree |𝜔|,

𝑈(𝑑 + 𝛿𝐠)𝑈∗𝜔 = 𝑘−(𝑛−2(|𝜔|+1))/2𝑑(𝑘(𝑛−2|𝜔|)/2𝜔) + 𝑘(𝑛−2(|𝜔|−1))/2𝛿𝐡(𝑘−(𝑛−2|𝜔|)/2𝜔)

= 𝑘 (𝑘−(𝑛−2|𝜔|)/2𝑑(𝑘(𝑛−2|𝜔|)/2𝜔) + 𝑘(𝑛−2|𝜔|)/2𝛿𝐡(𝑘−(𝑛−2|𝜔|)/2𝜔)) .

For any function 𝑓 ∈ 𝐶∞(𝑋),

𝑓−1𝑑𝑓𝜔 + 𝑓𝛿𝐡𝑓−1𝜔 = (𝑑 + 𝛿𝐡)𝜔 + 𝑓−1[𝑑, 𝑓]𝜔 + [𝑓, 𝛿𝐡]𝑓−1𝜔
= (𝑑 + 𝛿𝐡)𝜔 + 𝑓−1[𝑑, 𝑓]𝜔 − [𝛿𝐡, 𝑓]𝑓−1𝜔
= (𝑑 + 𝛿𝐡)𝜔 + 𝑓−1[𝑑 − 𝛿𝐡, 𝑓]𝜔.

Hence

(𝑈(𝑑 + 𝛿𝐠)𝑈∗ − 𝑘1/2(𝑑 + 𝛿𝐡)𝑘1/2)𝜔

= (𝑘(𝑑 + 𝛿𝐡) + 𝑘−(𝑛−2|𝜔|−2)/2[𝑑 − 𝛿𝐡, 𝑘(𝑛−2|𝜔|)/2] − 𝑘1/2(𝑑 + 𝛿𝐡)𝑘1/2)𝜔

= (−𝑘1/2[𝑑 + 𝛿𝐡, 𝑘1/2] + 𝑘−(𝑛−2|𝜔|−2)/2[𝑑 − 𝛿𝐡, 𝑘(𝑛−2|𝜔|)/2]) 𝜔.

In terms of Definition III.1.2, if (𝑋, 𝐠) is complete and the conformal factor 𝑘 and its inverse are
bounded (which is automatic if 𝑋 is compact), the data (𝑈, 𝑘−1/2) define a conformal transformation
from (𝐶0(𝑋), 𝐿2(Ω∗𝑋,𝐠), 𝑑 + 𝛿𝐠) to (𝐶0(𝑋), 𝐿2(Ω∗𝑋,𝐡), 𝑑 + 𝛿𝐡).

Remark III.1.9. The extension of the Hodge-de Rham spectral triple to a spectral triple for the
ℤ2-graded Clifford algebra bundle is important for Poincaré duality [Kas88, §4]. In the case of a
manifold, where the functions and conformal factors are in the centre of the Clifford algebra, it is not
difficult to show that our definition of conformal transformation can be modified to handle the graded
commutators. We leave a discussion of the general ℤ2-graded case to another place.

In the framework of the spectral action principle, Chamseddine and Connes [CC06] calculate the
effect of rescaling the Spectral Standard Model Dirac operator 𝐷 𝑒−𝜙/2𝐷𝑒−𝜙/2, where the dilaton 𝜙
is interpreted as a scalar field. Apart from the Higgs mass term, the entire Lagrangian of the Standard
Model of particle physics is conformally invariant, which was a motivation for the work in Chapter III.

Example III.1.10. Suppose that we have the data of a continuous family of compact Riemannian
spin𝑐 manifolds (𝑀𝑥, 𝐠𝑥)𝑥∈𝑋 parameterised by a locally compact Hausdorff space 𝑋, as in the families
index theorem [LM89, §III.15]. Integration over the fibres of the total space ℳ → 𝑋 along with the
Dirac operators 𝐷𝑥 on the fibre spinor bundles /𝑆𝑥 yields an unbounded Kasparov module

(𝐶0(ℳ),𝐿2(ℳ, /𝑆•, 𝐠•)𝐶0(𝑋), 𝐷•) . (III.1.11)
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Let 𝑘 ∶ ℳ → [0,∞) be a family of conformal factors parameterised by 𝑋. The commutation of the
conformal factors with the algebra means we obtain a new unbounded Kasparov module

(𝐶0(ℳ),𝐿2(ℳ, /𝑆•, 𝑘
2𝐠•)𝐶0(𝑋), 𝑘−1/2𝐷•𝑘−1/2) .

We observe that the integration over the fibres changes, but the compactness of the fibres means we
get equivalent measures. That we obtain a new unbounded Kasparov module is straightforward but of
more consequence is that the classes defined by 𝐹𝐷 and 𝐹𝑘−1/2𝐷𝑘−1/2 in 𝐾𝐾(𝐶0(ℳ),𝐶0(𝑋)) coincide.

Suppose that we have another family of metrics 𝐡•, for the same family of manifolds, giving an
unbounded Kasparov module

(𝐶0(ℳ),𝐿2(ℳ,𝑆•, 𝐡•)𝐶0(𝑋), 𝐷•) . (III.1.12)

Suppose that 𝐡𝑥 = 𝑘2𝑥𝐠 for a (pointwise) continuous family 𝑘• ∈ 𝐶∞(𝑀•) of smooth functions and
that sup𝑥∈𝑋{‖𝑘𝑥‖∞, ‖𝑘−1

𝑥 ‖∞} < ∞. Then (id, 𝑘−1/2
• ) is a conformal transformation from (III.1.11) to

(III.1.12).

The first appearance of conformal transformations in noncommutative geometry was with the
preprint [CC92] on the noncommutative torus, followed up by the same authors in [CT11]; see also
[CM14]. The next example is not, however, to be confused with the twisted spectral triples of [CM08],
which will be examined in §III.4.

Example III.1.13. Fix a real number 𝛼. Let 𝐶(𝕋2
𝛼) be the universal C*-algebra generated by unitaries

𝑈 and 𝑉 subject to the relation
𝑉 𝑈 = 𝑒2𝜋𝑖𝛼𝑈𝑉 .

There are two self-adjoint (unbounded) derivations 𝛿1 and 𝛿2 on 𝐶(𝕋2
𝛼), given on generators by

𝛿1(𝑈) = 𝑈 𝛿1(𝑉 ) = 0 𝛿2(𝑈) = 0 𝛿2(𝑉 ) = 𝑉 .

When 𝛼 = 0, these are the derivatives −𝑖𝜕𝜃1 and −𝑖𝜕𝜃2 on the classical torus. There is a trace on
𝐶(𝕋2

𝛼) given by
𝜑(𝑈𝑚𝑉 𝑛) = 𝛿𝑚,0𝛿𝑛,0.

The completion of 𝐶(𝕋2
𝛼) in the inner product given by 𝜑 is 𝐿2(𝕋2

𝛼). Fix a complex number 𝜏 with
ℑ(𝜏) > 0. Then

⎛⎜
⎝
𝐶(𝕋2

𝛼), 𝐿2(𝕋2
𝛼) ⊗ ℂ2, 𝐷 ∶= ( 𝛿1 + 𝜏𝛿2

𝛿1 + 𝜏𝛿2
)⎞⎟
⎠

is a spectral triple. Now choose a positive invertible element 𝑘 ∈ 𝐶(𝕋2
𝛼) in the domains of 𝛿1 and 𝛿2.

Let 𝑘◦ ∈ 𝐵(𝐿2(𝕋2
𝛼)) be the operator of right multiplication. Then

⎛⎜
⎝
𝐶(𝕋2

𝛼), 𝐿2(𝕋2
𝛼) ⊗ ℂ2, 𝐷𝑘2 ∶= ( (𝑘◦)2(𝛿1 + 𝜏𝛿2)

(𝛿1 + 𝜏𝛿2)(𝑘◦)2
)⎞⎟
⎠

is still a spectral triple. We have that

𝐷𝑘2 − 𝑘◦𝐷𝑘◦ = ( −𝑘◦ [𝛿1 + 𝜏𝛿2, 𝑘◦]
[𝛿1 + 𝜏𝛿2, 𝑘◦] 𝑘◦

)

is bounded. Hence 1 ∈ ℳ and (id, 𝑘◦) is a conformal transformation from the spectral triple
(𝐶(𝕋2

𝛼), 𝐿2(𝕋2
𝛼) ⊗ ℂ2, 𝐷) to (𝐶(𝕋2

𝛼), 𝐿2(𝕋2
𝛼) ⊗ ℂ2, 𝐷𝑘2).

Let Φ ∶ 𝐶(𝕋2
𝛼) → 𝐶(𝕋) be the expectation coming from averaging over the circle action 𝑈 ↦ 𝑧𝑈,

𝑧 ∈ 𝕋. Then (𝐶(𝕋2
𝛼), 𝐿2(𝐶(𝕋2

𝛼), Φ)𝐶(𝕋), 𝛿2) is an unbounded Kasparov module by [BCR15, Proposition
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2.9]. Now choose a positive invertible element 𝑘 ∈ 𝐶(𝕋2
𝛼) in the domain of 𝛿2. Then (id, 𝑘◦) is a

conformal transformation from (𝐶(𝕋2
𝛼), 𝐿2(𝐶(𝕋2

𝛼), Φ)𝐶(𝕋), 𝛿2) to the spectral triple

(𝐶(𝕋2
𝛼), 𝐿2(𝐶(𝕋2

𝛼), Φ)𝐶(𝕋), 𝑘◦𝛿2𝑘◦) .

Example III.1.13 can be generalised along the lines of [Sit15], using a real spectral triple satisfying
the order zero condition. Theorem III.1.4 gives a refinement of [Sit15, Lemma 14] which shows that
the class in KK-theory of the conformally perturbed spectral triple is unchanged.

III.1.2 Technical preliminaries

Throughout this section we fix a countably generated right Hilbert 𝐵-module 𝐸 for some C*-algebra
𝐵. The chief subtlety in using the integral formula (I.0.5) to study the bounded transform for an
unbounded Kasparov module (𝐴,𝐸𝐵, 𝐷) is the commutator (𝜆 + 1 + 𝐷2)−1𝑎 − 𝑎(𝜆 + 1 + 𝐷2)−1 for
𝑎 ∈ 𝐴, [CP98, Lemma 2.3]. For us, the analogous computation is still the heart of the matter, see
Lemma III.1.22, but our techniques are different and described next.

Lemma III.1.14. Let 𝐴 and 𝐵 be regular operators on 𝐸. If 𝐵 is a symmetric operator, then so is
𝐴𝐵𝐴∗, provided that the domain

dom(𝐴𝐵𝐴∗) = {𝑥 ∈ dom𝐴∗ ∣ 𝐴∗𝑥 ∈ dom𝐵,𝐵𝐴∗𝑥 ∈ dom𝐴}

is dense. If 𝐴 is bounded and invertible then 𝐴𝐵𝐴∗ is regular. If moreover 𝐵 is self-adjoint then 𝐴𝐵𝐴∗

is self-adjoint.

Proof. Given 𝑥, 𝑦 ∈ dom(𝐴𝐵𝐴∗), 𝑥, 𝑦 ∈ dom(𝐴∗) and 𝐴∗𝑦 ∈ dom(𝐵), the symmetry of 𝐵 gives

⟨𝐴𝐵𝐴∗𝑥 ∣ 𝑦⟩ = ⟨𝐵𝐴∗𝑥 ∣ 𝐴∗𝑦⟩ = ⟨𝐴∗𝑥 ∣ 𝐵𝐴∗𝑦⟩ = ⟨𝑥 ∣ 𝐴𝐵𝐴∗𝑦⟩

so 𝐴𝐵𝐴∗ is symmetric. If 𝐴 is bounded and invertible, [Wor91, §2, Example 2] shows that 𝐴𝐵 is
regular and, by [Wor91, §2, Example 3], 𝐴𝐵𝐴∗ is regular. Applying the definition of the domain of
the adjoint, one readily sees that dom((𝐴𝐵𝐴∗)∗) = dom(𝐴𝐵𝐴∗) = 𝐴−1∗ dom(𝐵).

In the second statement of Lemma III.1.14, the invertibility of 𝐴 can be relaxed given additional
assumptions [Kaa17, §6]. We will consider perturbations of the form 𝐷  𝜇𝐷𝜇∗ for a self-adjoint
regular operator 𝐷 and an invertible, adjointable operator 𝜇. The following bound is the result of a
relation between the domains of fractional powers of ⟨𝐷⟩ and ⟨𝜇𝐷𝜇∗⟩, using Theorem A.3.4 of §A.3.

Lemma III.1.15. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator.
For all 0 < 𝛼 ≤ 1 we have

dom(𝜇⟨𝐷⟩𝛼𝜇∗) = dom((𝜇⟨𝐷⟩𝜇∗)𝛼) = dom⟨𝜇𝐷𝜇∗⟩𝛼

and the inequalities

∥⟨𝐷⟩𝛼𝜇∗(𝜇⟨𝐷⟩𝜇∗)−𝛼∥ ≤ ‖𝜇−1‖𝛼‖𝜇‖1−𝛼 ∥(𝜇⟨𝐷⟩𝜇∗)𝛼𝜇−1∗⟨𝐷⟩−𝛼∥ ≤ ‖𝜇‖𝛼‖𝜇−1‖1−𝛼.

Proof. The domain statement follows from Theorem A.3.4. For the first inequality, in the context of
Theorem A.3.4, let 𝐴 = ⟨𝐷⟩ and 𝐵 = 𝜇⟨𝐷⟩𝜇∗ so that 𝜇∗ dom𝐵 = dom𝐴. We have

∥⟨𝐷⟩𝛼𝜇∗(𝜇⟨𝐷⟩𝜇∗)−𝛼∥ = ‖𝐴𝛼𝜇∗𝐵−𝛼‖ ≤ ‖𝐴𝜇∗𝐵−1‖𝛼‖𝜇∗‖1−𝛼

= ∥⟨𝐷⟩𝜇∗(𝜇⟨𝐷⟩𝜇∗)−1∥
𝛼
‖𝜇∗‖1−𝛼

= ‖𝜇−1‖𝛼‖𝜇‖1−𝛼.



III.1. Conformal transformations from a multiplicative perturbation theory 99

For the second, in the context of Theorem A.3.4, let 𝐴 = 𝜇⟨𝐷⟩𝜇∗ and 𝐵 = ⟨𝐷⟩, so that 𝜇−1∗ dom𝐵 =
dom𝐴. We obtain that

∥(𝜇⟨𝐷⟩𝜇∗)𝛼𝜇−1∗⟨𝐷⟩−𝛼∥ = ‖𝐴𝛼𝜇−1∗𝐵−𝛼‖ ≤ ‖𝐴𝜇−1∗𝐵−1‖𝛼‖𝜇−1∗‖1−𝛼

= ∥(𝜇⟨𝐷⟩𝜇∗)𝜇−1∗⟨𝐷⟩−1∥
𝛼
‖𝜇−1‖1−𝛼

= ‖𝜇‖𝛼‖𝜇−1‖1−𝛼

as required.

We recall tools ensuring convergence of regular self-adjoint operators on a Hilbert module 𝐸𝐵.

Theorem III.1.16. [WN92, §1] Let 𝑇 be a normal regular operator on 𝐸 and 𝑓 ∈ 𝐶𝑏(𝜎(𝑇 )). Let
(𝑓𝑛)𝑛∈ℕ ⊆ 𝐶𝑏(𝜎(𝑇 )) be a sequence of functions with common bound which converge to 𝑓 uniformly on
compact subsets. Then 𝑓𝑛(𝑇 ) converges to 𝑓(𝑇 ) as 𝑛 → ∞ in the strict topology on 𝑀(End0(𝐸)), and
hence in the ∗-strong topology on End∗(𝐸).

For the final statement, recall that the strict topology on 𝑀(End0(𝐸)) = End∗(𝐸) agrees with the
∗-strong topology on norm-bounded subsets [RW98, Proposition C.7].

The proofs of the following two Theorems are essentially unchanged from the Hilbert space case.

Theorem III.1.17. cf. [RS80, Theorem VIII.25(a)], [Oli09, Proposition 10.1.18] Let 𝒞 ⊆ 𝐸 be a core
for a self-adjoint regular operator 𝑇 on 𝐸. Let (𝑇𝑛)𝑛∈ℕ be a sequence of self-adjoint regular operators
such that, for all 𝑛 ∈ ℕ, 𝒞 ⊆ dom𝑇𝑛 and, for all 𝜉 ∈ 𝒞, 𝑇𝑛𝜉 converges to 𝑇𝜉 as 𝑛 → ∞. Then 𝑇𝑛
converges to 𝑇 in the strong resolvent sense as 𝑛 → ∞.

Theorem III.1.18. cf. [RS80, Theorem VIII.20(b)], [Oli09, Proposition 10.1.9] A sequence (𝑇𝑛)𝑛∈ℕ of
self-adjoint regular operators on 𝐸 converges to a self-adjoint regular operator 𝑇 in the strong resolvent
sense if and only if, for all 𝑓 ∈ 𝐶𝑏(ℝ), 𝑓(𝑇𝑛) converges strongly to 𝑓(𝑇 ) as 𝑛 → ∞.

Let (𝜑𝑛)𝑛∈ℕ ⊂ 𝐶𝑐(ℝ) be a sequence of positive functions, bounded by 1 and converging uniformly
on compact subsets to the constant function 1. Let 𝐷 be a self-adjoint regular operator. By Theorem
III.1.16, the bounded operators (𝜑𝑛(𝐷))𝑛∈ℕ converge ∗-strongly to 1. We will consider the bounded
operators 𝑑𝑛 = 𝐷𝜑𝑛(𝐷). On an element 𝜉 ∈ dom𝐷,

𝑑𝑛𝜉 = 𝐷𝜑𝑛(𝐷)𝜉 = 𝜑𝑛(𝐷)(𝐷𝜉) → 𝐷𝜉.

In particular, by Theorem III.1.17, 𝑑𝑛 → 𝐷 in the strong resolvent sense. By Theorem III.1.18, 𝐹𝑑𝑛
converges strongly to 𝐹𝐷 as 𝑛 → ∞.

Proposition III.1.19. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator.
Then 𝜇𝑑𝑛𝜇∗ converges to 𝜇𝐷𝜇∗ in the strong resolvent sense as 𝑛 → ∞. Furthermore, 𝜇⟨𝑑𝑛⟩𝜇∗

converges to 𝜇⟨𝐷⟩𝜇∗ in the strong resolvent sense.
Let 𝑎 be a bounded operator such that 𝑎 dom𝐷 ⊆ dom𝐷. With 𝑎𝑛 = 𝜑𝑛(𝐷)𝑎𝜑𝑛(𝐷), we find

that 𝑑𝑛𝑎𝑛⟨𝑑𝑛⟩−1 converges strongly to 𝐷𝑎⟨𝐷⟩−1 as 𝑛 → ∞. In consequence, [𝑑𝑛, 𝑎𝑛]⟨𝑑𝑛⟩−1 converges
strongly to [𝐷, 𝑎]⟨𝐷⟩−1.

Proof. First, apply Theorem III.1.17 to the self-adjoint regular operator 𝜇𝐷𝜇∗ and the sequence
(𝜇𝑑𝑛𝜇∗)𝑛∈ℕ of bounded operators. Noting that dom(𝜇𝐷𝜇∗) = 𝜇−1∗ dom𝐷, on an element 𝜇−1∗𝜉 ∈
dom(𝜇𝐷𝜇∗),

(𝜇𝑑𝑛𝜇∗)𝜇−1∗𝜉 = 𝜇𝑑𝑛𝜉 → 𝜇𝐷𝜉

as 𝑛 → ∞. Hence, 𝜇𝑑𝑛𝜇∗ converges to 𝜇𝐷𝜇∗ in the strong resolvent sense. On an element 𝜉 ∈ dom𝐷,

⟨𝑑𝑛⟩𝜉 = (1 + (𝐷𝜑𝑛(𝐷))2)1/2𝜉 = (1 + (𝐷𝜑𝑛(𝐷))2)1/2⟨𝐷⟩−1(⟨𝐷⟩𝜉).
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The function

𝑥 ↦ (1 + (𝑥𝜑𝑛(𝑥))2)1/2

(1 + 𝑥2)1/2
= (1 − 1 − 𝜑𝑛(𝑥)2

1 + 𝑥−2 )
1/2

is bounded above by 1 and below by 𝜑𝑛 and so converges to 1 on compact subsets. Applying Theorem
III.1.16,

⟨𝑑𝑛⟩𝜉 = (1 + (𝐷𝜑𝑛(𝐷))2)1/2⟨𝐷⟩−1(⟨𝐷⟩𝜉) → ⟨𝐷⟩𝜉

and we proceed as before. For the second statement we have

𝑑𝑛𝑎𝑛⟨𝑑𝑛⟩−1 = 𝐷𝜑𝑛(𝐷)2𝑎𝜑𝑛(𝐷)⟨𝐷𝜑𝑛(𝐷)⟩−1 = 𝜑𝑛(𝐷)2 (𝐷𝑎⟨𝐷⟩−1) ⟨𝐷⟩𝜑𝑛(𝐷)⟨𝐷𝜑𝑛(𝐷)⟩−1.

The function

𝑥 ↦ (1 + 𝑥2)1/2𝜑𝑛(𝑥)
(1 + (𝑥𝜑𝑛(𝑥))2)1/2

= (1 − 1 − 𝜑𝑛(𝑥)2

1 + 𝑥2𝜑𝑛(𝑥)2
)

1/2

is bounded above by 1 and below by 𝜑𝑛 and so converges to 1 on compact subsets. Applying Theorem
III.1.16,

𝑑𝑛𝑎𝑛⟨𝑑𝑛⟩−1 = 𝜑𝑛(𝐷)2 (𝐷𝑎⟨𝐷⟩−1) ⟨𝐷⟩𝜑𝑛(𝐷)⟨𝐷𝜑𝑛(𝐷)⟩−1 → 𝐷𝑎⟨𝐷⟩−1

strongly, as 𝑛 → ∞. For the second part,

[𝑑𝑛, 𝑎𝑛]⟨𝑑𝑛⟩−1 = 𝑑𝑛𝑎𝑛⟨𝑑𝑛⟩−1 − 𝑎𝑛𝐹𝑑𝑛
→ 𝐷𝑎⟨𝐷⟩−1 − 𝑎𝐹𝐷

strongly, as required.

As an application, we prove an operator inequality needed for applications involving summability.

Proposition III.1.20. Let 𝐷 be a self-adjoint regular operator on a Hilbert 𝐵-module 𝐸 and 𝜇 an
invertible adjointable operator on 𝐸. Then

𝐶−1𝜇−1∗(1 + 𝐷2)−1𝜇−1 ≤ (1 + (𝜇𝐷𝜇∗)2)−1 ≤ 𝐶𝜇−1∗(1 + 𝐷2)−1𝜇−1

where 𝐶 = max{‖𝜇‖2, ‖𝜇−1‖2}.
Hence if 𝐽 is a hereditary ideal of End∗(𝐵), not necessarily closed, then (1 + (𝜇𝐷𝜇∗)2)−1 ∈ 𝐽 if

and only if (1 + 𝐷2)−1 ∈ 𝐽. In particular, this applies if 𝐵 = ℂ, so that 𝐸 is a Hilbert space and 𝐽 is
any two-sided ideal of 𝐵(𝐸), not necessarily closed [Bla06, §II.5.2], such as Schatten ideals.

Proof. If 𝜇∗𝜇dom𝐷 ⊆ dom𝐷, we could proceed more straightforwardly. As we do not assume this,
we will use the (bounded) operators 𝑑𝑛 = 𝐷𝜑𝑛(𝐷) and Proposition III.1.19 to write

1 + (𝜇𝑑𝑛𝜇∗)2 = 1 + 𝜇𝑑𝑛𝜇∗𝜇𝑑𝑛𝜇∗ ≤ 1 + ‖𝜇‖2𝜇𝑑2𝑛𝜇∗ = 𝜇(𝜇−1𝜇−1∗ + ‖𝜇‖2𝑑2𝑛)𝜇∗

≤ 𝜇(‖𝜇−1‖2 + ‖𝜇‖2𝑑2𝑛)𝜇∗ = ‖𝜇‖2𝜇(‖𝜇‖−2‖𝜇−1‖2 + 𝑑2𝑛)𝜇∗

≤ ‖𝜇‖2 max{1, ‖𝜇‖−2‖𝜇−1‖2}𝜇(1 + 𝑑2𝑛)𝜇∗ = max{‖𝜇‖2, ‖𝜇−1‖2}𝜇(1 + 𝑑2𝑛)𝜇∗.

Hence, (1 + (𝜇𝑑𝑛𝜇∗))−1 ≥ 𝐶−1𝜇−1∗(1 + 𝑑2𝑛)−1𝜇−1, and by Theorem III.1.18 and Proposition III.1.19,
(1+(𝜇𝑑𝑛𝜇∗)2)−1 converges strongly to (1+(𝜇𝐷𝜇∗)2)−1 and (1+𝑑2𝑛)−1 converges strongly to (1+𝐷2)−1

as 𝑛 → ∞. Thus,
𝐶−1𝜇−1∗(1 + 𝐷2)−1𝜇−1 ≤ (1 + (𝜇𝐷𝜇∗)2)−1,

and similarly,
1 + (𝜇𝑑𝑛𝜇∗)2 ≥ min{‖𝜇‖−2, ‖𝜇−1‖−2}𝜇(1 + 𝑑2𝑛)𝜇∗

and
(1 + (𝜇𝐷𝜇∗)2)−1 ≤ 𝐶𝜇−1∗(1 + 𝐷2)−1𝜇−1

as required.
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We use the notation 𝔗𝑎,𝑏(𝑥) = 𝑎𝑥 − 𝑥𝑏 for 𝑎, 𝑏, 𝑥 ∈ End∗(𝐸). The following inequality controlling
𝔗𝑎,𝑏(𝑥) is based on Stampfli [Sta70, Theorem 8]; see also Archbold [Arc78].

Lemma III.1.21. Let 𝑎 and 𝑏 be elements of a C*-algebra 𝐴. Define the bounded linear operator

𝔗𝑎,𝑏 ∶ 𝐴 → 𝐴 𝑥 ↦ 𝑎𝑥 − 𝑥𝑏.

If 𝑎 and 𝑏 are positive, then

‖𝔗𝑎,𝑏‖ ≤ max{‖𝑎‖ − ‖𝑏−1‖−1, ‖𝑏‖ − ‖𝑎−1‖−1}

where ‖𝑎−1‖−1 is considered to be zero if 𝑎 is not invertible, and likewise for 𝑏.

Proof. Firstly, ‖𝔗𝑎,𝑏‖ ≤ ‖𝑎‖ + ‖𝑏‖. For any 𝜆 ∈ ℂ, 𝔗𝑎−𝜆,𝑏−𝜆 = 𝔗𝑎,𝑏, so ‖𝔗𝑎,𝑏‖ ≤ ‖𝑎 − 𝜆‖ + ‖𝑏 − 𝜆‖. For
any 𝜆1, 𝜆2 ∈ ℂ,

‖𝔗𝑎,𝑏‖ ≤ ‖𝑎 − 𝜆1‖ + ‖𝑏 − 𝜆2‖ + |𝜆1 − 𝜆2|.

To obtain the required bound, let

𝜆1 = 1
2
(‖𝑎‖ + ‖𝑎−1‖−1) 𝜆2 = 1

2
(‖𝑏‖ + ‖𝑏−1‖−1)

so that, because 𝑎 and 𝑏 are positive,

‖𝑎 − 𝜆1‖ =
1
2
(‖𝑎‖ − ‖𝑎−1‖−1) ‖𝑏 − 𝜆2‖ =

1
2
(‖𝑏‖ − ‖𝑏−1‖−1).

Then

‖𝔗𝑎,𝑏‖ ≤
1
2
(‖𝑎‖ − ‖𝑎−1‖−1) + 1

2
(‖𝑏‖ − ‖𝑏−1‖−1) + ∣1

2
(‖𝑎‖ + ‖𝑎−1‖−1) − 1

2
(‖𝑏‖ + ‖𝑏−1‖−1)∣

= 1
2
((‖𝑎‖ − ‖𝑏−1‖−1) + (‖𝑏‖ − ‖𝑎−1‖−1) + ∣(‖𝑎‖ − ‖𝑏−1‖−1) − (‖𝑏‖ − ‖𝑎−1‖−1)∣)

= max{‖𝑎‖ − ‖𝑏−1‖−1, ‖𝑏‖ − ‖𝑎−1‖−1}

as required.

It is proved in [Sta70, Theorem 8, Corollary 2] that, if 𝐴 has a faithful irreducible representation,
then there is an equality

‖𝔗𝑎,𝑏‖ = inf
𝜆∈ℂ

(‖𝑎 − 𝜆‖ + ‖𝑏 − 𝜆‖)

for any 𝑎, 𝑏 ∈ 𝐴.

III.1.3 A multiplicative perturbation theory

The technical tool which allows us to extend the definitions of conformality and equivariance to
unbounded Kasparov cycles is a multiplicative perturbation theory. This perturbation theory allows
us to relate properties of an unbounded self-adjoint regular operator 𝐷 and its bounded transform
𝐹𝐷 ∶= 𝐷(1 + 𝐷2)−1/2 = 𝐷⟨𝐷⟩−1 to conformally rescaled versions 𝐷1 = 𝜇𝐷𝜇∗ and 𝐹𝐷1

.

Lemma III.1.22. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator on
𝐸. Let 𝑎 be an adjointable operator such that 𝑎𝜇−1∗ dom𝐷 ⊆ 𝜇−1∗ dom𝐷. Then, with 𝐷1 = 𝜇𝐷𝜇∗ and
𝐷2 = 𝜇⟨𝐷⟩𝜇∗, and for all 𝜆 ≥ 0

−(𝜆 + ⟨𝐷1⟩2)−1𝑎 + 𝑎(𝜆 +𝐷2
2 )−1 = (𝜆 + ⟨𝐷1⟩2)−1𝑎𝜇𝔗(𝜇∗𝜇)−1,𝜇∗𝜇(⟨𝐷⟩−1)𝜇−1𝐷2(𝜆 + 𝐷2

2 )−1

+𝐷1(𝜆 + ⟨𝐷1⟩2)−1 ([𝐷1, 𝑎]𝐷−1
2 − 𝜇−1∗[𝐹𝐷, 𝜇∗𝑎𝜇]𝜇−1)𝐷2(𝜆 + 𝐷2

2 )−1

+ (𝜆 + ⟨𝐷1⟩2)−1 (𝜇𝐹𝐷𝜇−1[𝐷1, 𝑎]𝐷−1
2 + 𝜇[𝐹𝐷, 𝜇−1𝑎𝜇]𝐹𝐷𝜇−1)𝐷2

2 (𝜆 + 𝐷2
2 )−1

as everywhere-defined operators.
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Proof. If 𝜇∗𝜇dom𝐷 ⊆ dom𝐷, we could proceed more straightforwardly. As we do not make this
assumption, we use the approximation arguments of §III.1.2. Let (𝜑𝑛)𝑛∈ℕ ⊂ 𝐶𝑐(ℝ) be a sequence
of positive functions, bounded by 1 and converging uniformly on compact subsets to the constant
function 1. Let 𝑑𝑛 = 𝐷𝜑𝑛(𝐷) and set

𝑎𝑛 = 𝜇−1∗𝜑𝑛(𝐷)𝜇∗𝑎𝜇−1∗𝜑𝑛(𝐷)𝜇∗.

Note for future reference that we may use the bounded transform 𝐹𝑑𝑛
= 𝑑𝑛⟨𝑑𝑛⟩−1 to write

[𝜇𝑑𝑛𝜇∗,𝑎𝑛](𝜇⟨𝑑𝑛⟩𝜇∗)−1

= 𝜇𝑑𝑛𝜑𝑛(𝐷)𝜇∗𝑎𝜇−1∗𝜑𝑛(𝐷)⟨𝑑𝑛⟩−1𝜇−1 − 𝜇−1∗𝜑𝑛(𝐷)𝜇∗𝑎𝜇−1∗𝜑𝑛(𝐷)𝜇∗𝜇𝐹𝑑𝑛
𝜇−1

= 𝜇[𝑑𝑛, 𝜑𝑛(𝐷)𝜇∗𝑎𝜇−1∗𝜑𝑛(𝐷)]⟨𝑑𝑛⟩−1𝜇−1 + 𝜇𝜑𝑛(𝐷)𝜇∗𝑎𝜇−1∗𝜑𝑛(𝐷)𝐹𝑑𝑛
𝜇−1

− 𝜇−1∗𝜑𝑛(𝐷)𝜇∗𝑎𝜇−1∗𝜑𝑛(𝐷)𝜇∗𝜇𝐹𝑑𝑛
𝜇−1

so that we will be in a position to apply Proposition III.1.19 to the first term, while the other two are
uniformly bounded in 𝑛. Because 𝑑𝑛 is bounded, we may write

− (𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)−1𝑎𝑛 + 𝑎𝑛(𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2)−1

= (𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)−1 (−𝑎𝑛(𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2) + (𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)𝑎𝑛) (𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2)−1

= (𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)−1 (−𝑎𝑛(𝜇⟨𝑑𝑛⟩𝜇∗)2 + ⟨𝜇𝑑𝑛𝜇∗⟩2𝑎𝑛) (𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2)−1. (III.1.23)

Expanding the middle factor and using the identity 𝐹𝑑𝑛
𝑑𝑛 − ⟨𝑑𝑛⟩ = −⟨𝑑𝑛⟩−1 yields

⟨𝜇𝑑𝑛𝜇∗⟩2𝑎𝑛 − 𝑎𝑛(𝜇⟨𝑑𝑛⟩𝜇∗)2

= 𝑎𝑛 + 𝜇𝑑𝑛𝜇∗𝜇𝑑𝑛𝜇∗𝑎𝑛 − 𝑎𝑛𝜇⟨𝑑𝑛⟩𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗

= 𝑎𝑛 + 𝜇𝑑𝑛𝜇∗[𝜇𝑑𝑛𝜇∗, 𝑎𝑛] + 𝜇𝑑𝑛𝜇∗𝑎𝑛𝜇𝑑𝑛𝜇∗ − 𝑎𝑛𝜇⟨𝑑𝑛⟩𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗

= 𝑎𝑛 + 𝜇𝑑𝑛𝜇∗[𝜇𝑑𝑛𝜇∗, 𝑎𝑛] − 𝜇𝑑𝑛[𝐹𝑑𝑛
, 𝜇∗𝑎𝑛𝜇]⟨𝑑𝑛⟩𝜇∗ + 𝜇𝑑𝑛𝐹𝑑𝑛

𝜇∗𝑎𝑛𝜇⟨𝑑𝑛⟩𝜇∗

− 𝑎𝑛𝜇⟨𝑑𝑛⟩𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗

= 𝑎𝑛 + 𝜇𝑑𝑛𝜇∗[𝜇𝑑𝑛𝜇∗, 𝑎𝑛] − 𝜇𝑑𝑛[𝐹𝑑𝑛
, 𝜇∗𝑎𝑛𝜇]⟨𝑑𝑛⟩𝜇∗ + 𝜇𝐹𝑑𝑛

𝜇−1𝜇𝑑𝑛𝜇∗𝑎𝑛𝜇⟨𝑑𝑛⟩𝜇∗

− 𝑎𝑛𝜇⟨𝑑𝑛⟩𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗

= 𝑎𝑛 + 𝜇𝑑𝑛𝜇∗[𝜇𝑑𝑛𝜇∗, 𝑎𝑛] − 𝜇𝑑𝑛[𝐹𝑑𝑛
, 𝜇∗𝑎𝑛𝜇]⟨𝑑𝑛⟩𝜇∗ + 𝜇𝐹𝑑𝑛

𝜇−1[𝜇𝑑𝑛𝜇∗, 𝑎𝑛]𝜇⟨𝑑𝑛⟩𝜇∗

+ 𝜇𝐹𝑑𝑛
𝜇−1𝑎𝑛𝜇𝑑𝑛𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗ − 𝑎𝑛𝜇⟨𝑑𝑛⟩𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗

= 𝑎𝑛 + 𝜇𝑑𝑛𝜇∗[𝜇𝑑𝑛𝜇∗, 𝑎𝑛] − 𝜇𝑑𝑛[𝐹𝑑𝑛
, 𝜇∗𝑎𝑛𝜇]⟨𝑑𝑛⟩𝜇∗ + 𝜇𝐹𝑑𝑛

𝜇−1[𝜇𝑑𝑛𝜇∗, 𝑎𝑛]𝜇⟨𝑑𝑛⟩𝜇∗

+ 𝜇[𝐹𝑑𝑛
, 𝜇−1𝑎𝑛𝜇]𝑑𝑛𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗ + 𝑎𝑛𝜇(𝐹𝑑𝑛

𝑑𝑛 − ⟨𝑑𝑛⟩)𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗

= 𝑎𝑛 + 𝜇𝑑𝑛𝜇∗[𝜇𝑑𝑛𝜇∗, 𝑎𝑛] − 𝜇𝑑𝑛[𝐹𝑑𝑛
, 𝜇∗𝑎𝑛𝜇]⟨𝑑𝑛⟩𝜇∗ + 𝜇𝐹𝑑𝑛

𝜇−1[𝜇𝑑𝑛𝜇∗, 𝑎𝑛]𝜇⟨𝑑𝑛⟩𝜇∗

+ 𝜇[𝐹𝑑𝑛
, 𝜇−1𝑎𝑛𝜇]𝑑𝑛𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗ − 𝑎𝑛𝜇⟨𝑑𝑛⟩−1𝜇∗𝜇⟨𝑑𝑛⟩𝜇∗

= 𝑎𝑛𝜇𝔗(𝜇∗𝜇)−1,𝜇∗𝜇(⟨𝑑𝑛⟩−1)𝜇−1(𝜇⟨𝑑𝑛⟩𝜇∗)

+ (𝜇𝑑𝑛𝜇∗) ([𝜇𝑑𝑛𝜇∗, 𝑎𝑛](𝜇⟨𝑑𝑛⟩𝜇∗)−1 − 𝜇−1∗[𝐹𝑑𝑛
, 𝜇∗𝑎𝑛𝜇]𝜇−1) (𝜇⟨𝑑𝑛⟩𝜇∗)

+ (𝜇𝐹𝑑𝑛
𝜇−1[𝜇𝑑𝑛𝜇∗, 𝑎𝑛](𝜇⟨𝑑𝑛⟩𝜇∗)−1 + 𝜇[𝐹𝑑𝑛

, 𝜇−1𝑎𝑛𝜇]𝐹𝑑𝑛
𝜇−1) (𝜇⟨𝑑𝑛⟩𝜇∗)2
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since 𝔗𝜇−1𝜇−1∗,𝜇∗𝜇(⟨𝑑𝑛⟩−1) = 𝜇−1𝜇−1∗⟨𝑑𝑛⟩−1 − ⟨𝑑𝑛⟩−1𝜇∗𝜇. Substituting into (III.1.23) yields

− (𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)−1𝑎𝑛 + 𝑎𝑛(𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2)−1

= (𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)−1𝑎𝑛𝜇𝔗(𝜇∗𝜇)−1,𝜇∗𝜇(⟨𝑑𝑛⟩−1)𝜇−1(𝜇⟨𝑑𝑛⟩𝜇∗)(𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2)−1

+ (𝜇𝑑𝑛𝜇∗)(𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)−1 ([𝜇𝑑𝑛𝜇∗, 𝑎𝑛](𝜇⟨𝑑𝑛⟩𝜇∗)−1 − 𝜇−1∗[𝐹𝑑𝑛
, 𝜇∗𝑎𝑛𝜇]𝜇−1)

× (𝜇⟨𝑑𝑛⟩𝜇∗)(𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2)−1

+ (𝜆 + ⟨𝜇𝑑𝑛𝜇∗⟩2)−1 (𝜇𝐹𝑑𝑛
𝜇−1[𝜇𝑑𝑛𝜇∗, 𝑎𝑛](𝜇⟨𝑑𝑛⟩𝜇∗)−1 + 𝜇[𝐹𝑑𝑛

, 𝜇−1𝑎𝑛𝜇]𝐹𝑑𝑛
𝜇−1)

× (𝜇⟨𝑑𝑛⟩𝜇∗)2(𝜆 + (𝜇⟨𝑑𝑛⟩𝜇∗)2)−1. (III.1.24)

By Proposition III.1.19, the right-hand side of (III.1.24) converges strongly to

(𝜆 + ⟨𝜇𝐷𝜇∗⟩2)−1𝑎𝜇𝔗(𝜇∗𝜇)−1,𝜇∗𝜇(⟨𝐷⟩−1)𝜇−1(𝜇⟨𝐷⟩𝜇∗)(𝜆 + (𝜇⟨𝐷⟩𝜇∗)2)−1

+ (𝜇𝐷𝜇∗)(𝜆 + ⟨𝜇𝐷𝜇∗⟩2)−1 ([𝜇𝐷𝜇∗, 𝑎](𝜇⟨𝐷⟩𝜇∗)−1 − 𝜇−1∗[𝐹𝐷, 𝜇∗𝑎𝜇]𝜇−1)
× (𝜇⟨𝐷⟩𝜇∗)(𝜆 + (𝜇⟨𝐷⟩𝜇∗)2)−1

+ (𝜆 + ⟨𝜇𝐷𝜇∗⟩2)−1 (𝜇𝐹𝐷𝜇−1[𝜇𝐷𝜇∗, 𝑎](𝜇⟨𝐷⟩𝜇∗)−1 + 𝜇[𝐹𝐷, 𝜇−1𝑎𝜇]𝐹𝐷𝜇−1)
× (𝜇⟨𝐷⟩𝜇∗)2(𝜆 + (𝜇⟨𝐷⟩𝜇∗)2)−1

and we obtain the required equality of everywhere-defined operators.

Lemma III.1.25. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible,adjointable operator on
𝐸. Let 𝑎 be an adjointable operator such that 𝑎𝜇−1∗ dom𝐷 ⊆ 𝜇−1∗ dom𝐷. Suppose further that, for
some 0 ≤ 𝛼 < 1,

[𝐹𝐷, 𝜇∗𝑎𝜇]⟨𝐷⟩1−𝛼 [𝐹𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩1−𝛼 [𝜇𝐷𝜇∗, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼

are bounded. Then, with 𝐷1 = 𝜇𝐷𝜇∗ and 𝐷2 = 𝜇⟨𝐷⟩𝜇∗, for 𝜆 ≥ 0 and 𝛽 ≤ 1 − 𝛼

∥𝐷1 ((𝜆 + ⟨𝐷1⟩2)−1𝑎 − 𝑎(𝜆 +𝐷2
2 )−1)𝜇⟨𝐷⟩𝛽∥ ≤ 𝑐1(𝜆 + 𝑐0)−1+(𝛼+𝛽)/2

where 𝑐0 = min{1, ‖𝜇−1‖−4} and 𝑐1 ≥ 0 is independent of 𝜆.

Proof. First, by Lemma III.1.15, ‖𝐷−𝛽
2 𝜇⟨𝐷⟩𝛽‖ = ‖⟨𝐷⟩𝛽𝜇∗𝐷−𝛽

2 ‖ ≤ ‖𝜇−1‖𝛽‖𝜇‖1−𝛽 so

∥𝐷1 ((𝜆 + ⟨𝐷1⟩2)−1𝑎 − 𝑎(𝜆 +𝐷2
2 )−1)𝜇⟨𝐷⟩𝛽∥

≤ ∥𝐷1 ((𝜆 + ⟨𝐷1⟩2)−1𝑎 − 𝑎(𝜆 +𝐷2
2 )−1)𝐷𝛽

2 ∥ ‖𝜇−1‖𝛽‖𝜇‖1−𝛽,

By Lemma III.1.21, ‖𝔗(𝜇∗𝜇)−1,(𝜇∗𝜇)‖ ≤ max{‖𝜇−1‖2 − ‖𝜇−1‖−2, ‖𝜇‖2 − ‖𝜇‖−2}. We compute that

∥𝐷1 ((𝜆 + ⟨𝐷1⟩2)−1𝑎 − 𝑎(𝜆 +𝐷2
2 )−1)𝐷𝛽

2 ∥

≤ ∥𝐷1(𝜆 + ⟨𝐷1⟩2)−1𝑎𝜇𝔗(𝜇∗𝜇)−1,𝜇∗𝜇(⟨𝐷⟩−1)𝜇−1𝐷1+𝛽
2 (𝜆 + 𝐷2

2 )−1∥

+ ∥𝐷2
1 (𝜆 + ⟨𝐷1⟩2)−1 ([𝐷1, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼 − 𝜇−1∗[𝐹𝐷, 𝜇∗𝑎𝜇]⟨𝐷⟩1−𝛼)×

× ⟨𝐷⟩𝛼𝜇∗𝐷−𝛼
2 𝐷𝛼+𝛽

2 (𝜆 + 𝐷2
2 )−1∥

+ ∥𝐷1(𝜆 + ⟨𝐷1⟩2)−1 (𝜇𝐹𝐷𝜇−1[𝐷1, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼 + 𝜇[𝐹𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩1−𝛼𝐹 2
𝐷)

× ⟨𝐷⟩𝛼𝜇∗𝐷−𝛼
2 𝐷1+𝛼+𝛽

2 (𝜆 + 𝐷2
2 )−1∥
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≤ ∥𝐷1(𝜆 + ⟨𝐷1⟩2)−1∥ ‖𝑎‖‖𝜇‖ ∥𝔗(𝜇∗𝜇)−1,𝜇∗𝜇(⟨𝐷⟩−1)∥ ‖𝜇−1‖ ∥𝐷1+𝛽
2 (𝜆 + 𝐷2

2 )−1∥

+ ∥𝐷2
1 (𝜆 + ⟨𝐷1⟩2)−1∥(∥[𝐷1, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼∥ − ∥𝜇−1∗[𝐹𝐷, 𝜇∗𝑎𝜇]⟨𝐷⟩1−𝛼∥)

× ∥⟨𝐷⟩𝛼𝜇∗𝐷−𝛼
2 ∥∥𝐷𝛼+𝛽

2 (𝜆 + 𝐷2
2 )−1∥

+ ∥𝐷1(𝜆 + ⟨𝐷1⟩2)−1∥(‖𝜇‖‖𝜇−1‖ ∥[𝐷1, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼∥ + ‖𝜇‖ ∥[𝐹𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩1−𝛼∥)

× ∥⟨𝐷⟩𝛼𝜇∗𝐷−𝛼
2 ∥∥𝐷1+𝛼+𝛽

2 (𝜆 + 𝐷2
2 )−1∥

≤ (𝜆 + 1)−1/2‖𝑎‖‖𝜇‖max{‖𝜇−1‖2 − ‖𝜇−1‖−2, ‖𝜇‖2 − ‖𝜇‖−2}‖𝜇−1‖(𝜆 + ‖𝜇−1‖−4)(−1+𝛽)/2

+ (∥[𝐷1, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼∥ − ‖𝜇−1‖ ∥[𝐹𝐷, 𝜇∗𝑎𝜇]⟨𝐷⟩1−𝛼∥)

× ‖𝜇−1‖𝛼‖𝜇‖1−𝛼(𝜆 + ‖𝜇−1‖−4)(−2+𝛼+𝛽)/2

+ (𝜆 + 1)−1/2 (‖𝜇‖‖𝜇−1‖ ∥[𝐷1, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼∥ + ‖𝜇‖ ∥[𝐹𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩1−𝛼∥)

× ‖𝜇−1‖𝛼‖𝜇‖1−𝛼(𝜆 + ‖𝜇−1‖−4)(−1+𝛼+𝛽)/2

≤ 𝑐′1(𝜆 + 𝑐0)−1+(𝛼+𝛽)/2

where 𝑐0 = min{1, ‖𝜇−1‖−4} and 𝑐′1 ≥ 0 is a constant independent of 𝜆. Hence,

∥𝐷1 ((𝜆 + ⟨𝐷1⟩2)−1𝑎 − 𝑎(𝜆 +𝐷2
2 )−1)𝜇⟨𝐷⟩𝛽∥ ≤ 𝑐1(𝜆 + 𝑐0)−1+(𝛼+𝛽)/2

for 𝑐1 = 𝑐′1‖𝜇−1‖𝛽‖𝜇‖1−𝛽.

Lemma III.1.26. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator on
𝐸. Let 𝑎 be an adjointable operator such that 𝑎𝜇−1∗ dom𝐷 ⊆ 𝜇−1∗ dom𝐷. Suppose further that, for
some 0 ≤ 𝛼 < 1,

[𝐹𝐷, 𝜇∗𝑎𝜇]⟨𝐷⟩1−𝛼 [𝐹𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩1−𝛼 [𝜇𝐷𝜇∗, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼

are bounded. Then, with 𝐷1 = 𝜇𝐷𝜇∗ and 𝐷2 = 𝜇⟨𝐷⟩𝜇∗,

𝐷1 (⟨𝐷1⟩−1𝑎 − 𝑎𝐷−1
2 )𝜇⟨𝐷⟩𝛽

is bounded for 𝛽 < 1 − 𝛼.

Proof. Using the integral formula (I.0.5),

𝐷1 (⟨𝐷1⟩−1𝑎 − 𝑎𝐷−1
2 )𝜇⟨𝐷⟩𝛽 = 1

𝜋
∫

∞

0
𝜆−1/2𝐷1 ((𝜆 + ⟨𝐷1⟩2)−1𝑎 − 𝑎(𝜆 +𝐷2

2 )−1)𝜇⟨𝐷⟩𝛽𝑑𝜆.

By Proposition III.1.25, the integrand is bounded and the integral is norm convergent when

∫
∞

0
𝜆−1/2(𝜆 + 𝑐0)−1+(𝛼+𝛽)/2𝑑𝜆

is convergent, that is, when 𝛽 < 1 − 𝛼.

Theorem III.1.27. Let 𝐷0 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator
on 𝐸. Let 𝑎 be an adjointable operator such that 𝑎𝜇−1∗ dom𝐷0 ⊆ 𝜇−1∗ dom𝐷0. Suppose further that,
for some 0 ≤ 𝛼 < 1,

[𝐹𝐷0
, 𝜇∗𝑎𝜇]⟨𝐷0⟩1−𝛼 [𝐹𝐷0

, 𝜇−1𝑎𝜇]⟨𝐷0⟩1−𝛼 [𝐹𝐷0
, 𝑎𝜇]⟨𝐷0⟩1−𝛼 [𝜇𝐷0𝜇∗, 𝑎]𝜇−1∗⟨𝐷0⟩−𝛼

are bounded. Then, with 𝐷1 = 𝜇𝐷0𝜇∗, the operator

(𝐹𝐷1
− 𝐹𝐷0

)𝑎𝜇⟨𝐷0⟩𝛽

is bounded for 𝛽 < 1 − 𝛼.
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Proof. We have

(𝐹𝐷1
− 𝐹𝐷0

)𝑎𝜇 = 𝐹𝐷1
𝑎𝜇 − 𝑎𝜇𝐹𝐷0

− [𝐹𝐷0
, 𝑎𝜇]

= 𝐹𝐷1
𝑎𝜇 − 𝑎𝐷1𝜇−1∗⟨𝐷0⟩−1 − [𝐹𝐷0

, 𝑎𝜇]
= 𝐹𝐷1

𝑎𝜇 −𝐷1𝑎𝜇−1∗⟨𝐷0⟩−1 + [𝐷1, 𝑎]𝜇−1∗⟨𝐷0⟩−1 − [𝐹𝐷0
, 𝑎𝜇]

= 𝐷1 (⟨𝐷1⟩−1𝑎 − 𝑎(𝜇⟨𝐷0⟩𝜇∗)−1)𝜇 + [𝐷1, 𝑎]𝜇−1∗⟨𝐷0⟩−1 − [𝐹𝐷0
, 𝑎𝜇].

Multiplying on the right by ⟨𝐷⟩𝛽, the first term remains bounded by Lemma III.1.26. The remaining
two terms are bounded owing to the last two of our displayed assumptions.

Theorem III.1.28. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator
on 𝐸. Let 𝑎 be an adjointable operator such that {𝜇∗𝑎𝜇, 𝜇−1𝑎𝜇, 𝑎𝜇, 𝜇∗𝑎𝜇−1∗} dom𝐷 ⊆ 𝜇−1∗ dom𝐷.
Suppose further that, for some 0 ≤ 𝛼 < 1,

[𝐷, 𝜇∗𝑎𝜇]⟨𝐷⟩−𝛼 [𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩−𝛼 [𝐷, 𝑎𝜇]⟨𝐷⟩−𝛼 [𝜇𝐷𝜇∗, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼

are bounded. Then, with 𝐷1 = 𝜇𝐷𝜇∗,

(𝐹𝐷1
− 𝐹𝐷)𝑎𝜇⟨𝐷⟩𝛽

is bounded for 𝛽 < 1 − 𝛼. If 𝑏 is an adjointable operator such that 𝑏∗𝜇−1∗ dom𝐷 ⊆ dom𝐷, then
(𝐹𝐷1

− 𝐹𝐷)𝑎𝑏⟨𝐷⟩𝛽 is bounded. If 𝑐 is a bounded operator such that (1 + 𝐷2)−1𝑐 is compact, then
(𝐹𝐷1

− 𝐹𝐷)𝑎𝑏𝑐 is compact.

Proof. Applying Theorem I.0.6, we find that

[𝐹𝐷, 𝜇∗𝑎𝜇]⟨𝐷⟩1−𝛾 [𝐹𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩1−𝛾 [𝐹𝐷0
, 𝑎𝜇]⟨𝐷⟩1−𝛾

are bounded for 𝛾 > 𝛼. Then, by Theorem III.1.27, (𝐹𝐷1
− 𝐹𝐷)𝑎𝜇⟨𝐷⟩𝛽 is bounded for all 𝛽 < 1 − 𝛾,

and so for all 𝛽 < 1 − 𝛼. The remaining statements follow immediately.

Remark III.1.29. In Theorem III.1.28, that [𝜇𝐷𝜇∗, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼 is bounded is equivalent to

𝐷𝜇−1[𝜇𝜇∗, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼 = 𝐷(𝜇∗𝑎𝜇−1∗ − 𝜇−1𝑎𝜇)⟨𝐷⟩−𝛼

= 𝜇−1[𝜇𝐷𝜇∗, 𝑎]𝜇−1∗⟨𝐷⟩−𝛼 − [𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩−𝛼

being bounded, using the assumption that [𝐷, 𝜇−1𝑎𝜇]⟨𝐷⟩−𝛼 is bounded. In other words, that 𝜇𝜇∗ and
𝑎 almost commute.

Corollary III.1.30. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator
on 𝐸. Suppose that, for some 0 ≤ 𝛼 < 1,

[𝐹𝐷, 𝜇]⟨𝐷⟩1−𝛼 [𝐹𝐷, 𝜇∗𝜇]⟨𝐷⟩1−𝛼

are bounded. Then, with 𝐷1 = 𝜇𝐷𝜇∗,
(𝐹𝐷1

− 𝐹𝐷)𝜇⟨𝐷⟩𝛽

is bounded for 𝛽 < 1 − 𝛼. If 𝜇∗ dom𝐷 ⊆ dom𝐷, then (𝐹𝐷1
− 𝐹𝐷)⟨𝐷⟩𝛽 is bounded.

Corollary III.1.31. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator
on 𝐸. Suppose that 𝜇dom𝐷 ⊆ dom𝐷 and, for some 0 ≤ 𝛼 < 1,

[𝐷, 𝜇]⟨𝐷⟩−𝛼 ⟨𝐷⟩−𝛼[𝐷, 𝜇]

are bounded. Then, with 𝐷1 = 𝜇𝐷𝜇∗, the operator

(𝐹𝐷1
− 𝐹𝐷)⟨𝐷⟩𝛽

is bounded for 𝛽 < 1 − 𝛼.
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Corollary III.1.32. Let 𝐷0 and 𝐷1 be self-adjoint regular operators and 𝜇 an invertible adjointable
operator on 𝐸. Suppose that 𝜇dom𝐷0 ⊆ dom𝐷0 and, for some 0 ≤ 𝛼 < 1,

(𝜇−1𝐷1𝜇−1∗ −𝐷0)⟨𝐷0⟩−𝛼 [𝐷0, 𝜇]⟨𝐷0⟩−𝛼 ⟨𝐷0⟩−𝛼[𝐷0, 𝜇]

are bounded. Then the operator
(𝐹𝐷1

− 𝐹𝐷0
)⟨𝐷0⟩𝛽

is bounded for 𝛽 < 1 − 𝛼.

Theorem III.1.33. Let 𝐷 be a self-adjoint regular operator and 𝜇 an invertible adjointable operator on
𝐸. Let 𝑎 and 𝑏 be adjointable operators such that {𝜇∗𝑎, 𝜇−1𝑎, 𝑎, 𝑏𝜇, 𝑏𝜇−1∗} dom𝐷 ⊆ dom𝐷. Suppose
further that, for some 0 ≤ 𝛼 < 1,

⟨𝐷⟩−𝛼[𝐷, 𝑎𝜇] ⟨𝐷⟩−𝛼[𝐷, 𝑎𝜇−1∗] ⟨𝐷⟩−𝛼[𝐷, 𝑎] [𝐷, 𝑏𝜇]⟨𝐷⟩−𝛼 [𝜇𝐷𝜇∗, 𝑎∗𝑏]𝜇−1∗⟨𝐷⟩−𝛼

are bounded. Then, with 𝐷1 = 𝜇𝐷𝜇∗, the operator

(𝐹𝐷1
− 𝐹𝐷)𝑎∗𝑏𝜇⟨𝐷⟩𝛽

is bounded for 𝛽 < 1 − 𝛼. If 𝑐 is an adjointable operator such that 𝑐𝜇−1∗ dom𝐷 ⊆ dom𝐷, then
(𝐹𝐷1

− 𝐹𝐷)𝑎∗𝑏𝑐∗⟨𝐷⟩𝛽 is bounded. If 𝑑 is an adjointable operator such that (1 + 𝐷2)−1𝑑 is compact,
then (𝐹𝐷1

− 𝐹𝐷)𝑎∗𝑏𝑐∗𝑑 is compact.

Proof. This follows from Theorem III.1.28, using [GM15, Proposition A.5] for the appropriate Leibniz
rule to relate the differing commutator conditions.

Now, returning to the concept of conformal transformation, we have:

Proof of Theorem III.1.4. Let (𝑈, 𝜇) be a conformal transformation from (𝐴,𝐸𝐵, 𝐷1) to (𝐴,𝐸′
𝐵, 𝐷2).

By Proposition I.1.1 and Lemma III.1.15,

(𝑈 ∗𝐹𝐷2
𝑈𝑎 − 𝑎𝐹𝜇𝐷1𝜇∗)𝜇⟨𝐷0⟩𝛽

is bounded for 𝑎 ∈ ℳ. Let 𝑏, 𝑐 ∈ ℳ and consider the operators

𝐷 = (𝑈∗𝐷2𝑈
𝜇𝐷1𝜇∗) 𝐵 = ( 𝑏

0 ) 𝐶 = ( 𝑐
0 )

on 𝐸 ⊕𝐸′. By assumption and using Lemma III.1.15,

[𝐷,𝐵]⟨𝐷⟩−𝛼 = ( (𝑈∗𝐷2𝑈𝑏 − 𝑏𝜇𝐷1𝜇∗)⟨𝜇𝐷1𝜇∗⟩−𝛼

0 ) and [𝐷,𝐶]⟨𝐷⟩−𝛼

are bounded. By [GM15, Proposition A.5],

[𝐷,𝐵∗𝐶]⟨𝐷⟩−𝛼 = (0
[𝜇𝐷1𝜇∗, 𝑏∗𝑐]⟨𝜇𝐷1𝜇∗⟩−𝛼)

extends to an adjointable operator. Again using Lemma III.1.15, [𝜇𝐷1𝜇∗, 𝑏∗𝑐]𝜇−1∗⟨𝐷1⟩−𝛼 is bounded
and we may apply Theorem III.1.33 to obtain that

(𝐹𝜇𝐷1𝜇∗ − 𝐹𝐷1
)𝑏∗𝑐𝜇⟨𝐷1⟩𝛽

is bounded for 𝛽 < 1 − 𝛼. Then

(𝑈∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎𝑏∗𝑐 = (𝑈 ∗𝐹𝐷2
𝑈𝑎 − 𝑎𝐹𝜇𝐷1𝜇∗)𝑏∗𝑐 − [𝐹𝐷1

, 𝑎]𝑏∗𝑐 + 𝑎(𝐹𝜇𝐷1𝜇∗ − 𝐹𝐷1
)𝑏∗𝑐

so that (𝑈∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎𝑏∗𝑐𝜇⟨𝐷0⟩𝛽 is bounded. For 𝑑 ∈ ℳ and 𝑒 ∈ 𝐴 we find

(𝑈∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎𝑏∗𝑐𝑑∗𝑒 = (𝑈 ∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎∗𝑏𝑐𝜇⟨𝐷1⟩𝛽(⟨𝐷1⟩−𝛽𝜇−1𝑑∗⟨𝐷1⟩𝛽)⟨𝐷1⟩−𝛽𝑒

is compact. By the inclusion 𝐴 ⊆ span((ℳ∗ℳ)2𝐴), we are done.
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III.1.3.1 A partial converse

A partial converse result is possible, in the sense that these kinds of estimates on bounded transforms
always arise from an additive and a multiplicative perturbation of the unbounded operator. This is not
quite precise due to differences in the differentiability assumptions. The following is nearly a converse
to Corollary III.1.30.

Theorem III.1.34. Let 𝐷1 and 𝐷2 be self-adjoint regular operators with equal domains such that, for
some 0 < 𝛼 ≤ 1,

(𝐹𝐷1
− 𝐹𝐷2

)⟨𝐷1⟩𝛼

is bounded on dom⟨𝐷1⟩𝛼. Then there exist a bounded invertible operator 𝜇 and a self-adjoint regular
operator 𝑇 such that

𝐷2 = 𝜇𝐷1𝜇∗ + 𝑇

and both
⟨𝐷1⟩−1/2𝑇 ⟨𝐷1⟩−1/2+𝛼 ([𝐹𝐷1

, 𝜇] − 𝑇 ⟨𝐷2⟩−1) ⟨𝐷1⟩𝛼

are bounded. Furthermore, if 1/2 ≤ 𝛼,

𝑇 ⟨𝐷1⟩−1+𝛼 [𝐹𝐷1
, 𝜇]⟨𝐷1⟩𝛼

are bounded.

Proof. Let 𝜇 = ⟨𝐷2⟩1/2⟨𝐷1⟩−1/2 and 𝑇 = ⟨𝐷2⟩1/2(𝐹𝐷2
− 𝐹𝐷1

)⟨𝐷2⟩1/2, defined on dom𝐷1, so that

𝜇𝐷1𝜇∗ + 𝑇 = ⟨𝐷2⟩1/2⟨𝐷1⟩−1/2𝐷1⟨𝐷1⟩−1/2⟨𝐷2⟩1/2 + ⟨𝐷2⟩1/2(𝐹𝐷2
− 𝐹𝐷1

)⟨𝐷2⟩1/2

= ⟨𝐷2⟩1/2 (𝐹𝐷1
+ (𝐹𝐷2

− 𝐹𝐷1
)) ⟨𝐷2⟩1/2

= 𝐷2.

We have

[𝐹𝐷1
, 𝜇] = (𝐹𝐷1

⟨𝐷2⟩1/2 − ⟨𝐷2⟩1/2𝐹𝐷1
) ⟨𝐷1⟩−1/2

= (⟨𝐷2⟩1/2(𝐹𝐷2
− 𝐹𝐷1

) + (𝐹𝐷2
− 𝐹𝐷1

)⟨𝐷2⟩1/2) ⟨𝐷1⟩−1/2

= (𝑇⟨𝐷2⟩−1/2 + ⟨𝐷2⟩−1/2𝑇) ⟨𝐷1⟩−1/2

= 𝑇⟨𝐷2⟩−1 + (𝐹𝐷2
− 𝐹𝐷1

).

Because the domains of 𝐷1 and 𝐷2 are equal, (𝐹𝐷2
− 𝐹𝐷1

)⟨𝐷2⟩𝛼 is bounded and the statement follows
from the boundedness of

⟨𝐷2⟩−1/2𝑇 ⟨𝐷2⟩−1/2+𝛼 = (𝐹𝐷2
− 𝐹𝐷1

)⟨𝐷2⟩𝛼 ([𝐹𝐷1
, 𝜇] − 𝑇 ⟨𝐷2⟩−1) ⟨𝐷2⟩𝛼 = (𝐹𝐷2

− 𝐹𝐷1
)⟨𝐷2⟩𝛼.

Suppose that 1/2 ≤ 𝛼. It is sufficient to prove that

𝑇 ⟨𝐷2⟩−1+𝛼 = ⟨𝐷2⟩1/2(𝐹𝐷2
− 𝐹𝐷1

)⟨𝐷2⟩−1/2+𝛼

is bounded. If 𝛼 = 1/2,
𝑇 ⟨𝐷2⟩−1/2 = ⟨𝐷2⟩1/2(𝐹𝐷2

− 𝐹𝐷1
)

and we are done. If 1/2 < 𝛼 ≤ 1, both 1/2 and −1/2 + 𝛼 are positive, and we can interpolate between

(𝐹𝐷1
− 𝐹𝐷2

)⟨𝐷2⟩𝛼 and ⟨𝐷2⟩𝛼(𝐹𝐷1
− 𝐹𝐷2

)

as in [Les05, Proposition A.1], adjusted for Hilbert modules in [LM19, Lemma 7.7] (see also §A.3).
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III.1.4 The logarithmic transform: multiplicative to additive

Conformal transformations of unbounded Kasparov modules are not preserved by the exterior product.
This is exemplified by the fact that the Cartesian product of two conformally perturbed Riemannian
manifolds (𝑋1, 𝑘21𝐠1) and (𝑋2, 𝑘22𝐠2) is not a conformal perturbation of the Cartesian product (𝑋1 ×
𝑋2, 𝐠1⊕𝐠2), unless 𝑘1(𝑥) = 𝑘2(𝑦) for all 𝑥 ∈ 𝑋1 and 𝑦 ∈ 𝑋2, i.e. 𝑘1 = 𝑘2 is a constant. The logarithmic
dampening of [GMR19] provides a way of turning conformal transformations into locally bounded
perturbations, at the expense of much of the geometrical information encoded by the Dirac operator.

Proposition III.1.35. Let 𝐷 be a self-adjoint regular operator on a right Hilbert 𝐵-module 𝐸 and let
𝑎 ∈ End∗𝐵(𝐸) preserve dom𝐷. Suppose also that [𝐹𝐷, 𝑎] log⟨𝐷⟩ is bounded. Then, with

𝐿𝐷 = 𝐹𝐷 log⟨𝐷⟩ = 𝐷 log((1 + 𝐷2)1/2)(1 + 𝐷2)−1/2,

the commutator [𝐿𝐷, 𝑎] is bounded.

Proof. By [GMR19, Lemma 1.15], the condition 𝑎 dom𝐷 ⊆ dom𝐷 implies that 𝑎 dom log⟨𝐷⟩ ⊆
dom log⟨𝐷⟩ and that [log⟨𝐷⟩, 𝑎] is bounded. Using also the condition on [𝐹𝐷, 𝑎],

[𝐿𝐷, 𝑎] = 𝐹𝐷[log⟨𝐷⟩, 𝑎] + [𝐹𝐷, 𝑎] log⟨𝐷⟩

is bounded.

Corollary III.1.36. Let 𝐷0 and 𝐷1 be self-adjoint regular operators on right Hilbert 𝐵-modules 𝐸0 and
𝐸1. Suppose that there is an operator 𝑎 ∈ Hom∗

𝐵(𝐸0, 𝐸1) such that 𝑎 dom𝐷0 ⊆ dom𝐷1 and

(𝐹𝐷1
𝑎 − 𝑎𝐹𝐷0

) log⟨𝐷0⟩

extends to an adjointable operator. Then 𝐿𝐷1
𝑎 − 𝑎𝐿𝐷0

is bounded.

Theorem III.1.37. Let (𝑈, 𝜇) be a conformal transformation from the order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷1) to

the order- 1
1−𝛼 cycle (𝐴,𝐸′

𝐵, 𝐷2). Then the logarithmic transforms (𝐴,𝐸𝐵, 𝐿𝐷1
) and (𝐴,𝐸′

𝐵, 𝐿𝐷2
) are

related by the unitary 𝑈, up to locally bounded perturbation; in particular, 𝐴 is contained in the closure
of the set of 𝑎 ∈ End∗(𝐸) such that

(𝑈∗𝐿𝐷2
𝑈 − 𝐿𝐷1

)𝑎 [𝐿𝐷1
, 𝑎] [𝐿𝐷2

, 𝑈𝑎𝑈 ∗]

are bounded.

Proof. Let 𝑎, 𝑏, 𝑐 ∈ ℳ so that (𝑈 ∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎𝑏∗𝑐𝜇⟨𝐷0⟩𝛽

(𝑈∗𝐿𝐷2
𝑈 − 𝐿𝐷1

)𝑎𝑏∗𝑐𝜇 = 𝑈 ∗𝐿𝐷2
𝑈𝑎𝑏∗𝑐𝜇 − 𝑎𝑏∗𝑐𝜇𝐿𝐷1

− [𝐿𝐷1
, 𝑎𝑏∗𝑐𝜇]

= 𝑈 ∗𝐹𝐷2
𝑈(𝑈∗ log⟨𝐷2⟩𝑈𝑎𝑏∗𝑐𝜇 − 𝑎𝑏∗𝑐𝜇 log⟨𝐷1⟩)

+ (𝑈 ∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎𝑏∗𝑐𝜇 log⟨𝐷1⟩ − 𝐹𝐷1
[log⟨𝐷1⟩, 𝑎𝑏∗𝑐𝜇]

is bounded, by the proof of Theorem III.1.4. Let 𝑑 ∈ Lip∗𝛼(𝐷) and multiply on the right by 𝜇−1𝑑. Then
(𝑈∗𝐿𝐷2

𝑈 − 𝐿𝐷1
)𝑎∗𝑏𝑐𝑑 is bounded and, by the inclusions 𝐴 ⊆ span(ℳ𝐴) ⊆ span(ℳℳ∗ℳLip∗𝛼(𝐷)),

we are done.

III.1.5 The singular case

Conformal factors on noncompact manifolds need not be bounded nor have bounded inverse. In
that setting, we can take a suitable open cover and assemble local estimates. This idea motivates
the next definition. In the following we stress that span means the norm completion of finite linear
combinations.
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Definition III.1.38. A singular conformal transformation (𝑈, (𝜇𝑖)𝑖∈𝐼) from one order- 1
1−𝛼 cycle,

(𝐴,𝐸𝐵, 𝐷1), to another, (𝐴,𝐸′
𝐵, 𝐷2), is a unitary map 𝑈 ∶ 𝐸 → 𝐸′, intertwining the representations of

𝐴, and a family (𝜇𝑖)𝑖∈𝐼 ⊆ End∗(𝐸) of (even) invertible operators such that

𝐴 ⊆ span𝑖∈𝐼𝐴ℳ𝑖 ∩ span𝑖∈𝐼ℳ𝑖𝐴

where ℳ𝑖 is the set of 𝑎 ∈ End∗(𝐸) such that

(𝑈 ∗𝐷2𝑈𝑎 − 𝑎𝜇𝑖𝐷1𝜇∗
𝑖 )𝜇−1∗

𝑖 ⟨𝐷1⟩−𝛼 ⟨𝐷2⟩−𝛼𝑈(𝑈 ∗𝐷2𝑈𝑎 − 𝑎𝜇𝑖𝐷1𝜇∗
𝑖 )

are bounded, 𝑎, 𝑎𝜇𝑖, 𝑎𝜇−1∗
𝑖 ∈ Lip∗𝛼(𝐷1), and 𝑈𝑎𝑈∗ ∈ Lip∗𝛼(𝐷2).

Remark III.1.39. As in the non-singular case, ℳ𝑖 is a ternary ring of operators, generally not closed.
In particular, span(ℳ𝑖ℳ∗

𝑖 ℳ𝑖) = ℳ𝑖.

Theorem III.1.40. Let (𝑈, (𝜇𝑛)𝑛∈ℕ) be a singular conformal transformation from (𝐴,𝐸𝐵, 𝐷1) to
(𝐴,𝐸′

𝐵, 𝐷2). Then the bounded transforms (𝐴,𝐸𝐵, 𝐹𝐷1
) and (𝐴,𝐸′

𝐵, 𝐹𝐷2
) are related by the unitary 𝑈,

up to locally compact perturbation, i.e.

(𝑈∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎 ∈ End0(𝐸)

for all 𝑎 ∈ 𝐴.

Proof. As in the Proof of Theorem III.1.4, (𝑈 ∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎𝑏∗𝑐𝜇𝑖⟨𝐷0⟩𝛽 is bounded for all 𝑎, 𝑏, 𝑐 ∈ ℳ𝑖.
For 𝑑, 𝑒 ∈ ℳ𝑖 and 𝑓 ∈ 𝐴 we find

(𝑈∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎𝑏∗𝑐𝑑∗𝑒𝑓 = (𝑈 ∗𝐹𝐷2
𝑈 − 𝐹𝐷1

)𝑎∗𝑏𝑐𝜇𝑖⟨𝐷1⟩𝛽(⟨𝐷1⟩−𝛽𝜇−1
𝑖 𝑑∗𝑒⟨𝐷1⟩𝛽)⟨𝐷1⟩−𝛽𝑓

is compact. The inclusion of 𝐴 ⊆ span𝑖∈𝐼(ℳ𝑖𝐴) = span𝑖∈𝐼((ℳ𝑖ℳ∗
𝑖 )2ℳ𝑖𝐴) proves the statement.

Example III.1.41. Let us reprise Example III.1.6, in which we considered Riemannian spin𝑐 manifolds
(𝑋, 𝐠) and (𝑋, 𝐡) such that 𝐡 = 𝑘2𝐠. Suppose that (𝑋, 𝐠) is geodesically complete, so that /𝐷𝐠 is
self-adjoint. It may or may not be the case that (𝑋, 𝐡) is complete and /𝐷𝐡 is self-adjoint, depending
on the properties of 𝑘, although that is guaranteed if 𝑘 is bounded with bounded inverse. Let (𝑂𝑖)𝑖∈𝐼
be an open cover of 𝑋 such that 𝑘 is bounded and invertible when restricted to any 𝑂𝑖. (This can be
ensured by choosing a relatively compact cover.) Choose a family (𝑘𝑖)𝑖∈𝐼 of positive smooth functions
which are bounded and invertible and agree with 𝑘 on the corresponding 𝑂𝑖. Let 𝑓 ∈ 𝐶∞

𝑐 (𝑂𝑖), so that

𝑈 ∗ /𝐷𝐡𝑈𝑓 − 𝑓𝑘−1/2
𝑖 /𝐷𝐠𝑘

−1/2
𝑖 = 𝑘−1/2 /𝐷𝐠𝑘

−1/2𝑓 − 𝑓𝑘−1/2
𝑖 /𝐷𝐠𝑘

−1/2
𝑖

= 𝑘−1/2[ /𝐷𝐠, 𝑓]𝑘
−1/2
𝑖

= 𝑘−1/2
𝑖 [ /𝐷𝐠, 𝑓]𝑘

−1/2
𝑖

is bounded. Then (𝑈, (𝑘−1/2
𝑖 )𝑖∈𝐼) is a singular conformal transformation from the spectral triple

(𝐶0(𝑋), 𝐿2(𝑋, 𝑆𝐠), /𝐷𝐠) to (𝐶0(𝑋), 𝐿2(𝑋, 𝑆𝐡), /𝐷𝐡), provided that (𝑋, 𝐡) is complete so that the latter is
a spectral triple. In the context of Example III.1.7, (𝑈, (𝑘−1/2

𝑖 )𝑖∈𝐼) is a singular conformal transformation
from (𝐶0(𝑋), 𝐿2(Ω∗𝑋,𝐠), 𝑑 + 𝛿𝐠) to (𝐶0(𝑋), 𝐿2(Ω∗𝑋,𝐡), 𝑑 + 𝛿𝐡).

If either or both of (𝑋, 𝐠) and (𝑋, 𝐡) fails to be complete, the failure of self-adjointness of the
Dirac operator(s) means that one requires the technology of half-closed chains and relative spectral
triples. We do not pursue this here; for more details, see [Hil10, DGM18, FGMR19].

An abstract treatment of open covers, for the purposes of unbounded KK-theory, can be found in
[Dun22]; see, in particular, [Dun22, Lemma 4.3].

In the following example, inspired by the modular cycles of [Kaa21], one should think of Δ−Δ−1
+ as

the conformal factor, which can be both unbounded and noninvertible. Later, in Proposition III.4.7,
we directly generalise the results of [Kaa21].
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Proposition III.1.42. Let (𝐴,𝐸𝐵, 𝐷1) and (𝐴,𝐸𝐵, 𝐷2) be unbounded Kasparov modules. Let Δ+ and
Δ− be commuting positive adjointable operators such that

• For all 𝑎 ∈ 𝐴, (𝑎(Δ+ +Δ−)(Δ+ +Δ− + 1
𝑛)

−1)∞𝑛=1 converges in operator norm to 𝑎.
• Δ+,Δ− ∈ Lip∗𝛼(𝐷1); and
• 𝐴 ⊆ span(𝐴𝒩)∩span(𝒩𝐴), where 𝒩 is the set of 𝑎 ∈ Lip∗𝛼(𝐷1)∩Lip∗𝛼(𝐷2) such that 𝑎 dom𝐷1 ⊆

dom𝐷2, 𝑎∗ dom𝐷2 ⊆ dom𝐷1, and

(𝐷2𝑎Δ+ − 𝑎𝐷1Δ−)⟨𝐷1⟩−𝛼 ⟨𝐷2⟩−𝛼(𝐷2𝑎Δ+ − 𝑎𝐷1Δ−)

extend to adjointable operators.

Let (ℎ𝑛)𝑛∈ℕ≥1
⊆ 𝐶∞

𝑏 (ℝ×
+) be any sequence of positive functions with bounded reciprocals which agree

with the function 𝑥 ↦ 𝑥−1/2 on the interval [ 1𝑛 , 𝑛]. Then (1, (ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1)𝑛∈ℕ≥1
) is a singular

conformal transformation from (𝐴,𝐸𝐵, 𝐷1) to (𝐴,𝐸𝐵, 𝐷2).

For the proof, we shall make use of the smooth functional calculus of §A.4.2.

Lemma III.1.43. Let 𝐴 be a C*-algebra represented by 𝜋 on a Hilbert module 𝐸. Let ℎ ∈ 𝐶 ⊆ End∗(𝐸)
be a strictly positive element of a C*-algebra 𝐶 such that, for a dense subset of 𝑎 ∈ 𝐴, the sequence

(𝜋(𝑎)ℎ(ℎ + 1/𝑛)−1)∞𝑛=1

converges to 𝜋(𝑎). Then 𝜋(𝐴) is contained in the closure of 𝜋(𝐴)𝐶.

Proof. First, note that (ℎ(ℎ+ 1/𝑛)−1)∞𝑛=1 is an approximate unit for 𝐶. For every 𝑎 ∈ 𝐴 such that the
sequence (𝜋(𝑎)ℎ(ℎ + 1/𝑛)−1)∞𝑛=1 ⊆ 𝜋(𝑎)𝐶 converges in norm to 𝜋(𝑎), 𝜋(𝑎) ∈ 𝜋(𝑎)𝐶.

Proof of Proposition III.1.42. First, the smooth functional calculus of Theorem A.4.18 shows that the
ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1 ∈ Lip∗𝛼(𝐷1) is bounded. Second, let 𝑓1, 𝑓2 ∈ 𝐶∞

𝑐 (( 1𝑛 , 𝑛)) and 𝑎 ∈ 𝒩, and define
𝑏 ∈ End∗(𝐸) to be the product

𝑎𝑓1(Δ+)𝑓2(Δ−) ∈ 𝒩𝐶0(( 1𝑛 , 𝑛))(Δ+)𝐶0(( 1𝑛 , 𝑛))(Δ−).

Then 𝑏ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1 = 𝑏Δ−1/2
+ Δ1/2

− . Again using the smooth functional calculus,

(𝐷2𝑏 − 𝑏ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1𝐷1ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1)(ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1)−1⟨𝐷1⟩−𝛼

= (𝐷2𝑎Δ+ − 𝑎𝐷1Δ−)⟨𝐷1⟩−𝛼(⟨𝐷1⟩𝛼Δ
−1/2
+ Δ−1/2

− 𝑓1(Δ+)𝑓2(Δ−)⟨𝐷1⟩−𝛼)

+ 𝑎 [𝐷1,Δ1/2
− Δ−1/2

+ 𝑓1(Δ+)𝑓2(Δ−)] ⟨𝐷1⟩−𝛼

and

⟨𝐷2⟩−𝛼(𝐷2𝑏 − 𝑏ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1𝐷1ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1)
= ⟨𝐷2⟩−𝛼(𝐷2𝑎Δ+ − 𝑎𝐷1Δ−)Δ−1

+ 𝑓1(Δ+)𝑓2(Δ−)

+ (⟨𝐷1⟩𝛼𝑎∗⟨𝐷2⟩−𝛼)
∗
⟨𝐷1⟩−𝛼 [𝐷1,Δ1/2

− Δ−1/2
+ 𝑓1(Δ+)𝑓2(Δ−)] ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1

extend to adjointable operators. Hence 𝑏 ∈ ℳ𝑛. The closure of 𝐶0(( 1𝑛 , 𝑛))(Δ+)𝐶0(( 1𝑛 , 𝑛))(Δ−) is
𝐶∗(Δ+,Δ−). By Lemma III.1.43, we have 𝐴 ⊆ 𝐴𝐶∗(Δ+,Δ−) and

span𝑖∈𝐼𝐴ℳ𝑖 ∩ span𝑖∈𝐼ℳ𝑖𝐴 ⊇ span(𝐴𝒩𝐶∗(Δ+,Δ−)) ∩ span(𝒩𝐶∗(Δ+,Δ−)𝐴) ⊇ 𝐴,

as required.
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III.2 Conformal group equivariance
It is not clear that Definition I.2.7 is the correct generalisation of equivariance to unbounded KK-theory.
Definition I.2.7 is natural in the sense that the exterior product and descent map are well-defined and
Kucerovsky’s conditions [Kuc97, Theorem 13] for the Kasparov product still suffice [Kuc94, Theorem
8.12]. On the other hand, let us examine ‘patient zero’ of noncommutative geometry: a complete
Riemannian spin𝑐 manifold (𝑋, 𝐠) with spinor bundle 𝑆 and Dirac operator /𝐷, forming the spectral
triple (𝐶(𝑋), 𝐿2(𝑋, 𝑆), /𝐷). The largest group for which this is uniformly equivariant, in the sense of
Definition I.2.7, is the isometry group Iso(𝑋, 𝐠). What is the largest group for which the Fredholm
module

(𝐶(𝑋), 𝐿2(𝑋, 𝑆), 𝐹 /𝐷)
given by the bounded transform is equivariant, and can a geometric interpretation be put upon it?
The answer to this question is that the Fredholm module above is equivariant under the conformal
group Conf(𝑋, 𝐠) of 𝑋. That this is maximal is confirmed by [Bär07, Theorem 3.1].

Example III.2.1. The simplest example exhibiting this discrepancy is the real line and its Dirac
spectral triple (𝐶0(ℝ), 𝐿2(ℝ), 𝑖𝜕𝑥). We will compare two group actions on ℝ: translations by ℝ and
dilation by ℝ×

+, i.e. addition and multiplication, respectively. The affine group ℝ ⋊ℝ×
+ acts on ℝ by

𝜑(𝑎,𝑏) ∶ 𝑥 ↦ 𝑎𝑥 + 𝑏, for (𝑎, 𝑏) ∈ ℝ ⋊ ℝ×
+. Let 𝑉(𝑎,𝑏) be the pullback by 𝜑−1

(𝑎,𝑏) = 𝜑(𝑎−1,−𝑎−1𝑏) on 𝐿2(ℝ).
For 𝜉, 𝜂 ∈ 𝐿2(ℝ), we have

∫
∞

0
(𝑉(𝑎,𝑏)𝜉)(𝑥)𝜂(𝑥)𝑑𝑥 = ∫

∞

0
𝜉(𝑎−1(𝑥 − 𝑏))𝜂(𝑥)𝑑𝑥 = ∫

∞

0
𝜉(𝑦)𝜂(𝑎𝑦 + 𝑏)𝑎𝑑𝑦

so 𝑉 ∗
(𝑎,𝑏) = 𝑎𝑉 −1

(𝑎,𝑏) = 𝑎𝑉(𝑎−1,−𝑎−1𝑏). The unitary part of the polar decomposition of 𝑉(𝑎,𝑏) is, therefore,
𝑈(𝑎,𝑏) = 𝑎−1/2𝑉(𝑎,𝑏). By the chain rule, for 𝜉 ∈ 𝐶∞

𝑐 (ℝ),

(𝑈(𝑎,𝑏)𝜕𝑥𝑈∗
(𝑎,𝑏)𝜉)(𝑥) = 𝑎−1/2(𝜕𝑥𝑈 ∗

(𝑎,𝑏)𝜉)(𝑎
−1(𝑥 − 𝑏)) = 𝑎−3/2(𝑈 ∗

(𝑎,𝑏)𝜉)
′(𝑎−1(𝑥 − 𝑏)) = 𝑎−1𝜉′(𝑥)

so that 𝑈(𝑎,𝑏)𝑖𝜕𝑥𝑈∗
(𝑎,𝑏) = 𝑎−1𝑖𝜕𝑥. For the subgroup ℝ (𝑎 = 1), the spectral triple (𝐶0(ℝ), 𝐿2(ℝ), 𝑖𝜕𝑥)

is isometrically equivariant in the sense of Definition I.2.7. On the other hand, when 𝑎 ≠ 1, for
𝑓 ∈ 𝐶∞

𝑐 (ℝ),
𝑈(𝑎,𝑏)𝑖𝜕𝑥𝑈 ∗

(𝑎,𝑏)𝑓 − 𝑓𝑖𝜕𝑥 = (𝑎−1 − 1)𝑖𝜕𝑥𝑓 + [𝑖𝜕𝑥, 𝑓]
is as unbounded as 𝑖𝜕𝑥, so condition 4 of Definition I.2.7 is not satisfied. On the other hand,

(𝑈(𝑎,𝑏)𝐹𝑖𝜕𝑥
𝑈∗
(𝑎,𝑏) − 𝐹𝑖𝜕𝑥

)𝑓 = (𝐹𝑎−1𝑖𝜕𝑥
− 𝐹𝑖𝜕𝑥

)𝑓 = 𝑖𝜕𝑥 ((𝑎2 + (𝑖𝜕𝑥)2)−1/2 − (1 + (𝑖𝜕𝑥)2)−1/2) 𝑓

is compact, as 𝑦 ↦ 𝑦((𝑎2 + 𝑦2)−1/2 − (1 + 𝑦2)−1/2) is in 𝐶0(ℝ). Hence (𝐶0(ℝ), 𝐿2(ℝ), 𝐹𝑖𝜕𝑥
) is equivari-

ant for all of ℝ⋊ℝ×
+. In this section, we will make a definition of equivariance in unbounded KK-theory

which can cope with this and similar examples. (We remark that multiplication by −1, although an
isometry, is not orientation-preserving and has the effect of multiplying by −1 in 𝐾𝐾1(𝐶0(ℝ),ℂ),
rather than preserving the class.)

Definition III.2.2. An order- 1
1−𝛼 𝐴-𝐵-cycle (𝐴,𝐸𝐵, 𝐷) is conformally equivariant if 𝐸 is a𝐺-equivariant

𝐴-𝐵-correspondence and there exists a ∗-strongly continuous family (𝜇𝑔)𝑔∈𝐺 ⊆ End∗(𝐸) of (even)
invertible operators satisfying the following. We require that 𝐴 ⊆ span(𝐴𝒬) ∩ span(𝒬𝐴), where 𝒬 is
the set of 𝑎 ∈ Lip∗𝛼(𝐸) such that for all 𝑔 ∈ 𝐺 we have {𝑎𝜇𝑔, 𝑎𝜇−1∗

𝑔 } dom𝐷 ⊆ dom𝐷 ∩ 𝑈𝑔 dom𝐷, and
the maps

𝑔 ↦ (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝜇𝑔𝐷𝜇∗

𝑔)𝜇−1∗
𝑔 ⟨𝐷⟩−𝛼 𝑔 ↦ [𝐷, 𝑎𝜇𝑔]⟨𝐷⟩−𝛼 𝑔 ↦ [𝐷, 𝑎𝜇−1∗

𝑔 ]⟨𝐷⟩−𝛼

𝑔 ↦ 𝑈𝑔⟨𝐷⟩−𝛼𝑈∗
𝑔 (𝑈𝑔𝐷𝑈 ∗

𝑔 𝑎 − 𝑎𝜇𝑔𝐷𝜇∗
𝑔) 𝑔 ↦ ⟨𝐷⟩−𝛼[𝐷, 𝑎𝜇𝑔] 𝑔 ↦ ⟨𝐷⟩−𝛼[𝐷, 𝑎𝜇−1∗

𝑔 ]

are ∗-strongly continuous from 𝐺 into bounded operators (but need not be globally bounded). We call
𝜇 = (𝜇𝑔)𝑔∈𝐺 the conformal factor.
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Remarks III.2.3.
1. When 𝜇𝑔 = 1 for all 𝑔 ∈ 𝐺, this Definition reduces to Definition I.2.7 of uniformly equivariant

𝐺-cycles.
2. Also, if 𝜇𝑒 = 1, for elements 𝑎 ∈ End∗(𝐸) satisfying that

[𝐷, 𝑎𝜇𝑔]⟨𝐷⟩−𝛼

is bounded, 𝑎 is automatically in Lip∗𝛼(𝐷).
3. Note also that it is sufficient that 1 ∈ 𝒬 for the closure conditions to be satisfied; in the nonunital

case, an approximate unit might be used.

Theorem III.2.4. Let (𝐴,𝐸𝐵, 𝐷) be a conformally 𝐺-equivariant order- 1
1−𝛼 cycle. Then (𝐴,𝐸𝐵, 𝐹𝐷)

is a 𝐺-equivariant bounded Kasparov module.

Proof. The only difference from the non-equivariant case is the need to show that, for every 𝑎 ∈ 𝐴,
𝑔 ↦ (𝐹𝐷 − 𝑈𝑔𝐹𝐷𝑈∗

𝑔 )𝑎 is norm-continuous as a map from 𝐺 into End0(𝐸).
By definition, for every 𝑎 ∈ 𝒬, the maps 𝑓0 ∶ 𝑔 ↦ 𝜇−1

𝑔 and

𝑓1,𝑎 ∶ 𝑔 ↦ (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝜇𝑔𝐷𝜇∗

𝑔)𝜇−1∗
𝑔 ⟨𝐷⟩−𝛼 𝑓2,𝑎 ∶ 𝑔 ↦ ⟨𝐷⟩−𝛼𝑈∗

𝑔 (𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝜇𝑔𝐷𝜇∗

𝑔)
𝑓3,𝑎 ∶ 𝑔 ↦ [𝐷, 𝑎𝜇𝑔]⟨𝐷⟩−𝛼 𝑓4,𝑎 ∶ 𝑔 ↦ ⟨𝐷⟩−𝛼[𝐷, 𝑎𝜇𝑔]
𝑓5,𝑎 ∶ 𝑔 ↦ [𝐷, 𝑎𝜇−1∗

𝑔 ]⟨𝐷⟩−𝛼 𝑓6,𝑎 ∶ 𝑔 ↦ ⟨𝐷⟩−𝛼[𝐷, 𝑎𝜇−1∗
𝑔 ]

are ∗-strongly continuous as a map from 𝐺 into End∗(𝐸). By Lemma A.1.12, this is equivalent to
𝑓𝑖,𝑎|𝐾 residing in End∗(𝐶(𝐾,𝐸)) for every compact subset 𝐾 ⊆ 𝐺.

Fix a compact subset 𝐾 ⊆ 𝐺 and let 𝐸 = 𝐶(𝐾,𝐸). Define 𝐷̃ to be the self-adjoint regular operator
on 𝐸 given by 𝐷 at each point of 𝐾. Let 𝑈 denote the ℂ-linear map from 𝐸 to itself given by 𝑔 ↦ 𝑈𝑔.
Let 𝜇̃ ∈ End∗(𝐸) be given by 𝑔 ↦ 𝜇𝑔. For every 𝑎 ∈ End∗(𝐸), let 𝑎̃ be given by 𝑎 at each point of 𝐺.
Then, for every 𝑎 ∈ 𝒬,

(𝑈𝐷̃𝑈 ∗𝑎̃ − 𝑎̃𝜇̃𝐷̃𝜇̃∗)𝜇̃−1∗⟨𝐷̃⟩−𝛼 ⟨𝐷̃⟩−𝛼𝑈 ∗(𝑈𝐷̃𝑈 ∗
𝑔 𝑎̃ − 𝑎̃𝜇̃𝐷̃𝜇̃∗)

[𝐷̃, 𝑎̃𝜇̃]⟨𝐷̃⟩−𝛼 ⟨𝐷̃⟩−𝛼[𝐷̃, 𝑎̃𝜇̃] [𝐷̃, 𝑎̃𝜇̃−1∗]⟨𝐷̃⟩−𝛼 ⟨𝐷̃⟩−𝛼[𝐷̃, 𝑎̃𝜇̃−1∗] [𝐷̃, 𝑎̃]

are adjointable endomorphisms of 𝐸. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝒬. As in the Proof of Theorem III.1.4,

[𝜇̃𝐷̃𝜇̃∗, 𝑏̃∗𝑐]𝜇̃−1∗⟨𝐷̃⟩−𝛼

is bounded. We apply Theorem III.1.33 to obtain that (𝐹𝜇̃𝐷̃𝜇̃∗ −𝐹𝐷̃)̃𝑏∗𝑐𝑑∗⟨𝐷̃⟩𝛽 is bounded for 𝛽 < 1−𝛼.
Furthermore, as

(𝑈𝐷̃𝑈 ∗𝑎̃ − 𝑎̃𝜇̃𝐷̃𝜇̃∗)𝜇̃−1∗⟨𝐷̃⟩−𝛼

is bounded, Proposition I.1.1, shows that

(𝑈𝐹𝐷̃𝑈 ∗𝑎̃ − 𝑎̃𝐹𝜇̃𝐷̃𝜇̃∗)𝜇̃⟨𝐷̃⟩𝛽

is too. Taking care because 𝑈 is only ℂ-linear, we have

(𝑈𝐹𝐷̃𝑈∗ − 𝐹𝐷̃)𝑎̃𝑏̃∗𝑐𝑑∗ = 𝑈[𝐹𝐷̃, 𝑈 ∗]𝑎̃𝑏̃∗𝑐𝑑∗ = 𝑈[𝐹𝐷̃, 𝑈 ∗𝑎̃𝑏̃∗𝑐]𝑑∗ − [𝐹𝐷̃, 𝑎̃𝑏̃∗𝑐]𝑑∗

= 𝑈(𝐹𝐷̃𝑈∗𝑎̃ − 𝑈 ∗𝑎̃𝐹𝜇̃𝐷̃𝜇̃∗ )̃𝑏∗𝑐𝑑∗ + 𝑎̃(𝐹𝜇̃𝐷̃𝜇̃∗ 𝑏̃∗𝑐𝑑∗ − 𝑏̃∗𝑐𝐹𝐷̃) − [𝐹𝐷̃, 𝑎̃𝑏̃∗𝑐]𝑑∗

= 𝑈(𝐹𝐷̃𝑈∗𝑎̃ − 𝑈 ∗𝑎̃𝐹𝜇̃𝐷̃𝜇̃∗ )̃𝑏∗𝑐𝑑∗ + 𝑎̃(𝐹𝜇̃𝐷̃𝜇̃∗ − 𝐹𝐷̃)̃𝑏∗𝑐𝑑∗ − [𝐹𝐷̃, 𝑎̃]̃𝑏∗𝑐𝑑∗

so that (𝑈𝐹𝐷̃𝑈 ∗ − 𝐹𝐷̃)𝑎̃𝑏̃∗𝑐𝑑∗⟨𝐷̃⟩𝛽 is bounded. Letting 𝑒 ∈ 𝐴 we have

(𝑈𝐹𝐷̃𝑈 ∗ − 𝐹𝐷̃)𝑎̃𝑏̃∗𝑐𝑑∗𝑒 (III.2.5)
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is in End0(𝐸) = End0(𝐶(𝐾,𝐸)).
Define the map 𝑓 ′ ∶ 𝑔 ↦ (𝐹𝐷 − 𝑈𝑔𝐹𝐷𝑈∗

𝑔 )𝑎𝑏∗𝑐𝑑∗𝑒 from 𝐺 into bounded operators on 𝐸. By Lemma
A.1.8, the norm-continuity of 𝑓 ′ is equivalent to the condition that 𝑓 ′|𝐾 be in End0(𝐶(𝐾,𝐸)) for every
compact subset 𝐾 ⊆ 𝐺. By the inclusion of 𝐴 ⊆ 𝒬𝒬∗𝒬𝒬∗𝐴, we are done.

Example III.2.6. Let (𝑋, 𝐠) be a complete Riemannian spin𝑐 manifold with spinor bundle /𝑆 and
Atiyah–Singer Dirac operator /𝐷. Let 𝐺 be a locally compact group with a spin𝑐-preserving conformal
action 𝜑 on 𝑋, so that 𝜑∗

𝑔(𝐠) = 𝑘2𝑔𝐠 for 𝑔 ∈ 𝐺. If the conformal factors (𝑘𝑔)𝑔∈𝐺 are each bounded and
invertible (for instance, if 𝑋 is compact), then (𝐶0(𝑋), 𝐿2(𝑋, /𝑆𝐠), /𝐷) is a conformally 𝐺-equivariant
spectral triple with conformal factors (𝑘−1/2

𝑔−1 )𝑔∈𝐺.

Example III.2.7. Let (𝑋, 𝐠) be a complete oriented Riemannian manifold with Hodge–de Rham
operator 𝑑+𝛿. Let 𝐺 be a locally compact group with a conformal action 𝜑 on 𝑋, so that 𝜑∗

𝑔(𝐠) = 𝑘2𝑔𝐠
for 𝑔 ∈ 𝐺. If the conformal factors (𝑘𝑔)𝑔∈𝐺 are each bounded and invertible (for instance, if 𝑋 is
compact), then (𝐶0(𝑋), 𝐿2(Ω∗𝑋), 𝑑 + 𝛿) is a conformally 𝐺-equivariant spectral triple with conformal
factors (𝑘−1/2

𝑔−1 )𝑔∈𝐺.

Example III.2.8. Let 𝑃 be a principal circle bundle over a compact Hausdorff space 𝑋. Let Φ ∶
𝐶(𝑃) → 𝐶(𝑋) be the conditional expectation given by averaging over the circle action. By [CNNR11,
Proposition 2.9],

(𝐶(𝑃), 𝐿2(𝑃 ,Φ)𝐶(𝑋), 𝑁 = −𝑖𝜕𝜃) (III.2.9)

is an unbounded Kasparov module, where 𝑁 is the number operator on the spectral subspaces,
equivalent to the vertical Dirac operator −𝑖𝜕𝜃 acting on each fibre. Let 𝐺 be a group acting on 𝑃
and 𝑋, compatibly with the surjection 𝑃 → 𝑋. Suppose that 𝜑 acts differentiably between the fibres.
Since the circle is one-dimensional, 𝜑∗

𝑔(𝑑𝜃2) = 𝑘2𝑔𝑑𝜃2 for a family of functions (𝑘𝑔)𝑔∈𝐺 ∈ 𝐶(𝑃). We
obtain that (III.2.9) is conformally 𝐺-equivariant with conformal factors (𝑘−1/2

𝑔−1 )𝑔∈𝐺.

In the following Example, we give a truly noncommutative example of conformal equivariance,
showing that the order-2 spectral triple for the C*-algebra of the Heisenberg group built in §II.4.2 is
conformally equivariant.

Example III.2.10. Recall the order-2 spectral triple

(𝐶∗(𝖧3), 𝐿2(𝖧3, ℂ2),𝑀ℓ)

of §II.4.2, where ℓ ∶ 𝖧3 → 𝒞𝓁3 is the weight given by

ℓ ∶ ⎛⎜⎜
⎝

1 𝑎 𝑐
1 𝑏

1

⎞⎟⎟
⎠

↦ (𝑎𝛾1 + 𝑏𝛾2)(𝑎2 + 𝑏2)1/2 + 𝑐𝛾3 .

There is an action of ℝ×
+ on 𝖧3 by automorphisms, given for 𝑡 ∈ ℝ×

+ by

⎛⎜⎜
⎝

1 𝑎 𝑐
1 𝑏

1

⎞⎟⎟
⎠

↦ ⎛⎜⎜
⎝

1 𝑡𝑎 𝑡2𝑐
1 𝑡𝑏

1

⎞⎟⎟
⎠

.

Let 𝑉𝑡 ∈ 𝐵(𝐿2(𝖧3)) be given by the pullback

𝑉𝑡𝜉(𝑎, 𝑏, 𝑐) = 𝜉(𝑡−1𝑎, 𝑡−1𝑏, 𝑡−2𝑐)

on 𝜉 ∈ 𝐿2(𝖧3). Then

⟨𝑉 ∗
𝑡 𝜉 ∣ 𝜂⟩ = ∫𝜉(𝑡−1𝑎, 𝑡−1𝑏, 𝑡−2𝑐)𝜂(𝑎, 𝑏, 𝑐)𝑑𝑎𝑑𝑏𝑑𝑐 = ∫𝜉(𝑥, 𝑦, 𝑧)𝜂(𝑡𝑥, 𝑡𝑦, 𝑡2𝑧)𝑡4𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑡4⟨𝜉 ∣ 𝑉𝑡−1𝜂⟩
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so that 𝑉 ∗
𝑡 = 𝑡4𝑉𝑡−1 . The unitary in the polar decomposition is given by 𝑈𝑡 = 𝑡−2𝑉𝑡. Noting that

ℓ(𝑡𝑎, 𝑡𝑏, 𝑡2𝑐) = 𝑡2ℓ(𝑎, 𝑏, 𝑐)

we see that the operator 𝑀ℓ transforms as

(𝑈𝑡𝑀ℓ𝑈∗
𝑡 𝜉)(𝑎, 𝑏, 𝑐) = 𝑡−2(𝑀ℓ𝑈 ∗

𝑡 𝜉)(𝑡−1𝑎, 𝑡−1𝑏, 𝑡−2𝑐)
= 𝑡−2ℓ(𝑡−1𝑎, 𝑡−1𝑏, 𝑡−2𝑐)(𝑈 ∗

𝑡 𝜉)(𝑡−1𝑎, 𝑡−1𝑏, 𝑡−2𝑐)
= 𝑡−2ℓ(𝑎, 𝑏, 𝑐)𝜉(𝑎, 𝑏, 𝑐)
= 𝑡−2(𝑀ℓ𝜉)(𝑎, 𝑏, 𝑐)

on a vector 𝜉 ∈ 𝐿2(𝖧3, ℂ2). In summary, the data (𝐶∗(𝖧3), 𝐿2(𝖧3, ℂ2),𝑀ℓ), together with the
action (𝑈𝑡)𝑡∈ℝ of the group ℝ×

+ and conformal factors given by 𝜇𝑡 = 𝑡−1, constitute a conformally
ℝ×

+-equivariant 2nd-order spectral triple.
The C*-algebra of the Heisenberg group can be identified with a continuous field of Moyal planes

(with one classical plane) over ℝ [ENN93, §4]. In this picture, the group action is dilation on ℝ and a
corresponding scaling of the parameters of the Moyal planes.

We generalise Example III.2.10 to all Carnot groups and their dilation actions in §IV.3.1.
One limitation of conformal equivariance is that the exterior product becomes ill-defined. This is

exemplified by the fact that the conformal group of the Cartesian product of Riemannian manifolds
is generically smaller than the product of the conformal groups. However, at the bounded level of
KK-theory, the exterior product is known to exist by Kasparov’s Technical Theorem. The logarithmic
transform of §III.1.4 will provide a way of turning conformal equivariance into uniform equivariance,
making the exterior product constructive, at the expense of much of the geometric information encoded
by the Dirac operator. In a similar way, descent and the dual Green–Julg map are not well-defined for
conformally equivariant cycles. One way of resolving this is by the logarithmic transform; another will
be given in §III.4.1.

Theorem III.2.11. Let (𝐴,𝐸𝐵, 𝐷) be a conformally 𝐺-equivariant order- 1
1−𝛼 cycle with conformal

factor 𝜇. Then (𝐴,𝐸𝐵, 𝐿𝐷) is a uniformly 𝐺-equivariant unbounded Kasparov module.

Proof. The only difference from the non-equivariant case is the need to show that 𝐴 is contained
in the closure of the set of 𝑎 ∈ End∗(𝐸) such that [𝐿𝐷, 𝑎] extends to an adjointable operator and
𝑔 ↦ (𝐿𝐷 − 𝑈𝑔𝐿𝐷𝑈∗

𝑔 )𝑎 is ∗-strongly continuous as a map from 𝐺 into End∗(𝐸).
Fix a compact subset 𝐾 ⊆ 𝐺 and let 𝐸 = 𝐶(𝐾,𝐸). As in the Proof of Theorem III.2.4, define 𝐷̃

to be the self-adjoint regular operator on 𝐸 given by 𝐷 at each point of 𝐾. Let 𝑈 denote the ℂ-linear
map from 𝐸 to itself given by 𝑔 ↦ 𝑈𝑔. Let 𝜇̃ ∈ End∗(𝐸) be given by 𝑔 ↦ 𝜇𝑔. For every 𝑎 ∈ End∗(𝐸),
let 𝑎̃ be given by 𝑎 at each point of 𝐺. Let 𝑎, 𝑏, 𝑐 ∈ 𝒬; then as in (III.2.5)

(𝑈𝐹𝐷̃𝑈 ∗ − 𝐹𝐷̃)𝑎̃𝑏̃∗𝑐𝜇̃⟨𝐷̃⟩𝛽

is bounded for 𝛽 < 1 − 𝛼. Hence,

(𝑈𝐿𝐷̃𝑈 ∗ − 𝐿𝐷̃)𝑎̃𝑏̃∗𝑐𝜇̃ = 𝑈𝐿𝐷̃𝑈 ∗𝑎̃𝑏̃∗𝑐𝜇̃ − 𝑎̃∗𝑏𝜇̃𝐿𝐷̃ − [𝐿𝐷̃, 𝑎̃𝑏̃∗𝑐𝜇̃]
= 𝑈𝐹𝐷̃𝑈∗(𝑈 log⟨𝐷̃⟩𝑈∗𝑎̃𝑏̃∗𝑐𝜇̃ − 𝑎̃𝑏̃∗𝑐𝜇̃ log⟨𝐷̃⟩)

+ (𝑈𝐹𝐷̃𝑈 ∗ − 𝐹𝐷̃)𝑎̃𝑏̃∗𝑐𝜇̃ log⟨𝐷̃⟩ − 𝐹𝐷[log⟨𝐷̃⟩, 𝑎̃𝑏̃∗𝑐𝜇̃]

is bounded. By the invertibility of 𝜇̃, (𝑈𝐿𝐷̃𝑈 ∗ − 𝐿𝐷̃)𝑎̃𝑏̃∗𝑐 ∈ End∗(𝐶(𝐾,𝐸)).
Let 𝑑 ∈ 𝐴 and define the map 𝑓 ′ ∶ 𝑔 ↦ (𝐿𝐷 − 𝑈𝑔𝐿𝐷𝑈∗

𝑔 )𝑎𝑏∗𝑐𝑑∗ from 𝐺 into bounded operators
on 𝐸. By Lemma A.1.12, the ∗-strong-continuity of 𝑓 ′ is equivalent to the condition that 𝑓 ′|𝐾 be in
End∗(𝐶(𝐾,𝐸)) for every compact subset 𝐾 ⊆ 𝐺, which it is. By the inclusion of 𝐴 ∈ span(𝒬𝒬∗𝒬𝐴),
we are done.
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Remark III.2.12. Let 𝐴 be a unital C*-algebra and 𝒜 a dense unital ∗-subalgebra of 𝐴. Let (𝒜,𝐻,𝐷)
be a conformally 𝐺-equivariant 𝑝-summable order-𝑚 spectral triple. Because (𝑈𝑔𝐹𝐷𝑈∗

𝑔 −𝐹𝐷)(1+𝐷2)𝛽/2
is bounded for 𝛽 < 𝑚−1, the 𝐺-equivariant Fredholm module (𝐴,𝐻, 𝐹𝐷) is 𝑞-summable over 𝒜 for any
𝑞 > 𝑚𝑝 (see Definition I.2.6).

We note in particular that there are obstructions to finite summability which persist also in
the setting above. Connes’ obstruction [Con89] (see also [GRU19]) shows that there are no finitely
summable 𝐺-equivariant higher order spectral triples over 𝐴 if 𝐴 ⋊𝐺 is purely infinite. Puschnigg’s
generalization [Pus11] of the rigidity results of Bader–Furman–Gelander–Monod [BFGM07] goes
even further when 𝐺 is a higher rank lattice and implies essentially that there are no conformally
𝐺-equivariant finitely summable higher order spectral triples over a unital 𝐴.

III.2.1 The γ-element for the real and complex Lorentz groups

In this section, we lift to unbounded KK-theory the γ-elements constructed for 𝑆𝑂(2𝑛+1, 1), 𝑆𝑂(2𝑛, 1),
and 𝑆𝑈(𝑛, 1) by Kasparov [Kas84], Chen [Che96], and Julg and Kasparov [JK95], respectively. We
have opted to present them with notation close to the original sources. For a unified treatment, see
[AJV19, §5.3].

In each case, the Bernstein–Gelfand–Gelfand (BGG) complex [ČS09] for a sphere, considered as a
symmetric space, is cleft in twain. For the real Lorentz groups, the BGG complex is the de Rham
complex and, for the complex Lorentz groups, it is the Rumin complex [Rum94]. In the case of
𝑆𝑂(2𝑛 + 1, 1), the symmetric space is 𝐒2𝑛. The sphere being even dimensional, the middle-degree
forms are split into the two eigenspaces of the Hodge star operator, which division is conformally
invariant and, indeed, appears in the BGG complex. In the cases of 𝑆𝑂(2𝑛, 1) and 𝑆𝑈(𝑛, 1), the
symmetric space is 𝐒2𝑛−1. The sphere being odd-dimensional necessitates the addition of the 𝐿2

harmonic forms on a real or complex hyperbolic space to be added to the half-complex, along with
an operator related to the Poisson transform. The sphere 𝐒2𝑛−1 is considered as the boundary of
ℝ𝐇2𝑛 = 𝑆𝑂(2𝑛, 1)/𝑆(𝑂(𝑛) × 𝑂(1)) or ℂ𝐇𝑛 = 𝑆𝑈(𝑛, 1)/𝑆(𝑈(𝑛) × 𝑈(1)).

It is possible that the framework of conformally equivariant unbounded KK-theory could be used to
treat the other rank-one groups, 𝑆𝑝(𝑛, 1) and the real form 𝐹4(−20), lifting the construction in [Jul19];
however, there, the resulting complex contains differential operators of different orders. In rank two,
there is a construction by Yuncken [Yun11] of the γ-element in bounded KK-theory of 𝑆𝐿(3,ℂ), using
the BGG complex of the flag manifold. A similar construction is proposed for the other rank-two
complex semisimple groups [Yun18]. The BGG complex, in full generality, has been put on a sound
analytical footing in [DH22] and subsequently fitted into bounded KK-theory in [Gof24], although
with limitations on equivariance. The lifting of these constructions to the unbounded picture remains
a difficult task, likely to require a substantial renovation of the axioms of an unbounded Kasparov
module, beyond what is done here. A step in this direction is the treatment of ‘mixed-order’ situations
in noncommutative geometry in Chapter IV.

III.2.1.1 The case of 𝑆𝑂(2𝑛 + 1, 1)

Following [Kas84, §4], we begin with the sphere 𝐒2𝑛 on which 𝑆𝑂(2𝑛 + 1, 1) acts conformally and its
Hodge–de Rham Dirac operator. As we have seen, we can build a conformally 𝑆𝑂(2𝑛+1, 1)-equivariant
spectral triple

(𝐶(𝐒2𝑛), 𝐿2(Ω∗𝐒𝑛), 𝑑 + 𝛿).

In order to obtain the KK-class of the 𝛾-element, we split the complexified exterior algebra into two
subspaces, each preserved by the Dirac operator. On a 2𝑛-dimensional manifold, the codifferential is
equal to 𝛿 = 𝑑∗ = −⋆𝑑 ⋆ and the Hodge star satisfies that

⋆2 ∶ 𝛼 ↦ (−1)|𝛼|𝛼 ⋆∗ ∶ 𝛼 ↦ (−1)|𝛼| ⋆𝛼
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for homogeneous 𝛼 ∈ Ω∗𝐒𝑛. The Hodge star and Hodge-de Rham operator are related by

(𝑑 + 𝛿) ⋆𝛼 = (𝑑 ⋆−(−1)|𝛼| ⋆ 𝑑)𝛼 = ⋆((−1)|𝛼|+1 ⋆ 𝑑 ⋆−(−1)|𝛼|𝑑)𝛼 = (−1)|𝛼|+1 ⋆(𝑑 − 𝛿)𝛼.

Define the map 𝜖 ∶ 𝛼 ↦ 𝑖|𝛼|(|𝛼|+1)−𝑛𝛼 = (−1)|𝛼|(|𝛼|+1)/2𝑖−𝑛𝛼, so that

(⋆ 𝜖)2𝛼 = 𝑖|𝛼|(|𝛼|+1)−𝑛 ⋆ 𝜖 ⋆𝛼 = 𝑖|𝛼|(|𝛼|+1)−𝑛𝑖(2𝑛−|𝛼|)((2𝑛−|𝛼|)+1)−𝑛(−1)|𝛼|𝛼 = 𝛼

and

(⋆ 𝜖)∗𝛼 = (−1)(2𝑛−|𝛼|)(2𝑛−|𝛼|+1)/2𝑖𝑛(−1)|𝛼| ⋆𝛼 = (−1)|𝛼|(|𝛼|+1)/2𝑖−𝑛 ⋆𝛼 = ⋆ 𝜖𝛼,

meaning that ⋆ 𝜖 is a self-adjoint unitary. We have

(𝑑 + 𝛿) ⋆ 𝜖𝛼 = 𝑖|𝛼|(|𝛼|+1)−𝑛(𝑑 + 𝛿) ⋆𝛼 = 𝑖2|𝛼|+2+|𝛼|(|𝛼|+1)−𝑛 ⋆(𝑑 − 𝛿)𝛼

and

𝜖𝑑𝛼 = 𝑖2|𝛼|+2+|𝛼|(|𝛼|+1)−𝑛𝑑𝛼 𝜖𝛿𝛼 = −𝑖2|𝛼|+2+|𝛼|(|𝛼|+1)−𝑛𝛿𝛼.

Hence ⋆ 𝜖 commutes with 𝑑 + 𝛿 and we can decompose the exterior algebra into

Ω∗𝐒2𝑛 = Ω∗
1 ⊕Ω∗

2 ∶= im(1
2
(1 + ⋆ 𝜖)) ⊕ im(1

2
(1 − ⋆ 𝜖)) .

We thus have a spectral triple
(𝐶(𝐒2𝑛), 𝐿2(Ω∗

1), 𝑑 + 𝛿)

which is still conformally 𝑆𝑂(2𝑛 + 1, 1)-equivariant and isometrically 𝑆𝑂(2𝑛 + 1)-equivariant. By
forgetting the action of the algebra, we obtain a representative (ℂ, 𝐿2(Ω∗

1), 𝑑 + 𝛿) of a class 𝛾 ∈
𝐾𝐾𝑆𝑂(2𝑛+1,1)(ℂ,ℂ). The only harmonic forms on 𝐒2𝑛 are scalar multiples of 1 ∈ Ω0𝐒2𝑛 and the
volume form vol ∈ Ω2𝑛𝐒2𝑛. One can check that

⋆ 𝜖1 = 𝑖−𝑛vol ⋆ 𝜖vol = 𝑖𝑛1 1
2
(1 + ⋆ 𝜖)(1 + 𝑖−𝑛vol) = 1 + 𝑖−𝑛vol.

Hence the only harmonic forms in Ω∗
1 are scalar multiples of (1 + 𝑖−𝑛vol). The form (1 + 𝑖−𝑛vol)

being 𝑆𝑂(2𝑛 + 1)-invariant, the restriction 𝑟𝑆𝑂(2𝑛+1,1),𝑆𝑂(2𝑛+1)(𝛾) represents 1 ∈ 𝐾𝐾𝑆𝑂(2𝑛+1)(ℂ,ℂ).
By [AJV19, Proposition 5.9], because 𝛾 is the image of an element of 𝐾𝐾𝑆𝑂(2𝑛+1,1)(𝐶(𝐒2𝑛), ℂ) and
restricts to 1 ∈ 𝐾𝐾𝑆𝑂(2𝑛+1)(ℂ,ℂ), 𝛾 is really the γ-element of 𝑆𝑂(2𝑛 + 1, 1).

III.2.1.2 The case of 𝑆𝑂(2𝑛, 1)

Following [Che96, §3.1], we begin with the sphere 𝐒2𝑛−1, on which 𝑆𝑂(2𝑛, 1) acts conformally, and its
Hodge–de Rham operator. As in the even-dimensional case, we can build a conformally 𝑆𝑂(2𝑛, 1)-
equivariant spectral triple

(𝐶(𝐒2𝑛−1), 𝐿2(Ω∗𝐒2𝑛−1), 𝑑 + 𝛿).

To obtain the correct class in 𝐾𝐾𝑆𝑂(2𝑛,1)
0 (ℂ,ℂ) for the γ-element, we will cut the differential forms in

two, as we did for 𝑆𝑂(2𝑛 + 1, 1), and add an additional operator.
Let 𝐃2𝑛 be the open unit ball with Euclidean metric. The Poincaré disc model is a conformal

identification of the hyperbolic space ℝ𝐇2𝑛 with 𝐃2𝑛. As we saw in Example III.1.7 (in particular
(III.1.8)) the pullback map 𝐿2(Ω𝑛ℝ𝐇2𝑛) → 𝐿2(Ω𝑛𝐃2𝑛) is automatically unitary because the forms are
of middle degree. Let 𝐼 ∶ dom(𝐼) ⊂ 𝐿2(Ω𝑛ℝ𝐇2𝑛) → 𝐿2(Ω𝑛𝐒2𝑛−1) be the restriction to the boundary
𝐒2𝑛−1 of the ball. Let ℋ ⊆ 𝐿2(Ω𝑛ℝ𝐇2𝑛) be the 𝐿2 harmonic forms on the real hyperbolic 2𝑛-space
and let ℋ∞ ⊂ ℋ be those forms in the domain of 𝐼. We have a complex

0 ℋ∞ Ω𝑛𝐒2𝑛−1 Ω𝑛+1𝐒2𝑛−1 ⋯ Ω2𝑛−1𝐒2𝑛−1 0𝐼 𝑑 𝑑 𝑑



III.2. Conformal group equivariance 117

which is invariant under the pullback by the action 𝜑 of 𝑆𝑂(2𝑛, 1). When we complete the spaces of
the complex to Hilbert spaces, pullback by the action of 𝑆𝑂(2𝑛, 1) is not unitary. On 𝐿2(Ω𝑛𝐒2𝑛−1)
the unitaries (𝑈𝑔)𝑔∈𝐺 implementing the group action 𝜑 act by

𝑈𝑔 ∶ 𝜉 ↦ 𝑘−(−(2𝑛−1)+2𝑛)/2
𝑔−1 𝜑∗

𝑔−1(𝜉) = 𝑘−1/2
𝑔−1 𝜑∗

𝑔−1(𝜉).

As in Example III.1.7,
𝑈𝑔𝑑𝑈 ∗

𝑔 − 𝑘−1/2
𝑔−1 𝑑𝑘−1/2

𝑔−1

is bounded. However, on the hyperbolic space ℝ𝐇2𝑛, the group 𝑆𝑂(2𝑛, 1) acts by isometries. Because
the map 𝐼 commutes with pullback by the group action, 𝑈𝑔𝐼𝑈 ∗

𝑔 = 𝑘−1/2
𝑔−1 𝐼, which is not the same

behaviour as the rest of the complex displays, the overall exponent of the conformal factor being −1/2
rather than −1. On all of 𝐿2(Ω∗𝐒2𝑛−1) the Laplacian Δ = 𝑑𝛿 + 𝛿𝑑 transforms so that

𝑈𝑔Δ1/4𝑈∗
𝑔 − 𝑘−1/2

𝑔−1 Δ1/4

is of order −1/2. We will replace the operator 𝐼 in the complex with Δ1/4𝐼, in the hope of obtaining
the right conformal scaling.

We need also an operator on ℋ to act as the conformal factor, because neither functions on 𝐒2𝑛−1

nor on 𝐃2𝑛 are represented naturally on ℋ. By [Che96, Proposition 3.2], there is a polar decomposition
𝐼 = Δ1/4𝐵, where 𝐵 ∶ ℋ → 𝐿2(Ω𝑛𝐒2𝑛−1) is an isometry with range Ω𝑛𝐒2𝑛−1 ∩ ker 𝑑. The operator
𝐵∗𝑘−1/2

𝑔−1 𝐵 is positive and invertible on ℋ because

𝐵∗𝑘−1/2
𝑔−1 𝐵 ≥ 𝐵∗‖𝑘1/2𝑔−1‖−1𝐵 = ‖𝑘1/2𝑔−1‖−11ℋ.

We compute that both

Δ1/4𝐼(𝐵∗𝑘−1/2
𝑔−1 𝐵) − 𝑘−1/2

𝑔−1 Δ1/4𝐼 = [Δ1/2𝑃ker 𝑑, 𝑘
−1/2
𝑔−1 ]𝐵

and

𝑈𝑔Δ1/4𝐼𝑈 ∗
𝑔 − 𝑘−1/2

𝑔−1 Δ1/4𝐼(𝐵∗𝑘−1/2
𝑔−1 𝐵)

= (𝑈𝑔Δ1/4𝑈∗
𝑔 − 𝑘−1/2

𝑔−1 Δ1/4)𝑘−1/2
𝑔−1 Δ1/4𝐵 − 𝑘−1/2

𝑔−1 Δ1/4 [Δ1/4𝑃ker 𝑑, 𝑘
−1/2
𝑔−1 ]𝐵

are bounded. With 𝐷 = Δ1/4𝐼 + 𝐼∗Δ1/4 + 𝑑 + 𝛿, the Hodge decomposition theorem Ω𝑛𝐒2𝑛−1 =
ker(Δ) ⊕ 𝐼𝑚(𝑑) ⊕ 𝐼𝑚(𝛿) shows that 𝐷2|ℋ∞

= 𝐵∗𝑑𝛿𝐵 has at most a finite dimensional kernel, while
𝐷2|Ω𝑛𝐒2𝑛−1 = Δ1/2𝑃ker 𝑑Δ1/2 + 𝛿𝑑 = 𝑑𝛿 + 𝛿𝑑 = Δ. On the rest of the complex, 𝐷2 agrees with Δ and
so 𝐷 has compact resolvent. Therefore,

(ℂ,ℋ⊕ 𝐿2(Ω≥𝑛𝐒2𝑛),Δ1/4𝐼 + 𝐼∗Δ1/4 + 𝑑 + 𝛿)

is a conformally 𝑆𝑂(2𝑛, 1)-equivariant spectral triple with conformal factors 𝜇𝑔 = 𝐵∗𝑘−1/2
𝑔−1 𝐵 ⊕ 𝑘−1/2

𝑔−1 .
Its bounded transform (more exactly its phase) is the γ-element constructed by Chen [Che96, §3.1].

To show that we have obtained the γ-element, independent of the bounded transform, we would
need a representation of 𝐶(𝐃2𝑛) so as to apply [AJV19, Proposition 5.10]. For this purpose, Chen
shows that the phase of the larger complex

0 ℋ∞ Ω𝑛𝐒2𝑛−1 ⋯ Ω2𝑛−1𝐒2𝑛−1 0
⊕ ⊕ ⊕ ⊕

0 Ω0ℝ𝐇2𝑛 ⋯ Ω𝑛ℝ𝐇2𝑛/ℋ∞ Ω𝑛+1ℝ𝐇2𝑛 ⋯ Ω2𝑛ℝ𝐇2𝑛 0

𝐼 𝑑 𝑑

𝑑 𝑑 𝑑 𝑑 𝑑
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gives a Fredholm module for 𝐶(𝐃2𝑛). Unfortunately, at the level of unbounded Kasparov modules,
the construction cannot be carried through because the Hodge–de Rham operator on ℝ𝐇2𝑛 does not
have compact resolvent. Although we do not pursue it here, this defect can be remedied by appealing
to the framework of relative spectral triples [FGMR19, Fri25]. The larger complex can be assembled
into a relative spectral triple for 𝐶0(ℝ𝐇2𝑛) ⊲ 𝐶(𝐃2𝑛) in the sense of [Fri25, Definition 2.8] cf. [Fri25,
Example 2.15]. We can show that the K-homology class of the relative spectral triple extends to a
class for 𝐶(𝐃2𝑛) by showing that the boundary map applied to the class of the relative spectral triple
is zero. To compute the boundary map as in [HR00, §8.5], one uses the phase rather than the bounded
transform. Since the phase already gives a Fredholm module for all of 𝐶(𝐃2𝑛) the boundary map is
zero and we conclude that we do obtain a K-homology class for 𝐶(𝐃2𝑛).

III.2.1.3 The case of 𝑆𝑈(𝑛, 1)

Following [JK95], we consider the sphere 𝐒2𝑛−1, on which 𝑆𝑈(𝑛, 1) acts by CR-automorphisms. This
is not a conformal group action. We replace the de Rham complex with the Rumin complex [Rum94],
a refinement depending on a contact structure. A treatment of the Rumin complex in the context of
spectral noncommutative geometry and unbounded KK-theory can be found in §IV.2.4. The analytical
underpinnings of the Rumin complex, and the much more general class of Rockland complexes, have
recently been examined in [DH22]. For the time being, we limit ourselves to outlining those points
which we require.

Let 𝑋 be a (2𝑛 − 1)-dimensional contact manifold with contact structure 𝐻 ⊆ 𝑇𝑋. By this,
it is meant that there exists a one-form 𝜃 such that 𝐻 = ker 𝜃 and 𝑑𝜃|𝐻 is nondegenerate. The
nondegeneracy of 𝑑𝜃|𝐻 is equivalent to 𝜃 ∧ (𝑑𝜃)𝑛−1 being a volume form. Such a one-form 𝜃 is a contact
form and is not unique. However, if 𝜏 is another contact form, then the equality ker 𝜏 = ker 𝜃 implies
that 𝜏 = 𝑓𝜃 for a nonvanishing smooth function 𝑓 on 𝑋. Conversely, 𝑓𝜃 will be a contact form for any
nonvanishing smooth function 𝑓 on 𝑋.

The Rumin complex associated to a contact manifold 𝑋 is a refinement of the de Rham complex
of 𝑋, depending only on the contact structure (and not on the choice of contact form). For the
construction of the Rumin complex on 𝑋, we do require a choice of 𝜃, to define two differential ideals
of Ω∗𝑋,

• ℐ, the ideal generated by 𝜃 and 𝑑𝜃, and
• 𝒥, the ideal of forms 𝜔 ∈ Ω∗𝑋 such that 𝜃 ∧ 𝜔 and 𝑑𝜃 ∧ 𝜔 are zero.

The Rumin complex is built by combining the quotient complex Ω∗𝑋/ℐ∗ and the subcomplex 𝒥∗.
These complexes are spliced together using a map 𝐷𝐻 ∶ Ω𝑛−1𝑋/ℐ𝑛−1 → 𝒥𝑛. The Rumin differential
𝐷𝐻 is given by 𝜔 ↦ 𝑑𝜔̃ where 𝜔̃ is the unique lift of 𝜔 such that 𝜃 ∧ 𝑑𝜔̃ = 0. Surprisingly, 𝐷𝐻 is
well-defined, is a second-order differential operator, and completes the Rumin complex

0 Ω0𝑋 Ω1𝑋/ℐ1 ⋯ Ω𝑛−1𝑋/ℐ𝑛−1 𝒥𝑛 ⋯ 𝒥2𝑛−1 0𝑑𝐻 𝑑𝐻 𝑑𝐻 𝐷𝐻 𝑑𝐻 𝑑𝐻 ,

whose cohomology coincides with the de Rham cohomology. Here, we have denoted the exterior
differential on the quotient complex and subcomplex by 𝑑𝐻. The mixture of first- and second-order
operators means that the construction of a spectral triple from the Rumin complex requires careful
thought; see §IV.2.4. For the construction of the γ-element of 𝑆𝑈(𝑛, 1), however, this issue will not
arise, as we shall see.

Let us fix a contact form 𝜃 and choose a Riemannian metric 𝐠 on 𝑋. We require that these be
compatible, in the sense that 𝐻 is orthogonal to the Reeb field, the (unique) vector field 𝑍 such that
𝜃(𝑍) = 1 and 𝜄𝑍(𝑑𝜃) = 0. Using the metric on Ω𝑘𝑋 induced by 𝐠, we obtain a version

⋆𝐻 ∶ Ω𝑘𝑋/ℐ𝑘 → 𝒥2𝑛−1−𝑘 ⋆𝐻 ∶ 𝒥𝑘 → Ω2𝑛−1−𝑘𝑋/ℐ2𝑛−1−𝑘
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of the Hodge star operator by the relation 𝛼 ∧ ⋆𝐻𝛽 = (𝛼, 𝛽)𝜃 ∧ (𝑑𝜃)𝑛−1. We thereby obtain formal
adjoints of the operators in the Rumin complex, viz. 𝑑∗𝐻 = (−1)𝑘 ⋆𝐻 𝑑𝐻⋆𝐻 and 𝐷∗ = (−1)𝑛 ⋆𝐻 𝐷𝐻⋆𝐻.
We also obtain the Rumin Laplacian, given by

Δ𝐻 =

⎧{{{
⎨{{{⎩

(𝑛 − 1 − 𝑘)𝑑𝐻𝑑∗𝐻 + (𝑛 − 𝑘)𝑑∗𝐻𝑑𝐻 on Ω𝑘𝑋/ℐ𝑘, 0 ≤ 𝑘 ≤ 𝑛 − 2
(𝑑𝐻𝑑∗𝐻)2 +𝐷∗

𝐻𝐷𝐻 on Ω𝑛−1𝑋/ℐ𝑛−1

𝐷𝐻𝐷∗
𝐻 + (𝑑∗𝐻𝑑𝐻)2 on 𝒥𝑛

(𝑛 − 𝑘)𝑑𝐻𝑑∗𝐻 + (𝑛 − 1 − 𝑘)𝑑∗𝐻𝑑𝐻 on 𝒥𝑘, 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛 − 1

.

The Rumin Laplacian is hypoelliptic, fourth-order on Ω𝑛−1𝑋/ℐ𝑛−1 and 𝒥𝑛 and second-order elsewhere.
The contact form 𝜃 determines a symplectic form 𝑑𝜃 on 𝐻. A CR-structure on 𝑋 is the additional

datum of a complex structure 𝐽 on 𝐻 such that 𝑑𝜃(𝑋, 𝐽𝑌 ) = 𝐠(𝑋, 𝑌 ) for all 𝑋,𝑌 ∈ 𝐻. A CR-
automorphism of 𝑋 is a diffeomorphism 𝜑 such that the Jacobian 𝜑′ preserves and acts complex-linearly
on 𝐻 ⊆ 𝑇𝑋. Because the Rumin complex depends only on the contact structure, the operators 𝑑𝐻
and 𝐷𝐻 are unchanged. Again, because the contact structure is preserved, the pullback 𝜑∗(𝜃) of the
contact form must be 𝑓𝜃 for some nonvanishing smooth function on 𝑋. Hence

𝜑∗(𝐠)(𝑋, 𝑌 ) = (𝑓𝑑𝜃 + 𝑑𝑓 ∧ 𝜃)(𝑋, 𝐽𝑌 ) = 𝑓𝑑𝜃(𝑋, 𝐽𝑌 ) = 𝑓𝐠(𝑋, 𝑌 )

for all 𝑋,𝑌 ∈ 𝐻. On the other hand, the induced metric on 𝑇𝑋/𝐻 is multiplied by 𝑓2. One can check
that the induced metric on the Rumin complex is multiplied by 𝑓−𝑘 on Ω𝑘𝑋/ℐ𝑘 and 𝑓−𝑘−1 on 𝒥𝑘. In
this sense, CR-automorphisms behave in a similar way to conformal diffeomorphisms.

To construct the γ-element for 𝑆𝑈(𝑛, 1), following [JK95, §6(b)], we begin with the Rumin complex
on the contact sphere 𝐒2𝑛−1 with the round metric, on which the group acts by CR-automorphisms. To
obtain the correct class in 𝐾𝐾𝑆𝑈(𝑛,1)(ℂ,ℂ) for the γ-element, we will cut the Rumin complex in two, as
we did for 𝑆𝑂(2𝑛 + 1, 1) and 𝑆𝑂(2𝑛, 1), and add an additional operator, as we did for the latter. The
extra map is the Szegö map 𝑆 constructed in [JK95, Theorem 2.12] from Ω𝑛−1𝐒2𝑛−1/ℐ𝑛−1 to the 𝐿2

harmonic 𝑛-forms ℋ𝑛 ⊆ Ω𝑛ℂ𝐇2𝑛 on the complex hyperbolic space. The sphere 𝐒2𝑛−1 can be attached
to ℂ𝐇2𝑛 as its boundary, forming the closed disc 𝐃2𝑛. The Szegö map takes 𝜔 ∈ Ω𝑛−1𝐒2𝑛−1/ℐ𝑛−1,
lifts it uniquely to 𝜔̃ such that 𝜃 ∧ 𝑑𝜔̃ = 0 (as in the construction of 𝐷𝐻), extends 𝜔̃ to 𝜂 ∈ Ω𝑛−1𝐃2𝑛

so that 𝑑𝜂 ∈ 𝐿2(Ω𝑛ℂ𝐇2𝑛), and then projects 𝜂 down to 𝑆𝜔 ∈ ℋ𝑛. It turns out that such a process
gives a well-defined map 𝑆, whose kernel is ker𝐷𝐻, invariant under pullback by the action of 𝑆𝑈(𝑛, 1).
We dissect the Rumin complex and graft in the Szegö map 𝑆, obtaining

0 Ω0𝐒2𝑛−1 Ω1𝐒2𝑛−1/ℐ1 ⋯ Ω𝑛−1𝐒2𝑛−1/ℐ𝑛−1 ℋ𝑛
∞ 0𝑑𝐻 𝑑𝐻 𝑑𝐻 𝑆

where ℋ𝑛
∞ is the image of 𝑆, dense in ℋ𝑛. This new complex is still invariant under pullback by the

action 𝜑 of 𝑆𝑈(𝑛, 1). When we complete the spaces of the complex to Hilbert spaces, pullback by the
action of 𝑆𝑈(𝑛, 1) is not unitary. The unitary action is, for 𝜔 ∈ 𝐿2(Ω𝑘/ℐ𝑘) and 𝜉 ∈ ℋ𝑛,

𝑈𝑔𝜔 = 𝑓
𝑛−𝑘
2

𝑔−1 𝜑∗
𝑔−1𝜔 𝑈𝑔𝜉 = 𝜑∗

𝑔−1𝜉,

where (𝑓𝑔)𝑔∈𝑆𝑈(𝑛,1) is a family of nonvanishing, positive, smooth functions on 𝐒2𝑛−1. By similar
computations to those for Example III.1.7, for the unitary implementors 𝑈𝑔 we have that

𝑈𝑔𝑑𝐻𝑈∗
𝑔𝜔 = 𝑓

𝑛−(𝑘+1)
2

𝑔−1 𝑑𝐻𝑓
−𝑛−𝑘

2
𝑔−1 𝜔 = 𝑓− 1

2
𝑔−1𝑑𝐻𝜔 + 𝑓

𝑛−(𝑘+1)
2

𝑔−1 [𝑑𝐻, 𝑓
−𝑛−𝑘

2
𝑔−1 ]𝜔

so that 𝑈𝑔𝑑𝐻𝑈∗
𝑔 − 𝑓−1/4

𝑔−1 𝑑𝐻𝑓
−1/4
𝑔−1 is bounded. On the hyperbolic space ℂ𝐇𝑛, the group 𝑆𝑈(𝑛, 1) acts

by isometries. Because the map 𝑆 commutes with pullback by the group action, 𝑈𝑔𝑆𝑈∗
𝑔 = 𝑆𝑓−1/2

𝑔−1 .
Unlike in the case of 𝑆𝑂(2𝑛, 1), there is no discrepancy between the conformal behaviours of 𝑑𝐻 and
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𝑆. It remains to construct a conformal factor on ℋ𝑛. By [JK95, Proof of Theorem 6.6(ii)], there is a
polar decomposition 𝑆 = Φ(𝑆)Δ1/4

𝐻 , where Φ(𝑆) ∶ 𝐿2(Ω𝑛−1𝐒2𝑛−1/ℐ𝑛−1) → ℋ𝑛 is a coisometry with
kernel ker𝐷𝐻. The operator Φ(𝑆)𝑓−1/4

𝑔−1 Φ(𝑆)∗ is positive and invertible on ℋ𝑛 because

Φ(𝑆)𝑓−1/4
𝑔−1 Φ(𝑆)∗ ≥ Φ(𝑆)‖𝑓1/4

𝑔−1 ‖−1Φ(𝑆)∗ = ‖𝑓1/4
𝑔−1 ‖−1.

We compute that both

𝑆𝑓−1/4
𝑔−1 − (Φ(𝑆)𝑓−1/4

𝑔−1 Φ(𝑆)∗)𝑆 = Φ(𝑆) [(1 − ker𝐷)Δ−1/4
𝐻 , 𝑓−1/4

𝑔−1 ]

and
𝑈𝑔𝑆𝑈∗

𝑔 − (Φ(𝑆)𝑓−1/4
𝑔−1 Φ(𝑆)∗)𝑆𝑓−1/4

𝑔−1 = Φ(𝑆) [(1 − ker𝐷)Δ−1/4
𝐻 , 𝑓−1/4

𝑔−1 ] 𝑓−1/4
𝑔−1

are bounded. The operator 𝑑𝐻 + 𝑑∗𝐻 + 𝑆 + 𝑆∗ has compact resolvent by an argument very similar to
the case of 𝑆𝑂(2𝑛, 1), using this time the compactness of the resolvent of the Rumin Laplacian [JK95,
Corollary 5.20]. For example, on Ω𝑛−1𝐒2𝑛−1/ℐ𝑛−1 one can check that

(𝑑𝐻 + 𝑑∗𝐻 + 𝑆 + 𝑆∗)2|Ω𝑛−1𝐒2𝑛−1/ℐ𝑛−1 = Δ1/4
𝐻 (1 − ker𝐷)Δ1/4

𝐻 + 𝑑𝐻𝑑∗𝐻
= (𝐷∗

𝐻𝐷𝐻)1/2 + 𝑑𝐻𝑑∗𝐻
= Δ1/2

𝐻 ,

and the other cases are similar. In summary, we have constructed a conformally 𝑆𝑈(𝑛, 1)-equivariant
spectral triple

(ℂ, 𝐿2(Ω≤𝑛−1𝐒2𝑛−1/ℐ≤𝑛−1) ⊕ℋ𝑛, 𝑑𝐻 + 𝑑∗𝐻 + 𝑆 + 𝑆∗)

with conformal factors 𝜇𝑔 = 𝑓−1/4
𝑔−1 ⊕Φ(𝑆)𝑓−1/4

𝑔−1 Φ(𝑆)∗. The phase of this spectral triple is exactly the
Fredholm module of [JK95, Corollary 6.10] whose class is 𝛾 ∈ 𝐾𝐾𝑆𝑈(𝑛,1)(ℂ,ℂ).

To show that we have obtained the γ-element without directly using the result of Julg and
Kasparov, it would be necessary, as in the case of 𝑆𝑂(2𝑛, 1) to expand the complex to accommodate a
representation of 𝐃2𝑛. However, as before, the resolvent would not be compact. Furthermore, it is
unclear whether sufficient analytical tools are available to obtain bounded commutators.

III.3 Conformal quantum group equivariance

Conformal group actions of a nontrivial kind are already rare in the classical setup of Riemannian
manifolds, as the Ferrand–Obata theorem [Fer96, Theorem A] shows. The conformal group of a
Riemannian metric must be the isometry group of a conformally equivalent metric, unless the manifold
is conformally equivalent to a round sphere 𝐒𝑛 or Euclidean space ℝ𝑛. It seems that the rarity of large
conformal groups carries over to the noncommutative setting. A possible example of a noncommutative
geometry with interesting conformal group is the Podleś sphere. As we shall see in §III.3.1, this hope
is realised; however the conformal geometry of the Podleś sphere is not governed by a group but rather
by a quantum group.

To generalise Definition I.3.8 to conformal (co)actions, we will consider a conformal factor 𝜇 which
is an unbounded operator on 𝐸 ⊗ 𝑆, where 𝐸 is a Hilbert 𝐵-module and 𝑆 is a C*-bialgebra. It
is necessary to allow 𝜇 to be unbounded in the ‘𝑆 direction’, as can be seen from classical group
equivariance. To apply the multiplicative perturbation theory of §III.1.3, we will require 𝜇 to be
𝑆-matched, in the sense of §A.1.2, meaning roughly that 𝜇 is locally bounded in the 𝑆-direction. We
denote by 𝐾𝑆 the Pedersen ideal of 𝑆.
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Definition III.3.1. Let 𝐴 and 𝐵 be C*-algebras equipped with coactions of a C*-bialgebra 𝑆.
An order- 1

1−𝛼 𝐴-𝐵-cycle (𝐴,𝐸𝐵, 𝐷) is conformally 𝑆-equivariant if 𝐸 is an 𝑆-equivariant 𝐴-𝐵-
correspondence and there exists an (even) 𝑆-matched operator 𝜇 on (𝐸 ⊗ 𝑆)𝐵⊗𝑆 whose inverse
is also 𝑆-matched, satisfying the following. For 𝑎 ∈ Lip∗𝛼(𝐷), let 𝒮𝑎 be the set of 𝑠 ∈ 𝑀(𝑆) such that

{(𝑎 ⊗ 𝑠)𝜇, (𝑎 ⊗ 𝑠)𝜇−1∗} dom(𝐷 ⊗ 1)(1 ⊗ 𝐾𝑆) ⊆ dom(𝐷 ⊗ 1) ∩ 𝑉𝐸 dom(𝐷 ⊗𝛿𝐵 1)

and

(𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)𝜇(𝐷 ⊗ 1)𝜇∗)𝜇−1∗⟨𝐷 ⊗ 1⟩−𝛼,

𝑉𝐸⟨𝐷 ⊗𝛿𝐵1⟩
−𝛼𝑉 ∗

𝐸(𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)𝜇(𝐷 ⊗ 1)𝜇∗),

[𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)𝜇]⟨𝐷 ⊗ 1⟩−𝛼, [𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)𝜇−1∗]⟨𝐷 ⊗ 1⟩−𝛼,
⟨𝐷 ⊗ 1⟩−𝛼[𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)𝜇], and ⟨𝐷 ⊗ 1⟩−𝛼[𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)𝜇−1∗]

extend to 𝑆-matched operators. Let 𝒬 be the set of 𝑎 ∈ Lip∗𝛼(𝐷) such that 𝑆 ⊆ span(𝑆𝒮𝑎)∩ span(𝒮𝑎𝑆).
Then we require that 𝐴 ⊆ span(𝐴𝒬) ∩ span(𝒬𝐴).

If 𝐴 and 𝐵 are C*-algebras with 𝔾-actions, an order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷) is conformally 𝔾-

equivariant if it is conformally 𝐶𝑟
0 (𝔾)-equivariant.

Remarks III.3.2.
1. When 𝜇 = 1, Definition III.3.1 reduces to Definition I.3.8 of uniformly 𝑆-equivariant cycles.
2. For a discrete quantum group 𝔾, when 𝐶0(𝔾) is isomorphic as an algebra to the C*-algebraic

direct sum
⨁
𝜆∈Λ

𝑀𝑛𝜆
(ℂ)

of finite-dimensional matrix algebras, the Pedersen ideal 𝐾𝐶0(𝔾) is the algebraic direct sum. In
this case, the conformal factor and the admissible unitary would be labelled by the index set
𝜆 ∈ Λ, so that

𝑉 𝜆
𝐸 ∈ Hom∗

𝐵(𝐸 ⊗𝛿𝐵 (𝐵 ⊗ ℂ𝑛𝜆), 𝐸 ⊗ ℂ𝑛𝜆) 𝜇𝜆 ∈ End∗𝐵(𝐸 ⊗ ℂ𝑛𝜆)

and the equivariance conditions on 𝑎 ∈ 𝒬 become that

(𝑉 𝜆
𝐸 (𝐷 ⊗𝛿𝐵1)𝑉

𝜆∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)𝜇𝜆(𝐷 ⊗ 1)𝜇𝜆∗)(𝜇𝜆)−1∗⟨𝐷 ⊗ 1⟩−𝛼,

𝑉 𝜆
𝐸 ⟨𝐷 ⊗𝛿𝐵1⟩

−𝛼𝑉 𝜆∗
𝐸 (𝑉 𝜆

𝐸 (𝐷 ⊗𝛿𝐵1)𝑉
𝜆∗
𝐸 (𝑎 ⊗ 𝑠) − (𝑎 ⊗ 𝑠)𝜇𝜆(𝐷 ⊗ 1)𝜇𝜆∗),

[𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)𝜇𝜆]⟨𝐷 ⊗ 1⟩−𝛼, [𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)(𝜇𝜆)−1∗]⟨𝐷 ⊗ 1⟩−𝛼,
⟨𝐷 ⊗ 1⟩−𝛼[𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)𝜇𝜆], and ⟨𝐷 ⊗ 1⟩−𝛼[𝐷 ⊗ 1, (𝑎 ⊗ 𝑠)(𝜇𝜆)−1∗]

be bounded for all 𝜆 ∈ Λ.

Theorem III.3.3. A conformally 𝑆-equivariant order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷), with conformal factor 𝜇,

gives rise to an 𝑆-equivariant bounded Kasparov module (𝐴,𝐸𝐵, 𝐹𝐷).

Proof. The only point of difference from the non-equivariant case is the need to prove that, for every
𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆, (𝐹𝐷 ⊗ 1 − 𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸 )𝑎 ⊗ 𝑠 is compact. Let 𝑐 be a positive element of 𝐾𝑆,

so that, by Proposition A.1.20, the restriction of 𝜇 to the 𝐵 ⊗ span(𝑆𝑐𝑆)-module 𝐸 ⊗ span(𝑆𝑐𝑆) is
bounded. For the time being, we work on the module 𝐸 ⊗ span(𝑆𝑐𝑆). Let 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝒬 and
𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ 𝒮𝑎1

,𝒮𝑎2
,𝒮𝑎3

,𝒮𝑎4
. As in the Proof of Theorem III.1.4,

[𝜇(𝐷 ⊗ 1)𝜇∗, 𝑎∗2𝑎3 ⊗ 𝑠∗2𝑠3]𝜇−1∗⟨𝐷⟩−𝛼
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is bounded. We apply Theorem III.1.33 to obtain that

(𝐹𝜇(𝐷⊗1)𝜇∗ − 𝐹𝐷 ⊗ 1)𝑎∗2𝑎3𝑎∗4⟨𝐷⟩𝛽 ⊗ 𝑠∗2𝑠3𝑠∗4

is bounded for 𝛽 < 1 − 𝛼. Furthermore,

((𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎1 ⊗ 𝑠1) − 𝑉 ∗

𝐸 (𝑎1 ⊗ 𝑠1)𝜇(𝐷 ⊗ 1)𝜇∗)𝜇−1∗(⟨𝐷⟩−𝛼 ⊗ 1)

is bounded and, by Proposition I.1.1,

((𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎1 ⊗ 𝑠1) − 𝑉 ∗

𝐸 (𝑎1 ⊗ 𝑠1)(𝐹𝜇𝐷𝜇∗ ⊗ 1))𝜇(⟨𝐷⟩𝛽 ⊗ 1)

is too. Now we have

(𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐹𝐷 ⊗ 1)𝑎1𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4

= 𝑉𝐸((𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝑉 ∗

𝐸 (𝐹𝐷 ⊗ 1))𝑎1𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4
= 𝑉𝐸 ((𝐹𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸 (𝑎1𝑎∗2𝑎3 ⊗ 𝑠1𝑠∗2𝑠3) − 𝑉 ∗

𝐸 (𝑎1𝑎∗2𝑎3 ⊗ 𝑠1𝑠∗2𝑠3)(𝐹𝐷 ⊗ 1)) (𝑎∗4 ⊗ 𝑠∗4)
− [𝐹𝐷, 𝑎1𝑎∗2𝑎3]𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4

= 𝑉𝐸 ((𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎1 ⊗ 𝑠1) − 𝑉 ∗

𝐸 (𝑎1 ⊗ 𝑠1)𝐹𝜇(𝐷⊗1)𝜇∗) (𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠∗2𝑠3𝑠∗4)

+ (𝑎1 ⊗ 𝑠1) (𝐹𝜇(𝐷⊗1)𝜇∗(𝑎∗2𝑎3 ⊗ 𝑠∗2𝑠3) − (𝑎∗2𝑎3 ⊗ 𝑠∗2𝑠3)(𝐹𝐷 ⊗ 1)) (𝑎∗4 ⊗ 𝑠∗4)
− [𝐹𝐷, 𝑎1𝑎∗2𝑎3]𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4

= 𝑉𝐸 ((𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 (𝑎1 ⊗ 𝑠1) − 𝑉 ∗

𝐸 (𝑎1 ⊗ 𝑠1)𝐹𝜇(𝐷⊗1)𝜇∗) (𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠∗2𝑠3𝑠∗4)

+ (𝑎1 ⊗ 𝑠1) (𝐹𝜇(𝐷⊗1)𝜇∗ − 𝐹𝐷 ⊗ 1) (𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠∗2𝑠3𝑠∗4)
− [𝐹𝐷, 𝑎1]𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4

so that (𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐹𝐷 ⊗ 1)𝑎1𝑎∗2𝑎3𝑎∗4⟨𝐷⟩𝛽 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4 is bounded. Let 𝑎5 ∈ 𝐴 and note that

𝑐 ∈ span(𝑆𝑐𝑆) ⊴ 𝑆. Then

(𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐹𝐷 ⊗ 1)𝑎1𝑎∗2𝑎3𝑎∗4𝑎5 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4𝑐 (III.3.4)

is an element of End0(𝐸) ⊗ span(𝑆𝑐𝑆). As the compacts on 𝐸 ⊗ span(𝑆𝑐𝑆)𝐵⊗span(𝑆𝑐𝑆) are

span(𝐸𝐸∗ ⊗ 𝑆𝑐𝑆𝑆𝑐𝑆) = End0(𝐸) ⊗ span(𝑆𝑐𝑆) ⊴ End0(𝐸) ⊗ 𝑆 = End0(𝐸 ⊗ 𝑆)

for each 𝑐 ∈ 𝐾𝑆, we see that (III.3.4) defines a compact endomorphism on 𝐸 ⊗ 𝑆. Because 𝑆 ⊆
𝒮𝑎1

𝒮∗
𝑎2
𝒮𝑎3

𝒮∗
𝑎4
𝐾𝑆 and 𝐴 ⊆ 𝒬∗𝒬𝒬∗𝒬𝐴,

(𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐹𝐷 ⊗ 1)𝑎 ⊗ 𝑠

is compact for all 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆.

Theorem III.3.5. A conformally 𝑆-equivariant order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐷) gives rise to a uniformly

𝑆-equivariant order- 1
1−𝛼 cycle (𝐴,𝐸𝐵, 𝐿𝐷) via the logarithmic transform.

Proof. By the Proof of Theorem III.3.3, (𝑉𝐸(𝐹𝐷⊗𝛿𝐵1)𝑉
∗
𝐸 −𝐹𝐷⊗1)𝑎1𝑎∗2𝑎3𝑎∗4⟨𝐷⟩𝛽⊗𝑠1𝑠∗2𝑠3𝑠∗4𝑐 is bounded

on 𝐸 ⊗ 𝑆 for 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝒬, 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ 𝒮𝑎1
,𝒮𝑎2

,𝒮𝑎3
,𝒮𝑎4

, 𝑐 ∈ 𝐾𝑆, and 𝛽 < 1 − 𝛼. Then

⎡⎢
⎣
(𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸

𝐹𝐷 ⊗ 1) ,( 𝑎1𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4𝑐
0 )⎤⎥

⎦
⟨(𝑉𝐸(𝐹𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸

𝐹𝐷 ⊗ 1)⟩
𝛽
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is bounded and

( 𝑎1𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4𝑐
0 )dom(𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸

𝐷⊗ 1) ⊆ dom(𝑉𝐸(𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸

𝐷⊗ 1) .

Applying Proposition III.1.35,

⎡⎢
⎣
(𝑉𝐸(𝐿𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸

𝐿𝐷 ⊗ 1) ,( 𝑎1𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4𝑐
0 )⎤⎥

⎦
is bounded and therefore so is (𝑉𝐸(𝐿𝐷 ⊗𝛿𝐵1)𝑉

∗
𝐸 − 𝐿𝐷 ⊗ 1)𝑎1𝑎∗2𝑎3𝑎∗4 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4𝑐. For any 𝑎5 ∈ 𝐴,

(𝑉𝐸(𝐿𝐷 ⊗𝛿𝐵1)𝑉
∗
𝐸 − 𝐿𝐷 ⊗ 1)𝑎1𝑎∗2𝑎3𝑎∗4𝑎5 ⊗ 𝑠1𝑠∗2𝑠3𝑠∗4𝑐

is bounded. We have 𝑆 ⊆ 𝒮𝑎1
𝒮∗
𝑎2
𝒮𝑎3

𝒮∗
𝑎4
𝐾𝑆 and 𝐴 ⊆ 𝒬∗𝒬𝒬∗𝒬𝐴, as required.

Proposition III.3.6. Let 𝐺 be a locally compact group. An order- 1
1−𝛼 cycle is conformally 𝐶0(𝐺)-

equivariant if and only if it is conformally 𝐺-equivariant.

Proof. Use Proposition A.1.24. Because 𝐶0(𝐺) is abelian, for 𝑎 ∈ 𝒬, 𝒮𝑎 will always contain the
Pedersen ideal 𝐾𝐶0(𝐺) = 𝐶𝑐(𝐺).

III.3.1 The Podleś sphere

The compact quantum group 𝑆𝑈𝑞(2) has polynomial algebra 𝒪(𝑆𝑈𝑞(2)) generated by 𝑎, 𝑏, 𝑐, 𝑑 subject
to the relations

𝑎𝑏 = 𝑞𝑏𝑎 𝑎𝑐 = 𝑞𝑐𝑎 𝑏𝑑 = 𝑞𝑑𝑏 𝑐𝑑 = 𝑞𝑑𝑐 𝑏𝑐 = 𝑐𝑏 𝑎𝑑 = 1 + 𝑞𝑏𝑐 𝑑𝑎 = 1 + 𝑞−1𝑏𝑐

and with adjoints 𝑎∗ = 𝑑, 𝑏∗ = −𝑞𝑐, 𝑐∗ = −𝑞−1𝑏, 𝑑∗ = 𝑎. The polynomial algebra 𝒪(𝑆𝑈𝑞(2)) is spanned
by the Peter–Weyl elements 𝑡𝑙𝑖𝑗 with 𝑙 ∈ 1

2ℕ and 𝑖, 𝑗 ∈ {−𝑙,−𝑙 + 1,… , 𝑙 − 1, 𝑙}. The generators form
the fundamental representation 𝑙 = 1

2 , that is

(𝑎 𝑏
𝑐 𝑑) = ⎛⎜⎜

⎝

𝑡
1
2
− 1

2 ,−
1
2

𝑡
1
2
− 1

2 ,
1
2

𝑡
1
2
1
2 ,−

1
2

𝑡
1
2
1
2 ,

1
2

⎞⎟⎟
⎠

.

In terms of this basis, the coproduct and counit are

Δ(𝑡𝑙𝑖,𝑗) = ∑
𝑘

𝑡𝑙𝑖,𝑘 ⊗ 𝑡𝑙𝑘,𝑗 𝜀(𝑡𝑙𝑖,𝑗) = 𝛿𝑖,𝑗

and the adjoint is related to the antipode by 𝑡𝑙𝑖,𝑗
∗ = 𝑆(𝑡𝑙𝑗,𝑖).

Dual to 𝑆𝑈𝑞(2) is the discrete quantum group ̂𝑆𝑈𝑞(2) [VY20, §4.2.3], whose function algebra
𝐶0( ̂𝑆𝑈𝑞(2)) = 𝐶∗(𝑆𝑈𝑞(2)) is the closed span of matrix elements 𝜏 𝑙𝑖𝑗 with 𝑙 ∈ 1

2ℕ and 𝑖, 𝑗 ∈ {−𝑙,−𝑙 +
1,… , 𝑙 − 1, 𝑙}, subject to

𝜏 𝑙𝑖,𝑗𝜏 𝑙
′

𝑖′,𝑗′ = 𝛿𝑙,𝑙′𝛿𝑗,𝑖′𝜏 𝑙𝑖,𝑗′ 𝜏 𝑙𝑖,𝑗
∗ = 𝜏 𝑙𝑗,𝑖 .

In particular, as C*-algebras,

𝐶0( ̂𝑆𝑈𝑞(2)) = 𝐶∗(𝑆𝑈𝑞(2)) ≅ ⨁
𝑙∈ 1

2ℕ
𝑀2𝑙(ℂ) .

We may choose 𝜏 𝑙𝑖𝑗 so that the pairing between 𝐶∗(𝑆𝑈𝑞(2)) and 𝐶(𝑆𝑈𝑞(2)) is given by

(𝜏 𝑙𝑖𝑗, 𝑡𝑙
′

𝑖′𝑗′) = 𝛿𝑙,𝑙′𝛿𝑖,𝑖′𝛿𝑗,𝑗′
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and the multiplicative unitary 𝑊 ∈ 𝑀(𝐶(𝑆𝑈𝑞(2)) ⊗ 𝐶∗(𝑆𝑈𝑞(2))) is 𝑊 = ∑𝑙,𝑖,𝑗 𝑡
𝑙
𝑖,𝑗 ⊗ 𝜏 𝑙𝑖,𝑗.

The quantum universal enveloping algebra ̆𝑈𝑞(𝔰𝔩(2)) is generated by 𝐾,𝐾−1, 𝐸, 𝐹 subject to

𝐾𝐾−1 = 𝐾−1𝐾 = 1 𝐾𝐸𝐾−1 = 𝑞𝐸 𝐾𝐹𝐾−1 = 𝑞−1𝐹 [𝐸, 𝐹 ] = 𝐾2 −𝐾−2

𝑞 − 𝑞−1

with coproduct

Δ(𝐾) = 𝐾 ⊗𝐾 Δ(𝐸) = 𝐸 ⊗𝐾 +𝐾−1 ⊗𝐸 Δ(𝐹) = 𝐹 ⊗𝐾 +𝐾−1 ⊗ 𝐹

and counit and antipode

𝜀(𝐾) = 1 𝜀(𝐸) = 𝜀(𝐹) = 0 𝑆(𝐾) = 𝐾−1 𝑆(𝐸) = −𝑞𝐸 𝑆(𝐹) = −𝑞−1𝐹.

Note that this is not the same as 𝑈𝑞(𝔰𝔩(2)), although the latter is a Hopf subalgebra of ̆𝑈𝑞(𝔰𝔩(2)) [KS97,
§3.1.2]. There is a nondegenerate pairing (⋅, ⋅) between ̆𝑈𝑞(𝔰𝔩(2)) and 𝒪(𝑆𝑈𝑞(2)) [KS97, Theorem 4.21].
By this pairing, ̆𝑈𝑞(𝔰𝔩(2)) is an algebra of unbounded operators affiliated to 𝐶∗(𝑆𝑈𝑞(2)). We may
define left and right actions of ̆𝑈𝑞(𝔰𝔩(2)) on 𝒪(𝑆𝑈𝑞(2)) by

𝑋 ⇀ 𝛼 = 𝛼(1)(𝑋, 𝛼(2)) 𝛼 ↼ 𝑋 = (𝑋,𝛼(1))𝛼(2).

The left and right actions of 𝐾 are automorphisms of 𝒪(𝑆𝑈𝑞(2)) and have the properties

(𝐾 ⇀ 𝛼)∗ = 𝐾−1 ⇀ 𝛼∗ (𝛼 ↼ 𝐾)∗ = 𝛼∗ ↼ 𝐾−1.

In terms of the Peter–Weyl basis, 𝐾 ⇀ 𝑡𝑙𝑖,𝑗 = 𝑞𝑗𝑡𝑙𝑖,𝑗 and 𝑡𝑙𝑖,𝑗 ↼ 𝐾 = 𝑞𝑖𝑡𝑙𝑖,𝑗. We also record the
relationships 𝑆−1(𝛼) = 𝐾2 ⇀ 𝑆(𝛼) ↼ 𝐾−2 and 𝜙(𝛼𝛽) = 𝜙(𝛽(𝐾2 ⇀ 𝛼 ↼ 𝐾2)) for the left Haar state
𝜙 on 𝐶(𝑆𝑈𝑞(2)). The unitary antipode 𝑅 on 𝐶(𝑆𝑈𝑞(2)) is then given by 𝑅(𝛼) = 𝐾 ⇀ 𝑆(𝛼) ↼ 𝐾−1;
on the Peter–Weyl basis, 𝑅(𝑡𝑙𝑖𝑗) = 𝐾 ⇀ 𝑡𝑙𝑗𝑖

∗ ↼ 𝐾−1 = (𝐾−1 ⇀ 𝑡𝑙𝑗𝑖 ↼ 𝐾)∗ = 𝑞−𝑖+𝑗𝑡𝑙𝑗𝑖
∗.

The Podleś sphere 𝐒2
𝑞 has polynomial algebra 𝒪(𝐒2

𝑞), the subalgebra of 𝒪(𝑆𝑈𝑞(2)) generated by

𝐴 = −𝑞−1𝑏𝑐 = 𝑐∗𝑐 = 𝑡1/2∗1/2,−1/2𝑡
1/2
1/2,−1/2 = 𝑞−2𝑡1/2−1/2,1/2𝑡

1/2∗
−1/2,1/2 = −𝑞−1[2]−1

𝑞 𝑡100
𝐵 = 𝑎𝑐∗ = −𝑞−1𝑎𝑏 = 𝑡1/2−1/2,−1/2𝑡

1/2∗
1/2,−1/2 = −𝑞−1/2[2]−1/2

𝑞 𝑡1−10

𝐵∗ = 𝑐𝑑 = 𝑡1/21/2,−1/2𝑡
1/2
1/2,1/2 = 𝑞−1/2𝑡1/21/2,−1/2𝑡

1/2∗
−1/2,−1/2 = [2]−1/2

𝑞 𝑞1/2𝑡110.

and is spanned by 𝑡𝑙𝑖0. The subspaces 𝑆+ = span{𝑡𝑙𝑖, 12 | 𝑙, 𝑖} and 𝑆− = span{𝑡𝑙𝑖,− 1
2
| 𝑙, 𝑖} of 𝒪(𝑆𝑈𝑞(2))

are the spinor bundles of the Podleś sphere. They can be completed under the inner product
on 𝒪(𝑆𝑈𝑞(2)) given by the left Haar state. The natural Dirac operator defining a spectral triple
(𝐶(𝑆2

𝑞 ), 𝐿2(𝑆+ ⊕ 𝑆−),𝐷) is [DS03, Theorem 8]

𝐷 = ( 𝜕𝐸
𝜕𝐹

)

where 𝜕𝐸 = 𝐸 ⇀ and 𝜕𝐹 = 𝐹 ⇀ or, in terms of the Peter–Weyl basis,

𝜕𝐸𝑡𝑙𝑖,𝑗 = √[𝑙 + 1/2]2𝑞 − [𝑗 + 1/2]2𝑞𝑡𝑙𝑖,𝑗+1 𝜕𝐹𝑡𝑙𝑖,𝑗 = √[𝑙 + 1/2]2𝑞 − [𝑗 − 1/2]2𝑞𝑡𝑙𝑖,𝑗−1 .

(Here, we use the convention [𝑛]𝑞 = 𝑞𝑛−𝑞−𝑛

𝑞−𝑞−1 for 𝑞-numbers.) We abbreviate these coefficients as
𝜅𝑙
𝑘 = √[𝑙 + 1/2]2𝑞 − [𝑘 − 1/2]2𝑞 . We have the twisted derivation property

𝜕𝐸(𝛼𝛽) = 𝜕𝐸(𝛼)(𝐾 ⇀ 𝛽) + (𝐾−1 ⇀ 𝛼)𝜕𝐸(𝛽) 𝜕𝐹(𝛼𝛽) = 𝜕𝐹(𝛼)(𝐾 ⇀ 𝛽) + (𝐾−1 ⇀ 𝛼)𝜕𝐹(𝛽)
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which shows that 𝐷 has bounded commutators with elements of 𝒪(𝐒2
𝑞). The relationships

𝜕𝐸(𝛼∗) = −𝑞𝜕𝐹(𝛼)∗ 𝜕𝐹(𝛼∗) = −𝑞−1𝜕𝐸(𝛼)∗

can be used to show that 𝐷 is self-adjoint [Sen11, Lemma A.1].
There is an action of 𝑆𝑈𝑞(2) on 𝐒2

𝑞 given by the restriction of the coaction of 𝐶(𝑆𝑈𝑞(2)) on itself
to 𝐶(𝐒2

𝑞). The spectral triple (𝒪(𝑆2
𝑞 ), 𝐿2(𝑆+ ⊕ 𝑆−),𝐷) is constructed to be isometric with respect to

this action, cf. [DS03, §4]. We can phrase this in terms of a right coaction

𝛿Δ ∶ 𝛼 ↦ Σ(𝑅 ⊗ 1)Δ𝛼 𝑡𝑙𝑖𝑗 ↦ ∑
𝑘

𝑡𝑙𝑘𝑗 ⊗ 𝑞−𝑖+𝑘𝑡𝑙𝑘𝑖
∗

of 𝐶(𝑆𝑈𝑞(2)) on 𝐶(𝐒2
𝑞), where 𝑅 is the unitary antipode. We can write the admissible unitary as

𝑉Δ(𝑡𝑙𝑖𝑗 ⊗ 𝑡𝑙′𝑖′𝑗′) = ∑
𝑘

𝑡𝑙𝑘𝑗 ⊗ 𝑞−𝑖+𝑘𝑡𝑙𝑘𝑖
∗𝑡𝑙′𝑖′𝑗′ .

We then have

(𝜕𝐸 ⊗ 1)𝑉Δ(𝑡𝑙𝑖𝑗 ⊗ 𝑡𝑙′𝑖′𝑗′) = ∑
𝑘

𝜅𝑙
𝑗+1𝑡𝑙𝑘,𝑗+1 ⊗ 𝑞−𝑖+𝑘𝑡𝑙𝑘𝑖

∗𝑡𝑙′𝑖′𝑗′

= 𝜅𝑙
𝑗+1𝑉Δ(𝑡𝑙𝑖,𝑗+1 ⊗ 𝑡𝑙′𝑖′𝑗′) = 𝑉Δ(𝜕𝐸 ⊗ 1)(𝑡𝑙𝑖𝑗 ⊗ 𝑡𝑙′𝑖′𝑗′)

and, similarly, that 𝜕𝐹⊗1 commutes with 𝑉Δ, which means that (𝐶(𝑆2
𝑞 ), 𝐿2(𝑆+⊕𝑆−),𝐷) is isometrically

equivariant for the action of 𝑆𝑈𝑞(2).
In addition, there is an action of ̂𝑆𝑈𝑞(2) on 𝐒2

𝑞 given by the restriction of the adjoint action of
𝐶(𝑆𝑈𝑞(2)) on itself to 𝐶(𝐒2

𝑞) [Voi11, §4]. Together, these actions give an action of 𝑆𝐿𝑞(2) = 𝑆𝑈𝑞(2) ⋈
̂𝑆𝑈𝑞(2), the Drinfeld double of 𝑆𝑈𝑞(2), which can be thought of as the quantisation of the classical

Lorentz group 𝑆𝐿(2,ℂ) action on the sphere 𝐒2. The left adjoint action of 𝐶(𝑆𝑈𝑞(2)) is given by

ad(𝛼) ∶ 𝛽 → 𝛼(1)𝛽𝑆(𝛼(2)) .

For 𝑧 ∈ ℂ, we define a slightly adjusted action

𝜔𝑧(𝛼) ∶ 𝛽 → 𝛼(1)𝛽(𝐾2𝑧 ⇀ 𝑆(𝛼(2))) .

For any 𝛼 ∈ 𝐶(𝑆𝑈𝑞(2)), 𝜔𝑧(𝛼) preserves the subalgebra 𝐶(𝐒2
𝑞) and its spinor bundles. In terms of the

Peter–Weyl basis,

𝜔𝑧(𝑡𝑙𝑖,𝑗)(𝛽) = ∑
𝑘

𝑞−2𝑧𝑘𝑡𝑙𝑖,𝑘𝛽𝑡𝑙𝑗,𝑘
∗ and 𝜔𝑧(𝑡𝑙𝑖,𝑗

∗)(𝛽) = ∑
𝑘

𝑞2((𝑧−1)𝑘+𝑗)𝑡𝑙𝑖,𝑘
∗𝛽𝑡𝑙𝑗,𝑘 .

With respect to the inner product on 𝐶(𝑆𝑈𝑞(2)) given by the Haar state 𝜙, 𝜔1 is self-adjoint; in general,

⟨𝜔𝑧(𝛼)(𝛽) ∣ 𝛾⟩ = ⟨𝛽 ∣ 𝜔−𝑧+2(𝛼∗)(𝛾)⟩.

From the left action 𝜔1 of 𝐶(𝑆𝑈𝑞(2)) on itself, we obtain a right coaction of 𝐶∗(𝑆𝑈𝑞(2)) on 𝐶(𝑆𝑈𝑞(2))
by the formula

𝛽(0)(𝛽(1), 𝛼) = 𝜔1(𝛼)(𝛽),

using the Sweedler notation 𝛿𝜔1
(𝛽) = 𝛽(0) ⊗ 𝛽(1) for the coaction. In particular, we obtain that

𝛿𝜔1
(𝑡𝑙𝑖,𝑗) = ∑

𝑙′,𝑖′,𝑗′
𝜔1(𝑡𝑙

′

𝑖′,𝑗′)(𝑡
𝑙
𝑖,𝑗) ⊗ 𝜏 𝑙′𝑖′,𝑗′ .
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The admissible unitary 𝑉𝜔1
on 𝐿2(𝑆+ ⊕ 𝑆−) ⊗ 𝐶∗(𝑆𝑈𝑞(2)) is given by

𝑉𝜔1
= ∑

𝑙,𝑖,𝑗
𝜔1(𝑡𝑙𝑖,𝑗) ⊗ 𝜏 𝑙𝑖,𝑗 = ∑

𝑘
𝑞−2𝑘𝑡𝑙𝑖,𝑘 ⋅ 𝑡𝑙𝑗,𝑘

∗ ⊗ 𝜏 𝑙𝑖,𝑗 = ∑
𝑘,𝑘′

𝑞−2𝑘′𝑡𝑙𝑖,𝑘 ⋅ 𝑡𝑙𝑗,𝑘′
∗ ⊗ 𝜏 𝑙𝑖,𝑘𝜏 𝑙𝑘′,𝑗 .

We claim that the spectral triple (𝐶(𝑆2
𝑞 ), 𝐿2(𝑆+ ⊕ 𝑆−),𝐷) is conformally ̂𝑆𝑈𝑞(2)-equivariant. The

conformal geometry of the Podleś sphere is examined at the level of bounded KK-theory in [NV10, Voi11].
Because ̂𝑆𝑈𝑞(2) is discrete, the conformal factor 𝜇 will be the sum of components 𝜇𝑙 ∈ 𝐵(𝐿2(𝑆+ ⊕
𝑆−)) ⊗ 𝑀2𝑙(ℂ), 𝑙 ∈ 1

2ℕ≥1 labelling the irreducible representations of 𝑆𝑈𝑞(2). Noting that 𝐶(𝐒2
𝑞) is

unital, conformal equivariance will be a consequence of

𝑉 𝑙
𝜔1
(𝐷 ⊗ 1)𝑉 𝑙∗

𝜔1
− 𝜇𝑙(𝐷 ⊗ 1)𝜇𝑙∗ [𝐷 ⊗ 1, 𝜇𝑙]

being bounded for all 𝑙 ∈ 1
2ℕ≥1.

Note that (𝐾 ⊗𝐾) ⇀ (1 ⊗ 𝑆)Δ(𝛼) = (1 ⊗ 𝑆)Δ(𝛼) because

(𝐾 ⊗𝐾) ⇀ (1 ⊗ 𝑆)Δ(𝑡𝑙𝑖,𝑗) = ∑
𝑘

𝐾 ⇀ 𝑡𝑙𝑖,𝑘 ⊗𝐾 ⇀ 𝑆(𝑡𝑙𝑘,𝑗)

= ∑
𝑘

𝑞𝑘𝑡𝑙𝑖,𝑘 ⊗𝐾 ⇀ 𝑡𝑙𝑘,𝑗
∗

= ∑
𝑘

𝑞𝑘𝑡𝑙𝑖,𝑘 ⊗ (𝐾−1 ⇀ 𝑡𝑙𝑘,𝑗)∗

= ∑
𝑘

𝑡𝑙𝑖,𝑘 ⊗ 𝑡𝑙𝑘,𝑗
∗

= (1 ⊗ 𝑆)Δ(𝑡𝑙𝑖,𝑗) .

Then

𝜕𝐸(𝜔𝑧(𝛼)(𝛽)) = 𝜕𝐸(𝛼(1)𝛽(𝐾2𝑧 ⇀ 𝑆(𝛼(2))))
= 𝜕𝐸(𝛼(1))(𝐾 ⇀ 𝛽)(𝐾2𝑧+1 ⇀ 𝑆(𝛼(2))) + (𝐾−1 ⇀ 𝛼(1))𝜕𝐸(𝛽)(𝐾2𝑧+1 ⇀ 𝑆(𝛼(2)))

+ (𝐾−1 ⇀ 𝛼(1)𝛽)𝜕𝐸(𝐾2𝑧 ⇀ 𝑆(𝛼(2)))
= 𝜕𝐸(𝛼(1))(𝐾 ⇀ 𝛽)(𝐾2𝑧+1 ⇀ 𝑆(𝛼(2))) + 𝜔𝑧+1(𝛼)(𝜕𝐸(𝛽))

+ (𝐾−1 ⇀ 𝛼(1)𝛽)𝜕𝐸(𝐾2𝑧 ⇀ 𝑆(𝛼(2)))

so that 𝜕𝐸𝜔𝑧(𝛼)−𝜔𝑧+1(𝛼)𝜕𝐸 and 𝜕𝐹𝜔𝑧(𝛼)−𝜔𝑧+1(𝛼)𝜕𝐹, similarly, are bounded on 𝑆+⊕𝑆−. Furthermore,

∑
𝑗

𝜔0(𝑡𝑙𝑖,𝑗)(𝜔1(𝑡𝑙𝑖′,𝑗
∗)(𝛽)) = ∑

𝑗,𝑘
𝑡𝑙𝑖,𝑘𝜔1(𝑡𝑙𝑖′,𝑗

∗)(𝛽)𝑡𝑙𝑗,𝑘
∗

= ∑
𝑗,𝑘,𝑘′

𝑞2𝑗𝑡𝑙𝑖,𝑘𝑡𝑙𝑖′,𝑘′
∗𝛽𝑡𝑙𝑗,𝑘′𝑡𝑙𝑗,𝑘

∗

= ∑
𝑗,𝑘,𝑘′

𝑞2𝑘′𝑡𝑙𝑖,𝑘𝑡𝑙𝑖′,𝑘′
∗𝛽(𝐾−2 ⇀ 𝑡𝑙𝑗,𝑘′ ↼ 𝐾2)𝑆(𝑡𝑙𝑘,𝑗)

= ∑
𝑗,𝑘,𝑘′

𝑞2𝑘′𝑡𝑙𝑖,𝑘𝑡𝑙𝑖′,𝑘′
∗𝛽(𝐾−2 ⇀ (𝑡𝑙𝑗,𝑘′(𝐾2 ⇀ 𝑆(𝑡𝑙𝑘,𝑗) ↼ 𝐾−2)) ↼ 𝐾2)

= ∑
𝑗,𝑘,𝑘′

𝑞2𝑘′𝑡𝑙𝑖,𝑘𝑡𝑙𝑖′,𝑘′
∗𝛽(𝐾−2 ⇀ (𝑡𝑙𝑗,𝑘′𝑆−1(𝑡𝑙𝑘,𝑗)) ↼ 𝐾2)

= ∑
𝑘

𝑞2𝑘𝑡𝑙𝑖,𝑘𝑡𝑙𝑖′,𝑘
∗𝛽(𝐾−2 ⇀ 1 ↼ 𝐾2)

= ∑
𝑘

𝑞2𝑘𝑡𝑙𝑖,𝑘𝑡𝑙𝑖′,𝑘
∗𝛽

= 𝜔−1(𝑡𝑙𝑖,𝑖′)(1)𝛽 .
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Let 𝜇𝑙 = ∑𝑖,𝑗 𝜔−1/2(𝑡𝑙𝑖,𝑗)(1) ⊗ 𝜏 𝑙𝑖,𝑗 = ∑𝑖,𝑗,𝑘 𝑞
𝑘𝑡𝑙𝑖,𝑘𝑡𝑙𝑗,𝑘

∗ ⊗ 𝜏 𝑙𝑖,𝑗. For 𝑙 = 1
2 ,

𝜇 1
2 = 𝑞 1

2𝑇
1
2
1
2
𝑇

1
2
1
2

∗
+ 𝑞− 1

2𝑇
1
2
− 1

2
𝑇

1
2
− 1

2

∗
= 𝑞 1

2 (𝑞2𝐴 −𝐵
−𝐵∗ 1 − 𝐴)+ 𝑞− 1

2 (1 − 𝑞2𝐴 𝐵
𝐵∗ 𝐴) .

Thus, with 𝑃± the projections onto the positive and negative spinors, 𝜇1/2 = 𝑞1/2𝑃+ + 𝑞−1/2𝑃−. If we
regard 𝐾 as an unbounded operator on 𝐶∗(𝑆𝑈𝑞(2)) the conformal factor is

𝜇 = 𝑊(1 ⊗𝐾)𝑊 ∗

where 𝑊 is the multiplicative unitary of 𝑆𝑈𝑞(2).
We remark that 𝜇𝑙 is positive and (𝜇𝑙)𝑧 = ∑𝑖,𝑗 𝜔−𝑧/2(𝑡𝑙𝑖,𝑗)(1) ⊗ 𝜏 𝑙𝑖,𝑗. Because 𝜇𝑙 ∈ 𝒪(𝐒2

𝑞) ⊗𝑀2𝑙(ℂ),
it is clear that [𝐷 ⊗ 1, 𝜇𝑙] is bounded. We are now in a position to see also that

𝑉 𝑙
𝜔1
(𝐷 ⊗ 1)𝑉 𝑙∗

𝜔1
− 𝜇𝑙(𝐷 ⊗ 1)𝜇𝑙∗

= ∑
𝑙,𝑖,𝑗,𝑖′,𝑗′

(𝜔1(𝑡𝑙𝑖,𝑗)𝐷𝜔1(𝑡𝑙𝑖′,𝑗′
∗) − 𝜔−1/2(𝑡𝑙𝑖,𝑗)(1)𝐷𝜔−1/2(𝑡𝑙𝑖′,𝑗′)(1)) ⊗ 𝜏 𝑙𝑖,𝑗𝜏 𝑙𝑗′,𝑖′

= ∑
𝑙,𝑖,𝑗,𝑖′

(𝜔1(𝑡𝑙𝑖,𝑗)𝐷𝜔1(𝑡𝑙𝑖′,𝑗
∗) − 𝜔−1/2(𝑡𝑙𝑖,𝑗)(1)𝐷𝜔−1/2(𝑡𝑙𝑖′,𝑗)(1)) ⊗ 𝜏 𝑙𝑖,𝑖′

= ∑
𝑙,𝑖,𝑗,𝑖′

(−(𝐷𝜔0(𝑡𝑙𝑖,𝑗) − 𝜔1(𝑡𝑙𝑖,𝑗)𝐷)𝜔1(𝑡𝑙𝑖′,𝑗
∗) + [𝐷, 𝜔−1/2(𝑡𝑙𝑖,𝑗)(1)]𝜔−1/2(𝑡𝑙𝑖′,𝑗)(1)) ⊗ 𝜏 𝑙𝑖,𝑖′

is bounded. Finally, we obtain that (𝒪(𝑆2
𝑞 ), 𝐿2(𝑆+ ⊕ 𝑆−),𝐷) is conformally ̂𝑆𝑈𝑞(2)-equivariant with

conformal factor 𝜇.
The locally compact quantum group 𝑆𝐿𝑞(2), the quantum deformation of 𝑆𝐿(2,ℂ), is the Drinfeld

double 𝑆𝑈𝑞(2) ⋈ ̂𝑆𝑈𝑞(2); see e.g. [VY20, §4.4.1]. As C*-algebras,

𝐶(𝑆𝐿𝑞(2)) = 𝐶(𝑆𝑈𝑞(2)) ⊗ 𝐶∗(𝑆𝑈𝑞(2)).

The comultiplication on 𝐶(𝑆𝐿𝑞(2)) is

Δ𝑆𝐿𝑞(2) = (1 ⊗ Σ ⊗ 1)(id ⊗ ad(𝑊) ⊗ id) ◦ (Δ ⊗ Δ̂)

and the antipode is
𝑆𝑆𝐿𝑞(2) = ad(𝑊 ∗) ◦ (𝑆 ⊗ 𝑆) = (𝑆 ⊗ 𝑆) ◦ ad(𝑊).

By [BV05, Theorem 5.3] the unitary antipode is similarly

𝑅𝑆𝐿𝑞(2) = ad(𝑊 ∗) ◦ (𝑅 ⊗ 𝑅̂) = (𝑅 ⊗ 𝑅̂) ◦ ad(𝑊).

Our conventions differ from those of [NV10] in that we use right coactions rather than left ones. The
translation between these is not difficult: a left coaction can be turned into a right coaction, and vice
versa, by applying the unitary antipode to the C*-bialgebra leg and then flipping the legs. Taking this
into account in [NV10, Proposition 3.2] the action of 𝑆𝐿𝑞(2) on 𝑆2

𝑞 is given by the coaction

𝛿⋈ = (Σ ⊗ 1)(1 ⊗ Σ)(ad(𝑊 ∗) ⊗ id)(𝑅 ⊗ 𝑅̂ ⊗ id)(1 ⊗ Σ)(id ⊗ id ⊗ 𝑅̂)(id ⊗ 𝛿𝜔1
)Σ(id ⊗ 𝑅)𝛿Δ

= (Σ ⊗ 1)(1 ⊗ Σ)(ad(𝑊 ∗) ⊗ id)(1 ⊗ Σ)(Σ ⊗ 1)(1 ⊗ Σ)(𝛿𝜔1
⊗ id)𝛿Δ

= (id ⊗ ad(𝑊 ∗))(1 ⊗ Σ)(𝛿𝜔1
⊗ id)𝛿Δ

of 𝐶(𝑆𝐿𝑞(2)). Using the standard leg-numbering notation the admissible unitary is

𝑉⋈ = (1 ⊗𝑊 ∗)𝑉𝜔1,13(𝑉Δ ⊗ 1)(1 ⊗𝑊).
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Let 𝜇⋈ = (1 ⊗𝑊 ∗)𝜇13(1 ⊗𝑊). Then

𝑉⋈(𝐷 ⊗ 1)𝑉 ∗
⋈ − 𝜇⋈(𝐷 ⊗ 1)𝜇∗

⋈ = (1 ⊗𝑊 ∗) (𝑉𝜔1,13(𝐷 ⊗ 1 ⊗ 1)𝑉 ∗
𝜔1,13 − 𝜇13(𝐷 ⊗ 1 ⊗ 1)𝜇∗

13) (1 ⊗𝑊)

is 𝐶(𝑆𝑈𝑞(2)) ⊗ 𝐶∗(𝑆𝑈𝑞(2))-matched because it is bounded when restricted to each of the submodules
𝐿2(𝑆+ ⊕ 𝑆−) ⊗ 𝐶(𝑆𝑈𝑞(2)) ⊗𝑀2𝑙(ℂ). In terms of the Peter–Weyl basis,

𝜇⋈ = ∑
𝑖,𝑗,𝑘,𝑙,𝑖′,𝑗′,𝑖″,𝑗″

𝑞𝑘𝑡𝑙𝑖,𝑘𝑡𝑙𝑗,𝑘
∗ ⊗ 𝑡𝑙𝑖″,𝑗″

∗𝑡𝑙𝑖′,𝑗′ ⊗ 𝜏 𝑙𝑗″,𝑖″𝜏
𝑙
𝑖,𝑗𝜏 𝑙𝑖′,𝑗′

= ∑
𝑖,𝑗,𝑘,𝑙,𝑚,𝑛

𝑞𝑘𝑡𝑙𝑖,𝑘𝑡𝑙𝑗,𝑘
∗ ⊗ 𝑡𝑙𝑖,𝑚

∗𝑡𝑙𝑗,𝑛 ⊗ 𝜏 𝑙𝑚,𝑛.

This shows that the first leg of 𝜇⋈ is in 𝒪(𝐒2
𝑞) so that [𝐷 ⊗ 1 ⊗ 1, 𝜇⋈] is similarly 𝐶(𝑆𝐿𝑞(2))-matched.

Regarding 𝐾 as an unbounded operator on 𝐶∗(𝑆𝑈𝑞(2)), the conformal factor is

𝜇⋈ = 𝑊 ∗
23𝑊13(1 ⊗ 1 ⊗𝐾)𝑊 ∗

13𝑊23.

We have now demonstrated

Proposition III.3.7. The spectral triple (𝐶(𝑆2
𝑞 ), 𝐿2(𝑆+ ⊕ 𝑆−),𝐷) is conformally 𝑆𝐿𝑞(2)-equivariant

with conformal factor 𝜇⋈.

Remark III.3.8. As a consequence, applying Theorem III.3.5, the logarithmically dampened spectral
triple (𝐶(𝑆2

𝑞 ), 𝐿2(𝑆+ ⊕𝑆−), 𝐿𝐷) is uniformly 𝑆𝐿𝑞(2)-equivariant. Recalling the expressions for 𝜕𝐸 and
𝜕𝐹 in terms of the Peter–Weyl basis,

𝐷⎛⎜
⎝

𝑡𝑙𝑖, 12
𝑡𝑙′𝑖′,− 1

2

⎞⎟
⎠

= [𝑙 + 1/2]𝑞 ⎛⎜
⎝

𝑡𝑙′𝑖′, 12
𝑡𝑙𝑖,− 1

2

⎞⎟
⎠

.

One can check that
[𝑙 + 1

2 ]𝑞
√1+ [𝑙 + 1

2 ]2𝑞
log√1 + [𝑙 + 1

2 ]2𝑞 − (𝑙 + 1
2) log 𝑞

−1

converges to log(𝑞−1 − 𝑞) as 𝑙 → ∞. Hence, up to a bounded difference, 𝐿𝐷 is equal to log(𝑞−1)𝐷1,
where 𝐷1 is the Dirac operator on the classical 2-sphere; cf. [DDLW07].

III.4 Conformally generated cycles and twisted spectral triples
In this section, we present a new way of guaranteeing that unbounded cycles without bounded
commutators in the conventional sense have well-defined bounded transforms. In particular, our
approach covers all known examples of twisted spectral triples with well-defined bounded transforms.
One of the features of our approach is that no ‘twist’ or automorphism of the algebra is involved, which
suggests that this structure is a red herring, at least as far as KK-theory is concerned.

So far, relatively few examples of twisted spectral triples have been described in the literature.
One reason for this is the difficulty in guaranteeing that the bounded transform is well-defined. The
Lipschitz regularity condition [CM08, Definition 3.1 (3.3)], although natural in a relatively classical
situation, where a pseudodifferential calculus is available, is not so satisfactory in general. Part of
the motivation for developing the technical results in this Chapter was the construction of twisted
spectral triples for certain badly behaved dynamical systems, for which Lipschitz regularity becomes
intractable.

The framework of conformally generated cycles is applicable to all examples of twisted spectral
triples with topological content in the literature, as far as we are aware. Among those examples to
which it can be applied are
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• Conformal perturbations of spectral triples (or Kasparov modules) of the 𝐷 𝑘𝐷𝑘 type [CM08,
§2.2];

• Crossed products by groups of conformal diffeomorphisms [CM08, §2.3] [Mos10, §3.1] (and, more
generally, the dual Green–Julg map of conformally equivariant unbounded Kasparov modules);

• Cuntz–Krieger algebras, as in [Haw13, Chapter 6];
• Unbounded modular cycles, in the sense of [Kaa21, Definition 3.1]; and
• Pseudodifferential calculus on the Podleś sphere and other examples with diagonalisable twist, as

treated in [MY19].

The multiplicative perturbation theory developed in §III.1.3 was partly inspired by [MY19]. In principle,
the techniques here could be used to build pseudodifferential calculi, mimicking the approach in [MY19].
Examples of twisted spectral triples to which our methods do not apply are

• The quantum statistical mechanics constructions of [GMT14] which are not Lipschitz regular
and, indeed, whose bounded transform is manifestly not a Fredholm module;

• The Lorentzian geometry constructions of [DFLM18], whose twist is an involution and not
relevant to the topology; and

• Examples without (locally) compact resolvent, such as those in [KS12] and [IM16].

To formulate a framework sufficient to describe the examples, we will again use the notions of
matched operators and compactly supported states from Appendices A.1.2 and A.1.3. Recall from
Proposition A.1.22 the ∗-algebra of matched operators Mtc∗(𝐹 ,𝐶) on the module 𝐹 with respect to
the algebra 𝐶.

Definition III.4.1. A conformally generated 𝐴-𝐵-cycle (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) is an 𝐴-𝐵-correspondence 𝐸,
a regular operator 𝐷 on 𝐸, a C*-algebra 𝐶, and a pair 𝜇 = (𝜇𝐿, 𝜇𝑅) of (even) 𝐶-matched operators on
𝐸 ⊗ 𝐶, whose inverses are also 𝐶-matched, such that

1. 𝐷 is self-adjoint;
2. (1 + 𝐷2)−1𝑎 is compact for all 𝑎 ∈ 𝐴; and
3. With ℒ the set of 𝑎 ∈ Mtc∗(𝐸 ⊗ 𝐶,𝐶) such that

[𝐷 ⊗ 1, 𝑎] [𝜇𝐿(𝐷 ⊗ 1)𝜇∗
𝐿, 𝑎] [𝐷 ⊗ 1, 𝜇∗

𝐿𝑎] [𝐷 ⊗ 1, 𝜇−1
𝐿 𝑎] [𝐷 ⊗ 1, 𝑎𝜇𝐿] [𝐷 ⊗ 1, 𝑎𝜇−1∗

𝐿 ]

are 𝐶-matched, with ℛ the set of 𝑎 ∈ Mtc∗(𝐸 ⊗ 𝐶,𝐶) such that

[𝐷 ⊗ 1, 𝑎] [𝜇𝑅(𝐷 ⊗ 1)𝜇∗
𝑅, 𝑎] [𝐷 ⊗ 1, 𝜇∗

𝑅𝑎] [𝐷 ⊗ 1, 𝜇−1
𝑅 𝑎] [𝐷 ⊗ 1, 𝑎𝜇𝑅] [𝐷 ⊗ 1, 𝑎𝜇−1∗

𝑅 ]

are 𝐶-matched, and with

𝒯 = {𝑎 ∈ Mtc∗(𝐸 ⊗ 𝐶,𝐶)∣ 𝜇𝐿(𝐷 ⊗ 1)𝜇∗
𝐿𝑎 − 𝑎𝜇𝑅(𝐷 ⊗ 1)𝜇∗

𝑅 ∈ Mtc∗(𝐸 ⊗ 𝐶,𝐶)} ,

the algebra 𝐴 is contained in 𝐶∗((1 ⊗ 𝜓)(ℒ𝒯ℛ)| 𝜓 ∈ 𝒮𝑐(𝐶)), where 𝒮𝑐(𝐶) are the compactly
supported states on 𝐶.

If 𝐸 is a ℤ/2ℤ-graded 𝐴-𝐵-correspondence (that is, with 𝐴 acting by even operators), we require that
𝐷 be an odd operator and that 𝜇𝐿 and 𝜇𝑅 be even and call (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) an even conformally
generated cycle. If 𝐸 is ungraded, (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) is odd.

Remarks III.4.2.
1. The spaces ℒ and ℛ are ∗-algebras. The space 𝒯 is a ternary ring of 𝐶-matched operators. We

have ℒ𝒯 ⊆ 𝒯 and 𝒯ℛ ⊆ 𝒯, and ℒ𝒯ℛ is also a ternary ring of 𝐶-matched operators.
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2. Proposition A.1.30 shows that the application of a compactly supported state on 𝐶 to a 𝐶-matched
operator is well-defined. By Proposition A.1.31, 𝒮𝑐(𝐶) in condition 3. of Definition III.4.1 could
be replaced with 𝒮(𝐶), the set of all states on 𝐶, at least to those elements of ℒ𝒯ℛ which are
adjointable.

3. Any unbounded Kasparov module (𝐴,𝐸𝐵, 𝐷) can be regarded as a conformally generated cycle
(𝐴,𝐸𝐵, 𝐷;ℂ, (1, 1)).

One should think of conformally generated cycles as having a dynamical quality, in addition to a
strictly geometrical one, with the C*-algebra 𝐶 as a ‘dynamical direction’. In examples, the elements
of 𝒯 correspond to endomorphisms with bounded ‘twisted’ commutators with 𝐷, as we will see in
Theorem III.4.5. Elements of ℒ,ℛ encode the regularity of the ‘conformal factors’ 𝜇𝐿, 𝜇𝑅.

Definition III.4.1 could be extended to higher order cycles but, in the interests of readability, we do
not pursue this here.
Remark III.4.3. Using Proposition A.1.24, we may specialise Definition III.4.1 to the case when
𝐶 = 𝐶0(𝑋) for a locally compact Hausdorff space 𝑋. Consider a conformally generated 𝐴-𝐵-cycle
(𝐴,𝐸𝐵, 𝐷;𝐶0(𝑋), 𝜇). We may interpret 𝜇 = (𝜇𝐿, 𝜇𝑅) as a pair of ∗-strongly continuous families
(𝜇𝐿,𝑥)𝑥∈𝑋 and (𝜇𝑅,𝑥)𝑥∈𝑋 of (even) invertible adjointable operators over 𝑋. Condition 3. of Definition
III.4.1 becomes:

3’. With ℒ the set of ∗-strongly continuous maps 𝑎 ∶ 𝑋 → End∗(𝐸) such that the maps

𝑥 ↦ [𝐷, 𝑎𝑥] 𝑥 ↦ [𝜇𝐿,𝑥𝐷𝜇∗
𝐿,𝑥, 𝑎𝑥]

𝑥 ↦ [𝐷, 𝜇∗
𝐿,𝑥𝑎𝑥] 𝑥 ↦ [𝐷, 𝜇−1

𝐿,𝑥𝑎𝑥] 𝑥 ↦ [𝐷, 𝑎𝑥𝜇𝐿,𝑥] 𝑥 ↦ [𝐷, 𝑎𝑥𝜇−1∗
𝐿,𝑥 ]

are ∗-strongly continuous to End∗(𝐸), with ℛ the set of ∗-strongly continuous maps 𝑎 ∶ 𝑋 →
End∗(𝐸) such that the maps

𝑥 ↦ [𝐷, 𝑎𝑥] 𝑥 ↦ [𝜇𝑅,𝑥𝐷𝜇∗
𝑅,𝑥, 𝑎𝑥]

𝑥 ↦ [𝐷, 𝜇∗
𝑅,𝑥𝑎𝑥] 𝑥 ↦ [𝐷, 𝜇−1

𝑅,𝑥𝑎𝑥] 𝑥 ↦ [𝐷, 𝑎𝑥𝜇𝑅,𝑥] 𝑥 ↦ [𝐷, 𝑎𝑥𝜇−1∗
𝑅,𝑥]

are ∗-strongly continuous to End∗(𝐸), and with

𝒯 = {𝑎 ∈ 𝐶(𝑋,End∗(𝐸)∗−𝑠)| 𝑥 ↦ 𝜇𝐿,𝑥𝐷𝜇∗
𝐿,𝑥𝑎𝑥 − 𝑎𝑥𝜇𝑅,𝑥𝐷𝜇∗

𝑅,𝑥 ∈ 𝐶(𝑋,End∗(𝐸)∗−𝑠)},

the algebra 𝐴 is contained in 𝐶∗((1 ⊗ 𝑚)(ℒ𝒯ℛ)|𝑚 ∈ ℳ𝑐(𝑋)), where ℳ𝑐(𝑋) is the set of
compactly supported Radon measures on 𝑋.

An important special case is when 𝑋 is a discrete set (and, in particular, when 𝑋 is a point). In this
case, Condition 3. of Definition III.4.1 becomes:

3”. With ℒ𝑥 the set of 𝑎 ∈ End∗(𝐸) such that

[𝐷, 𝑎] [𝜇𝐿,𝑥𝐷𝜇∗
𝐿,𝑥, 𝑎] [𝐷, 𝜇∗

𝐿,𝑥𝑎] [𝐷, 𝜇−1
𝐿,𝑥𝑎] [𝐷, 𝑎𝜇𝐿,𝑥] [𝐷, 𝑎𝜇−1∗

𝐿,𝑥 ]

are adjointable, with ℛ𝑥 the set of 𝑎 ∈ End∗(𝐸) such that

[𝐷, 𝑎] [𝜇𝑅,𝑥𝐷𝜇∗
𝑅,𝑥, 𝑎] [𝐷, 𝜇∗

𝑅,𝑥𝑎] [𝐷, 𝜇−1
𝑅,𝑥𝑎] [𝐷, 𝑎𝜇𝑅,𝑥] [𝐷, 𝑎𝜇−1∗

𝑅,𝑥]

are adjointable, and with

𝒯𝑥 = {𝑎 ∈ End∗(𝐸)| 𝜇𝐿,𝑥𝐷𝜇∗
𝐿,𝑥𝑎 − 𝑎𝜇𝑅,𝑥𝐷𝜇∗

𝑅,𝑥 ∈ End∗(𝐸)},

the algebra 𝐴 is contained in the C*-algebra 𝐶∗(ℒ𝑥𝒯𝑥ℛ𝑥| 𝑥 ∈ 𝑋).
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Theorem III.4.4. Let (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) be a conformally generated 𝐴-𝐵-cycle. Then (𝐴,𝐸𝐵, 𝐹𝐷) is a
bounded Kasparov module of the same parity.

Proof. The main point to check is that [𝐹𝐷, 𝑎] is compact for all 𝑎 ∈ 𝐴. Let 𝑐 be a positive element of
the Pedersen ideal 𝐾𝐶, so that, by Proposition A.1.20, the restriction of 𝜇 to the 𝐵⊗span(𝐶𝑐𝐶)-module
𝐸 ⊗ span(𝐶𝑐𝐶) is bounded. From now on, we work on the module 𝐸 ⊗ span(𝐶𝑐𝐶). Let 𝑙1, 𝑙2 ∈ ℒ
and 𝑟1, 𝑟2, 𝑟3 ∈ ℛ. Omitting instances of ⊗1 for simplicity, Theorem III.1.33 shows that

(𝐹𝜇𝐿𝐷𝜇∗
𝐿
− 𝐹𝐷)𝑙1𝑙2⟨𝜇𝐿𝐷𝜇∗

𝐿⟩𝛽 (𝐹𝜇𝑅𝐷𝜇∗
𝑅
− 𝐹𝐷)𝑟1𝑟2𝑟3⟨𝐷⟩𝛽

are bounded for 𝛽 < 1. With 𝑙 = 𝑙1𝑙2 and 𝑟 = 𝑟1𝑟2𝑟3,

(𝐹𝐷𝑙 − 𝑙𝐹𝜇𝐿𝐷𝜇∗
𝐿
)⟨𝜇𝐿𝐷𝜇∗

𝐿⟩𝛽 (𝐹𝜇𝑅𝐷𝜇∗
𝑅
𝑟 − 𝑟𝐹𝐷)⟨𝐷⟩𝛽

are hence bounded. Let 𝑡 ∈ 𝒯. By Proposition I.1.1,

(𝐹𝜇𝐿𝐷𝜇∗
𝐿
𝑡 − 𝑡𝐹𝜇𝑅𝐷𝜇∗

𝑅
)⟨𝜇𝑅𝐷𝜇∗

𝑅⟩𝛽

is bounded and we have

[𝐹𝐷, 𝑙𝑡𝑟] = (𝐹𝐷𝑙 − 𝑙𝐹𝜇𝐿𝐷𝜇∗
𝐿
)𝑡𝑟 + 𝑙(𝐹𝜇𝐿𝐷𝜇∗

𝐿
𝑡 − 𝑡𝐹𝜇𝑅𝐷𝜇∗

𝑅
)𝑟 + 𝑙𝑡(𝐹𝜇𝑅𝐷𝜇∗

𝑅
𝑟 − 𝑟𝐹𝐷).

We see that [𝐹𝐷 ⊗ 1, 𝑙𝑡𝑟]⟨𝐷⟩𝛽 ⊗ 1 is bounded on the module 𝐸 ⊗ span(𝐶𝑐𝐶). This is the case for
every positive 𝑐 ∈ 𝐾𝐶 so, by Proposition A.1.20, [𝐹𝐷 ⊗ 1, 𝑙𝑡𝑟]⟨𝐷⟩𝛽 ⊗ 1 is a 𝐶-matched operator on
𝐸 ⊗ 𝐶. Let 𝜓 be a compactly supported state on 𝐶. By Proposition A.1.30, we may apply 1 ⊗ 𝜓 to
[𝐹𝐷 ⊗ 1, 𝑙𝑡𝑟]⟨𝐷⟩𝛽 ⊗ 1 to obtain the bounded operator

(1 ⊗ 𝜓)([𝐹𝐷 ⊗ 1, 𝑙𝑡𝑟]⟨𝐷⟩𝛽 ⊗ 1) = [𝐹𝐷, (1 ⊗ 𝜓)(𝑙𝑡𝑟)]⟨𝐷⟩𝛽.

For 𝑎 ∈ 𝐴 the operator

[𝐹𝐷, 1 ⊗ 𝜓(𝑙𝑡𝑟)]𝑎 = [𝐹𝐷, (1 ⊗ 𝜓)(𝑙𝑡𝑟)]⟨𝐷⟩𝛽⟨𝐷⟩−𝛽𝑎

is compact. Using the Leibniz rule and taking norm limits, [𝐹𝐷, 𝑏] is compact for all 𝑏 ∈ 𝐶∗((1 ⊗
𝜓)(ℒ𝒯ℛ) ∣ 𝜓 ∈ 𝒮𝑐(𝐶)), which includes 𝐴.

We now consider conformal perturbations of unbounded Kasparov modules, which include the
conformal perturbations of noncommutative tori [CM08, §2.2].

Theorem III.4.5. Let (𝐴,𝐸𝐵, 𝐷) be an unbounded Kasparov module. Let 𝑘 be an invertible normal
element of End∗(𝐸). Suppose that span(ℳ𝐴ℳ) ⊇ 𝐴 where ℳ is the set of 𝑎 ∈ End∗(𝐸) such that

[𝑘𝐷𝑘∗, 𝑎] [𝐷, 𝑎] [𝐷, 𝑘∗]𝑎 [𝐷, 𝑘∗𝑘]𝑎 𝑎[𝐷, 𝑘] 𝑎[𝐷, 𝑘∗𝑘]

are bounded. Then (𝐴,𝐸𝐵, 𝑘𝐷𝑘∗; ℂ, (𝑘−1, 𝑘−1)) is a conformally generated cycle. In particular, if 𝑘
is normal and invertible and (𝐴,𝐸𝐵, 𝐷) is an unbounded Kasparov module with [𝐷, 𝑘] bounded then
the data (𝐴,𝐸𝐵, 𝑘𝐷𝑘∗; ℂ, (𝑘−1, 𝑘−1)) define a conformally generated cycle. Hence (𝐴,𝐸𝐵, 𝐹𝑘𝐷𝑘∗) is a
Kasparov module and [(𝐴,𝐸𝐵, 𝐹𝑘𝐷𝑘∗)] = [(𝐴,𝐸𝐵, 𝐹𝐷)] ∈ 𝐾𝐾(𝐴,𝐵).

Proof. It is straightforward to check that, for all 𝑎 ∈ ℳ,

[𝑘𝐷𝑘∗, 𝑎] [𝐷, 𝑎] [𝑘𝐷𝑘∗, 𝑘−1∗𝑎] [𝑘𝐷𝑘∗, 𝑘𝑎] [𝑘𝐷𝑘∗, 𝑎𝑘−1]

are bounded so that ℳ ⊆ ℒ ∩ℛ where ℒ,ℛ are as in Definition III.4.1. As 𝐴 ⊆ 𝒯 = Lip∗0(𝐷), we
are done. For the final statements, if [𝐷, 𝑘] is bounded then ℳ contains scalar multiples of the identity
and so span(ℳ𝐴ℳ) ⊇ 𝐴. An application of Theorem III.1.33 gives the equality of the Kasparov
classes.
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Example III.4.6. We recall the noncommutative torus 𝐶(𝕋2
𝛼) from Example III.1.13 and the spectral

triple
(𝐶(𝕋2

𝛼), 𝐿2(𝕋2
𝛼) ⊗ ℂ2, 𝐷 ∶= ( 𝛿1+𝜏𝛿2

𝛿1+𝜏𝛿2
)) .

As in Example III.1.13, choose a positive invertible element 𝑘 ∈ 𝐶(𝕋2
𝛼) in the domains of 𝛿1 and 𝛿2.

Using left multiplication by 𝑘 yields a conformally generated cycle

(𝐶(𝕋2
𝛼), 𝐿2(𝕋2

𝛼) ⊗ ℂ2, 𝑘𝐷𝑘;ℂ, (𝑘−1, 𝑘−1)) .

Thus the classes defined by 𝐹𝐷 and 𝐹𝑘𝐷𝑘 in 𝐾𝐾(𝐶(𝕋2
𝛼), ℂ) coincide.

The unbounded Kasparov module (𝐶(𝕋2
𝛼), 𝐿2(𝐶(𝕋2

𝛼), Φ)𝐶(𝕋), 𝛿2) also gives rise to a conformally
generated cycle

(𝐶(𝕋2
𝛼), 𝐿2(𝐶(𝕋2

𝛼), Φ)𝐶(𝕋), 𝑘𝛿2𝑘;ℂ, (𝑘−1, 𝑘−1))

where 𝑘 ∈ 𝐶(𝕋2
𝛼) is now a positive invertible element in the domain of 𝛿2. Thus the classes defined by

𝐹𝛿2 and 𝐹𝑘𝛿2𝑘 in 𝐾𝐾(𝐶(𝕋2
𝛼), 𝐶(𝕋)) coincide.

Next we consider unbounded modular cycles in the sense of [Kaa21, Definition 3.1] [Kaa24, Definition
8.1]. Using our methods the bounded transform can be achieved in greater generality. Compare
Proposition III.1.42.

Proposition III.4.7. Let 𝐸 be an 𝐴-𝐵 correspondence. Let 𝐷 be a self-adjoint regular operator and
Δ+ and Δ− a pair of commuting positive adjointable operators on 𝐸 such that

• For all 𝑎 ∈ 𝐴, (1 + 𝐷2)−1𝑎 is compact and the sequence (𝑎(Δ+ + Δ−)(Δ+ + Δ− + 1
𝑛)

−1)∞𝑛=1
converges in norm to (the representation of) 𝑎;

• {Δ+,Δ−} dom𝐷 ⊆ dom𝐷 and [𝐷,Δ+], [𝐷,Δ−] are bounded; and
• 𝐴 ⊆ 𝒩, where 𝒩 is the set of 𝑎 ∈ End∗(𝐸) such that 𝑎 dom𝐷 ⊆ dom𝐷 and Δ−𝐷𝑎Δ+−Δ+𝑎𝐷Δ−

is bounded.

Let (ℎ𝑛)𝑛∈ℕ≥1
⊆ 𝐶∞

𝑏 (ℝ×
+) be any sequence of positive functions with bounded reciprocals which agree

with the function 𝑥 ↦ 𝑥−1/2 on the interval [ 1𝑛 , 𝑛]. Then, with 𝜇𝐿,𝑛 = 𝜇𝑅,𝑛 = ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1, the
data (𝐴,𝐸𝐵, 𝐷;𝐶0(ℕ≥1), 𝜇) define a conformally generated cycle.

Proof. First, by the smooth functional calculus of Theorem A.4.18, [𝐷, ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1] is bounded
so 1 ∈ ℒ𝑛,ℛ𝑛 for every 𝑛 ∈ ℕ≥1. Second, 𝒯𝑛 consists of those 𝑏 ∈ End∗(𝐸) such that

[ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1𝐷ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1, 𝑏]

extends to an adjointable operator. Let 𝑓1, 𝑓2, 𝑓3, 𝑓4 ∈ 𝐶∞
𝑐 (( 1𝑛 , 𝑛)) and 𝑎 ∈ 𝒩 and define 𝑏 ∈ End∗(𝐸)

to be the product

𝑓1(Δ+)𝑓2(Δ−)𝑎𝑓3(Δ+)𝑓4(Δ−) ∈ 𝐶0(( 1𝑛 , 𝑛))(Δ+)𝐶0(( 1𝑛 , 𝑛))(Δ−)𝒩𝐶0(( 1𝑛 , 𝑛))(Δ+)𝐶0(( 1𝑛 , 𝑛))(Δ−).

Then 𝑏ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1 = 𝑏Δ−1/2
+ Δ1/2

− and, again using the smooth functional calculus,

[ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1𝐷ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1, 𝑏]
= 𝑓1(Δ+)𝑓2(Δ−)Δ−1

+ (Δ−𝐷𝑎Δ+ −Δ+𝑎𝐷Δ−)Δ−1
+ 𝑓3(Δ+)𝑓4(Δ−)

+ ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1 [𝐷,Δ−1/2
+ Δ1/2

− 𝑓1(Δ+)𝑓2(Δ−)] 𝑎𝑓3(Δ+)𝑓4(Δ−)

+ 𝑓1(Δ+)𝑓2(Δ−)𝑎 [𝐷,Δ1/2
− Δ−1/2

+ 𝑓3(Δ+)𝑓4(Δ−)] ℎ𝑛(Δ+)ℎ𝑛(Δ−)−1
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is bounded. The closure of 𝐶0(( 1𝑛 , 𝑛))(Δ+)𝐶0(( 1𝑛 , 𝑛))(Δ−) is 𝐶∗(Δ+,Δ−). By Lemma III.1.43, 𝐴 ⊆
𝐴𝐶∗(Δ+,Δ−) so that

ℒ𝒯ℛ ⊇ 𝐶∗(Δ+,Δ−)𝒩𝐶∗(Δ+,Δ−) ⊇ 𝐶∗(Δ+,Δ−)𝐴𝐶∗(Δ+,Δ−) ⊆ 𝐴

and we are done.

As a last application we consider again the relation to the logarithmic transform.

Proposition III.4.8. cf. [GMR19, Corollary 1.20] Let (𝐴,𝐸𝐵, 𝐷) consist of a C*-algebra 𝐴 represented
on a Hilbert 𝐵-module 𝐸 and a regular operator 𝐷 on 𝐸, such that

• 𝐷 is self-adjoint;

• (1 + 𝐷2)−1/2𝑎 is compact for all 𝑎 ∈ 𝐴; and

• There is a dense subset of 𝑎 ∈ 𝐴 such that 𝑎 dom𝐷 ⊆ dom𝐷 and [𝐹𝐷, 𝑎] log⟨𝐷⟩ is bounded.

Then, with 𝐿𝐷 = 𝐹𝐷 log⟨𝐷⟩, the triple (𝐴,𝐸𝐵, 𝐿𝐷) is an unbounded Kasparov module whose bounded
transform is equal to (𝐴,𝐸𝐵, 𝐹𝐷) up to a locally compact difference.

Theorem III.4.9. Let (𝐴,𝐸𝐵, 𝐷;𝐶, (𝜇𝐿, 𝜇𝑅)) be a conformally generated cycle. Then (𝐴,𝐸𝐵, 𝐿𝐷) is
an unbounded Kasparov module of the same parity.

Proof. By the Proof of Theorem III.4.4, [𝐹𝐷, (1⊗𝜓)(𝑙𝑡𝑟)]⟨𝐷⟩𝛽 is bounded for 𝜓 ∈ 𝒮𝑐(𝐶), 𝑙 ∈ ℒ2, 𝑡 ∈ 𝒯,
𝑟 ∈ ℛ3, and 𝛽 < 1. We have

𝑙𝑡𝑟 dom(𝐷 ⊗ 1)(1 ⊗ 𝐾𝐶) ⊆ 𝑙𝑡𝜇−1∗
𝑅 dom(𝐷 ⊗ 1)(1 ⊗ 𝐾𝐶) ⊆ 𝑙𝜇−1∗

𝐿 dom(𝐷 ⊗ 1)(1 ⊗ 𝐾𝐶)
⊆ dom(𝐷 ⊗ 1)(1 ⊗ 𝐾𝐶).

Hence (⟨𝐷⟩ ⊗ 1)𝑙𝑡𝑟(⟨𝐷⟩−1 ⊗ 1) is 𝐶-matched. Applying Proposition A.1.30,

(1 ⊗ 𝜓)(⟨𝐷⟩ ⊗ 1)𝑙𝑡𝑟(⟨𝐷⟩−1 ⊗ 1) = ⟨𝐷⟩(1 ⊗ 𝜓)(𝑙𝑡𝑟)⟨𝐷⟩−1

is an adjointable operator on 𝐸, and so (1 ⊗ 𝜓)(𝑙𝑡𝑟) dom𝐷 ⊆ dom𝐷. By Proposition III.1.35, the
commutator [𝐿𝐷, (1 ⊗ 𝜓)(𝑙𝑡𝑟)] is bounded. By the Leibniz rule, [𝐿𝐷, 𝑏] is bounded for all 𝑏 in the ∗-
algebra generated by {(1 ⊗ 𝜓)(ℒ𝒯ℛ) ∣ 𝜓 ∈ 𝒮𝑐(𝐶)}. This is dense in 𝐶∗((1 ⊗ 𝜓)(ℒ𝒯ℛ) ∣ 𝜓 ∈ 𝒮𝑐(𝐶)),
which includes 𝐴.

In principle, the logarithmic transform, if carried out piece-by-piece, could be used to produce
KK-classes from ‘multi-twisted’ spectral triples which have appeared in the literature, such as for
quantum groups [KK20] and dynamical systems [KK25]. (See also [DS22], where an approach similar
to that of [Sit15] is used to obtain ordinary spectral triples from partial conformal rescalings.) The
construction of §II.4.1 is really an example of this. In the next Chapter, we shall develop a framework
accounting for a different kind of ‘multidirectional’ behaviour, which we call tangled cycles. However,
it is not clear whether conformally generated cycles and tangled cycles can be reconciled; we leave this
for the future.

III.4.1 Descent and the dual Green–Julg map for conformal equivariance

In the conformally equivariant setting, the descent map and the dual Green–Julg map produce
conformally generated cycles.
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Proposition III.4.10. Let 𝐺 be a locally compact group and let (𝐴,𝐸𝐵, 𝐷) be a (𝜇𝑔)𝑔∈𝐺-conformally
𝐺-equivariant unbounded Kasparov module. Then, for 𝑡 ∈ {𝑢, 𝑟},

(𝐴 ⋊𝑡 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐷̃; 𝐶0(𝐺), (1, 𝜇̃𝑔)𝑔∈𝐺)

is a conformally generated cycle, where 𝐷̃ is the regular operator given on 𝜉 ∈ 𝐶𝑐(𝐺,𝐸) ⊆ 𝐸 ⋊𝑡 𝐺 by
(𝐷̃𝜉)(ℎ) = 𝐷(𝜉(ℎ)) and (𝜇̃𝑔)𝑔∈𝐺 are given by (𝜇̃𝑔𝜉)(ℎ) = 𝜇𝑔(𝜉(ℎ)).

Proof. The local compactness of the resolvent is the same as in the uniform case, Proposition I.2.16.
Recall the spaces ℒ, 𝒯, and ℛ of Remark III.4.3. It is straightforward to verify that the constant
families (𝑑)𝑔∈𝐺 ∈ ℒ and (̃𝑏∗𝑐)𝑔∈𝐺 ∈ ℛ for all 𝑑 ∈ Lip∗0(𝐷) and 𝑏, 𝑐 ∈ 𝒬. Let (𝑢𝑔)𝑔∈𝐺 ⊆ End∗𝐵⋊𝑡𝐺(𝐸⋊𝑡𝐺)
be the canonical unitaries implementing the group action, given by

(𝑢ℎ𝜉)(𝑔) = 𝑈ℎ𝜉(ℎ−1𝑔)

on 𝜉 ∈ 𝐶𝑐(𝐺,𝐸) (where we recall the notation of Definition I.2.11). A family of operators 𝑡 is in 𝒯 if
𝑔 ↦ 𝐷̃𝑡𝑔−𝑡𝑔𝜇̃𝑔𝐷̃𝜇̃∗

𝑔 is ∗-strongly continuous into bounded operators. Using the condition for conformal
equivariance that for 𝑎 ∈ 𝒬 the map

𝑔 ↦ 𝑈𝑔𝐷𝑈 ∗
𝑔 𝑎 − 𝑎𝜇𝑔𝐷𝜇∗

𝑔

is ∗-strongly continuous into bounded operators, we see that 𝑔 ↦ 𝑢∗
𝑔𝑎̃ is in 𝒯. So, 𝑔 ↦ 𝑑𝑢∗

𝑔𝑎̃𝑏̃∗𝑐 is in
ℒ𝒯ℛ.

We now evaluate ℒ𝒯ℛ on compactly supported Radon measures on 𝐺 and ask if this generates
𝐴 ⋊𝑡 𝐺. It will suffice to integrate the paths 𝑔 ↦ 𝑑𝑢∗

𝑔𝑎̃𝑏̃∗𝑐, which are constant apart from 𝑢∗
𝑔, against

compactly supported continuous functions on 𝐺. Proceeding step-by-step,

span(Lip∗0(𝐷)𝐶∗
𝑐 (𝐺)𝒬𝒬∗𝒬) ⊇ span(𝐴𝐶∗

𝑡 (𝐺)𝒬𝒬∗𝒬)
= span((𝐴 ⋊𝑡 𝐺)𝒬𝒬∗𝒬)
= span(𝐶∗

𝑡 (𝐺)𝐴𝒬𝒬∗𝒬)
⊇ span(𝐶∗

𝑡 (𝐺)𝐴)
= 𝐴 ⋊𝑡 𝐺

as required.

Proposition III.4.11. Let (𝐴,𝐸𝐵, 𝐷) be a (𝜇𝑔)𝑔∈𝐺-conformally 𝐺-equivariant unbounded Kasparov
module, with 𝐺 acting trivially on 𝐵. Then

(𝐴 ⋊𝑢 𝐺,𝐸𝐵, 𝐷;𝐶0(𝐺), (1, 𝜇𝑔)𝑔∈𝐺)

is a conformally generated cycle, with the integrated representation of 𝐴 ⋊𝑢 𝐺.

Proof. The local compactness of the resolvent is the same as in the uniform case, Proposition I.2.17.
Recall the spaces ℒ, 𝒯, and ℛ of Remark III.4.3. It is straightforward to verify that the constant
families (𝑑)𝑔∈𝐺 ∈ ℒ and (𝑏∗𝑐)𝑔∈𝐺 ∈ ℛ for all 𝑑 ∈ Lip∗0(𝐷) and 𝑏, 𝑐 ∈ 𝒬. A path of operators 𝑡 is in 𝒯
if

𝑔 ↦ 𝐷𝑡𝑔 − 𝑡𝑔𝜇𝑔𝐷𝜇∗
𝑔

is ∗-strongly continuous into bounded operators. Using the condition for conformal equivariance that
𝑔 ↦ 𝑈𝑔𝐷𝑈 ∗

𝑔 𝑎−𝑎𝜇𝑔𝐷𝜇∗
𝑔 is ∗-strongly continuous into bounded operators for 𝑎 ∈ 𝒬, we see that 𝑔 ↦ 𝑈 ∗

𝑔 𝑎
is in 𝒯. So, 𝑔 ↦ 𝑑𝑈 ∗

𝑔 𝑎𝑏∗𝑐 is in ℒ𝒯ℛ. As in the Proof of Proposition III.4.10, the closed span of
Lip∗0(𝐷)𝐶∗

𝑐 (𝐺)𝒬𝒬∗𝒬 includes 𝐴 ⋊𝑢 𝐺.
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Remark III.4.12. It is clear that the bounded transform (𝐴⋊𝑡 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐹𝐷̃ = 𝐹𝐷) of the descent

(𝐴 ⋊𝑡 𝐺, (𝐸 ⋊𝑡 𝐺)𝐵⋊𝑡𝐺, 𝐷̃; 𝐶0(𝐺), (1, 𝜇̃𝑔)𝑔∈𝐺)

of a conformally 𝐺-equivariant cycle (𝐴,𝐸𝐵, 𝐷) is exactly the descent of the bounded transform
(𝐴,𝐸𝐵, 𝐹𝐷). The same is true for the dual Green–Julg map.

We recall the identity

2𝐴∗𝐶𝐵 = (𝐴 + 𝐵)∗𝐶(𝐴 + 𝐵) − 𝑖(𝐴 + 𝑖𝐵)∗𝐶(𝐴 + 𝑖𝐵) + (−1 + 𝑖)(𝐵∗𝐶𝐵 +𝐴∗𝐶𝐴)

for elements 𝐴, 𝐵, and 𝐶 of a ∗-algebra, which implies that

span{𝑥∗𝐶𝑥 ∣ 𝑥 ∈ span{𝐴,𝐵}} = span{𝑥∗𝐶𝑦 ∣ 𝑥, 𝑦 ∈ span{𝐴,𝐵}}.

Proposition III.4.13. Let 𝔾 be a locally compact quantum group and let (𝐴,𝐸𝐵, 𝐷) be a 𝜇-conformally
𝔾-equivariant unbounded Kasparov module. For 𝑡 ∈ {𝑢, 𝑟}, let 𝜄 be the inclusion End0(𝐸) →
𝑀(End0(𝐸) ⋊𝑡 𝔾) ≅ End∗𝐵⋊𝑡𝔾(𝐸 ⋊𝑡 𝔾). Then

(𝐴 ⋊𝑡 𝔾, (𝐸 ⋊𝑡 𝔾)𝐵⋊𝑡𝔾, 𝜄(𝐷); 𝐶𝑟
0 (𝔾), (1, (𝜄 ⊗ id)(𝜇)))

is a conformally generated cycle.

Proof. The compactness of the resolvent is as in the Proof of Proposition I.3.18. Recall the spaces ℒ,
𝒯, and ℛ of Definition III.4.1. It is straightforward to verify that 𝜄(𝑑) ⊗ 1 ∈ ℒ and 𝜄(𝑏∗𝑐) ⊗ 𝑠∗2𝑠3 ∈ ℛ
for all 𝑑 ∈ Lip∗0(𝐷), 𝑏, 𝑐 ∈ 𝒬, and 𝑠2, 𝑠3 ∈ 𝒮𝑏,𝒮𝑐.

By the universality of the crossed product, see [Ver02, §4.1] [Vae05, §2.3], the morphism

End0(𝐸) ⋊𝑢 𝔾 → End0(𝐸) ⋊𝑡 𝔾

gives rise both to the morphism

𝜄 ∶ End0(𝐸) → 𝑀(End0(𝐸) ⋊𝑡 𝔾) ≅ End∗(𝐸 ⋊𝑡 𝔾)

and a unitary 𝑋 ∈ 𝑀((End0(𝐸) ⋊𝑡 𝔾) ⊗ 𝐶𝑟
0 (𝔾)) ≅ End∗((End0(𝐸) ⋊𝑡 𝔾) ⊗ 𝐶𝑟

0 (𝔾)) such that

𝑋(𝜄(𝑇 ) ⊗ 1)𝑋∗ = (𝜄 ⊗ id)(𝑉𝐸(𝑇 ⊗𝛿𝐵 1)𝑉 ∗
𝐸 )

for 𝑇 ∈ End0(𝐸). Let 𝑎 ∈ 𝒬 and 𝑠1 ∈ 𝒮𝑎; then 𝑋∗(𝜄(𝑎) ⊗ 𝑠1) ∈ 𝒯 because

(𝜄(𝐷) ⊗ 1)𝑋∗(𝜄(𝑎) ⊗ 𝑠1) − 𝑋∗(𝜄(𝑎) ⊗ 𝑠1)(𝜄 ⊗ id)(𝜇)(𝜄(𝐷) ⊗ 1)(𝜄 ⊗ id)(𝜇)∗

= 𝑋∗ (𝑋(𝜄(𝐷) ⊗ 1)𝑋∗(𝜄(𝑎) ⊗ 𝑠1) − (𝜄 ⊗ id) ((𝑎 ⊗ 𝑠1)𝜇(𝐷 ⊗ 1)𝜇∗))

= 𝑋∗(𝜄 ⊗ id) (𝑉𝐸(𝐷 ⊗𝛿𝐵 1)𝑉 ∗
𝐸 (𝑎 ⊗ 𝑠1) − (𝑎 ⊗ 𝑠1)𝜇(𝐷 ⊗ 1)𝜇∗)

is 𝐶𝑟
0 (𝔾)-matched. So, (𝑑 ⊗ 1)𝑋∗(𝜄(𝑎𝑏∗𝑐) ⊗ 𝑠1𝑠∗2𝑠3) is in ℒ𝒯ℛ.
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We need to show that 𝐴 ⋊𝑡 𝔾 is contained in 𝐶∗((1 ⊗ 𝜔)(ℒ𝒯ℛ) ∣ 𝜔 ∈ 𝒮𝑐(𝐶)). Proceeding
step-by-step,

𝐶∗((1 ⊗ 𝜔)(ℒ𝒯ℛ) ∣ 𝜔 ∈ 𝒮𝑐(𝐶))

⊇ span{(1 ⊗ 𝜔) ((𝜄(𝑑) ⊗ 1)𝑋∗(𝜄(𝑎𝑏∗𝑐) ⊗ 𝑠1𝑠∗2𝑠3)) = 𝜄(𝑑)(1 ⊗ 𝜔) ((1 ⊗ 𝑠∗3𝑠2𝑠∗1)𝑋)∗ 𝜄(𝑎𝑏∗𝑐)

∣ 𝑎, 𝑏, 𝑐 ∈ 𝒬; 𝑑 ∈ Lip∗0(𝐷); 𝑠1 ∈ 𝒮𝑎; 𝑠2 ∈ 𝒮𝑏; 𝑠3 ∈ 𝒮𝑐; 𝜔 ∈ 𝒮𝑐(𝐶𝑟
0 (𝔾))}

= span(𝜄(Lip∗0(𝐷)){(1 ⊗ 𝜔) ((1 ⊗ 𝑠∗3𝑠2𝑠∗1)𝑋) | 𝑠1 ∈ 𝒮𝑎; 𝑠2 ∈ 𝒮𝑏; 𝑠3 ∈ 𝒮𝑐; 𝜔 ∈ 𝒮𝑐(𝐶𝑟
0 (𝔾))}

∗
𝜄(𝒬))

⊇ span(𝜄(Lip∗0(𝐷)){(1 ⊗ 𝜂∗𝑠∗4𝑠∗3𝑠2𝑠∗1)𝑋(1 ⊗ 𝑠4𝜂)

∣ 𝑠1 ∈ 𝒮𝑎; 𝑠2 ∈ 𝒮𝑏; 𝑠3 ∈ 𝒮𝑐; 𝑠4 ∈ 𝐾𝐶𝑟
0 (𝔾); 𝜂 ∈ 𝐿2(𝐶𝑟

0 (𝔾))}
∗
𝜄(𝒬))

= span(𝜄(Lip∗0(𝐷)){(1 ⊗ 𝜂∗1𝑠∗4𝑠∗3𝑠2𝑠∗1)𝑋(1 ⊗ 𝑠5𝜂2)

∣ 𝑠1 ∈ 𝒮𝑎; 𝑠2 ∈ 𝒮𝑏; 𝑠3 ∈ 𝒮𝑐; 𝑠4, 𝑠5 ∈ 𝐾𝐶𝑟
0 (𝔾); 𝜂1, 𝜂2 ∈ 𝐿2(𝐶𝑟

0 (𝔾))}
∗
𝜄(𝒬))

= span (𝜄(Lip∗0(𝐷)){(1 ⊗ 𝜂∗1)𝑋(1 ⊗ 𝜂2)| 𝜂1, 𝜂2 ∈ 𝐿2(𝐶𝑟
0 (𝔾))}∗𝜄(𝒬))

= span (𝜄(Lip∗0(𝐷)){(1 ⊗ 𝜔)(𝑋)| 𝜔 ∈ 𝐿1(𝔾)}∗𝜄(𝒬))
= span(𝜄(Lip∗0(𝐷))𝐶∗

𝑢(𝔾)𝜄(𝒬))
⊇ span(𝜄(𝐴)𝐶∗

𝑢(𝔾)𝜄(𝒬)) = span((𝐴 ⋊𝑢 𝔾)𝜄(𝒬)) = span(𝐶∗
𝑢(𝔾)𝜄(𝐴𝒬))

⊇ span(𝐶∗
𝑢(𝔾)𝜄(𝐴)) = 𝐴 ⋊𝑢 𝔾

by the density of 𝐿2(𝔾)𝐾𝐶𝑟
0 (𝔾)𝒮∗

𝑐 𝒮𝑏𝒮∗
𝑎 ⊆ 𝐿2(𝔾) and the inclusion 𝐴 ⊆ span(𝐴𝒬).

Proposition III.4.14. Let 𝔾 be a locally compact quantum group and let (𝐴,𝐸𝐵, 𝐷) be a conformally
𝔾-equivariant unbounded Kasparov module, with 𝔾 acting trivially on 𝐵. Then

(𝐴 ⋊𝑢 𝔾,𝐸𝐵, 𝐷;𝐶𝑟
0 (𝔾), (1, 𝜇))

is a conformally generated cycle, with the integrated representation of 𝐴 ⋊𝑢 𝔾.

Proof. Recall the spaces ℒ, 𝒯, and ℛ of Definition III.4.1. It is straightforward to verify that 𝑑⊗1 ∈ ℒ
and 𝑏∗𝑐 ⊗ 𝑠∗2𝑠3 ∈ ℛ for all 𝑑 ∈ Lip∗0(𝐷), 𝑏, 𝑐 ∈ 𝒬, and 𝑠2, 𝑠3 ∈ 𝒮𝑏,𝒮𝑐. Let 𝑎 ∈ 𝒬 and 𝑠1 ∈ 𝒮𝑎; then, by
Definition III.3.1,

(𝐷 ⊗ 1)𝑉 ∗
𝐸 (𝑎 ⊗ 𝑠) − 𝑉 ∗

𝐸 (𝑎 ⊗ 𝑠)𝜇(𝐷 ⊗ 1)𝜇∗

is 𝐶𝑟
0 (𝔾)-matched and 𝑉 ∗

𝐸 (𝑎 ⊗ 𝑠1) ∈ 𝒯. So (𝑑 ⊗ 1)𝑉 ∗
𝐸 (𝑎𝑏∗𝑐 ⊗ 𝑠1𝑠∗2𝑠3) is in ℒ𝒯ℛ.

We need to show that 𝐴⋊𝑢𝔾 is contained in 𝐶∗((1⊗𝜔)(ℒ𝒯ℛ)| 𝜔 ∈ 𝒮𝑐(𝐶)). The same manipulations
as in the proof of Proposition III.4.13, with 𝑉𝐸 in place of 𝑋, show that

𝐶∗((1 ⊗ 𝜔)(ℒ𝒯ℛ) ∣ 𝜔 ∈ 𝒮𝑐(𝐶)) ⊇ span(Lip∗0(𝐷)𝐶∗
𝑢(𝔾)𝒬) ⊇ 𝐴 ⋊𝑢 𝔾,

as required.

Remark III.4.15. It is again clear that the bounded transform (𝐴 ⋊𝑡 𝔾, (𝐸 ⋊𝑡 𝔾)𝐵⋊𝑡𝔾, 𝐹𝜄(𝐷) = 𝜄(𝐹𝐷)) of
the descent

(𝐴 ⋊𝑡 𝔾, (𝐸 ⋊𝑡 𝔾)𝐵⋊𝑡𝔾, 𝜄(𝐷); 𝐶𝑟
0 (𝔾), (1, (𝜄 ⊗ id)(𝜇)))

of a conformally 𝔾-equivariant cycle (𝐴,𝐸𝐵, 𝐷) is exactly the descent of the bounded transform
(𝐴,𝐸𝐵, 𝐹𝐷). The same is true for the dual Green–Julg map.
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III.4.2 An equivalence relation on conformally generated cycles

In this section, we consider an equivalence relation on conformally generated cycles making the
equivalence classes an abelian group, following §I.1.
Remark III.4.16. The direct sum of two conformally generated cycles (𝐴,𝐸1,𝐵, 𝐷1; 𝐶1, 𝜇1) and
(𝐴,𝐸2,𝐵, 𝐷2; 𝐶2, 𝜇2) is

(𝐴,𝐸1,𝐵 ⊕𝐸2,𝐵, 𝐷1 ⊕𝐷2; 𝐶1 ⊕𝐶2, 𝜇1 ⊕ 1 ⊕ 1 ⊕ 𝜇2)

where 𝜇1 ⊕1⊕1⊕𝜇2 ∈ (𝐸1 ⊗𝐶1 ⊕𝐸2 ⊗𝐶1 ⊕𝐸1 ⊗𝐶2 ⊕𝐸2 ⊕𝐶2)2. If 𝐶1 = 𝐶2 or, more generally, if 𝐶1
and 𝐶2 have a common ideal 𝐽, one could write the direct sum in a smaller way. In practice, also, it is
often possible to change 𝐶 and 𝜇 without affecting the validity of a cycle (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇). One should
therefore think of conformally generated cycles (𝐴,𝐸𝐵, 𝐷;𝐶1, 𝜇1) and (𝐴,𝐸𝐵, 𝐷;𝐶2, 𝜇2) as equivalent.

Note that the external product of conformally generated cycles is not constructive.

Definition III.4.17. Two conformally generated cycles (𝐴,𝐸1,𝐵, 𝐷1; 𝐶1, 𝜇1) and (𝐴,𝐸2,𝐵, 𝐷2; 𝐶2, 𝜇2)
are cobordant if there exists a conformally generated cycle (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) and an even partial isometry
𝑣 ∈ End∗(𝐸) such that

1. 𝑣 commutes with (the representation of) 𝐴, and 𝑣𝑣∗ and 𝑣∗𝑣 commute with 𝐷;
2. 𝑣𝐴 ⊆ 𝐶∗((1 ⊗ 𝜓)(ℒ𝒯ℛ) ∣ 𝜓 ∈ 𝒮𝑐(𝐶));
3. (𝐴, (1 − 𝑣𝑣∗)𝐸𝐵, (1 − 𝑣𝑣∗)𝐷(1 − 𝑣𝑣∗)) is unitarily equivalent to (𝐴,𝐸1,𝐵, 𝐷1); and
4. (𝐴, (1 − 𝑣∗𝑣)𝐸𝐵, (1 − 𝑣∗𝑣)𝐷(1 − 𝑣∗𝑣)) is unitarily equivalent to (𝐴,𝐸2,𝐵, 𝐷2).

Example III.4.18. Let (𝐴,𝐸𝐵, 𝐷; 𝑣) be a cobordism between unbounded Kasparov modules (𝐴,𝐸′
𝐵, 𝐷1)

and (𝐴,𝐸″
𝐵, 𝐷2). Then

(𝐴,𝐸𝐵, 𝐷;ℂ, (1, 1); 𝑣)

is a cobordism between (𝐴,𝐸′
𝐵, 𝐷1; ℂ, (1, 1)) and (𝐴,𝐸″

𝐵, 𝐷2; ℂ, (1, 1)).

When applied to ordinary Kasparov modules, Definition III.4.17 also encompasses conformal
transformations and singular conformal transformations.

Example III.4.19. Suppose that (𝑈, 𝜇) is a conformal transformation from the unbounded Kasparov
module (𝐴,𝐸𝐵, 𝐷1) to (𝐴,𝐸′

𝐵, 𝐷2). Then

(𝐴, (𝐸 ⊕ 𝐸′)𝐵, (
𝐷1

𝐷2
) ;ℂ2, (( 1

1 ) ⊕ ( 1
1 ) , ( 1

1 ) ⊕ ( 𝜇
1 )) ; ( 0

𝑈 ))

is a cobordism between (𝐴,𝐸𝐵, 𝐷1; ℂ, (1, 1)) and (𝐴,𝐸′
𝐵, 𝐷2; ℂ, (1, 1)). We leave the demonstration of

this as a special case of Example III.4.20.

More generally,

Example III.4.20. Let (𝑈, (𝜇𝑖)𝑖∈𝐼) be a singular conformal transformation from one unbounded
Kasparov module, (𝐴,𝐸𝐵, 𝐷1), to another, (𝐴,𝐸′

𝐵, 𝐷2), as in Definition III.1.38. We will show that

(𝐴, (𝐸 ⊕ 𝐸′)𝐵, (
𝐷1

𝐷2
) ;𝐶0({pt} ⊔ 𝐼), (( 1

1 ) ⊕ ( 1
1 )𝑖∈𝐼 , (

1
1 ) ⊕ ( 𝜇𝑖

1 )𝑖∈𝐼) ; ( 0
𝑈 ))

is a cobordism between (𝐴,𝐸𝐵, 𝐷1; ℂ, (1, 1)) and (𝐴,𝐸′
𝐵, 𝐷2; ℂ, (1, 1)). Here, 𝐼 is treated as a discrete

set. For 𝑎 ∈ ℳ𝑖, we can check that

(𝐷1
𝐷2

)( 0
𝑈𝑎 )−( 0

𝑈𝑎 )(𝜇𝑖
1)(

𝐷1
𝐷2

)(𝜇𝑖
1)

∗

=( 0
𝑈(𝑈∗𝐷2𝑈𝑎 − 𝑎𝜇𝑖𝐷1𝜇∗

𝑖 )
)
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is bounded, so that ( 0
𝑈 ) (ℳ

0 ) ∈ 𝒯𝑖. One can check that ( 1
1 ) ∈ ℒ𝑖 and that ℛ𝑖 contains (ℳ∗

𝑖ℳ𝑖
0 ).

Furthermore, ℒpt, 𝒯pt, and ℛpt all contain ( Lip∗
0(𝐷1)

Lip∗
0(𝐷2)

). Hence

( 0
𝑈 )𝐴 ⊆ span𝑖∈𝐼 ((

1
1 ) ( 0

𝑈 ) (ℳ
0 ) (

ℳ∗
𝑖ℳ𝑖

0 )(
Lip∗

0(𝐷1)
0))

⊆ span𝑖∈𝐼 (ℒ𝑖𝒯𝑖ℛ𝑖ℒpt𝒯ptℛpt) ⊆ 𝐶∗(ℒ𝑥𝒯𝑥ℛ𝑥 ∣ 𝑥 ∈ {pt} ⊔ 𝐼)

and we are done.

We are led to the following definition.

Definition III.4.21. Two unbounded Kasparov modules (𝐴,𝐸𝐵, 𝐷1) and (𝐴,𝐸′
𝐵, 𝐷2) are conformant if

there exists if there exists a conformally generated cycle (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) and an even partial isometry
𝑣 ∈ End∗(𝐸) making the conformally generated cycles (𝐴,𝐸𝐵, 𝐷1; ℂ, (1, 1)) and (𝐴,𝐸′

𝐵, 𝐷2; ℂ, (1, 1))
cobordant. We call the data (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇; 𝑣) a conformism between (𝐴,𝐸𝐵, 𝐷1) and (𝐴,𝐸′

𝐵, 𝐷2).

Example III.4.22. We pick up from the setting of Theorem III.4.5, adopting the notation there. We
will show that the conformally generated cycles

(𝐴,𝐸𝐵, 𝐷;ℂ, (1, 1)) (𝐴,𝐸𝐵, 𝑘𝐷𝑘∗; ℂ, (𝑘−1, 𝑘−1))

are cobordant. A suitable cobordism is

⎛⎜
⎝
𝐴, (𝐸 ⊕ 𝐸)𝐵,(

𝐷
𝑘𝐷𝑘∗);ℂ,⎛⎜

⎝
(1

𝑘−1),(1
𝑘−1)⎞⎟

⎠
;( 0

1 )⎞⎟
⎠

.

We check that

(1
𝑘−1)(𝐷

𝑘𝐷𝑘∗)(1
𝑘−1)( 0

1 )−( 0
1 )(1

𝑘−1)(𝐷
𝑘𝐷𝑘∗)(1

𝑘−1)
∗

= 0

so that ( 0
1 ) ∈ 𝒯. Both ℒ and ℛ contain ℂ1⊕ℳ. We remark that ℳ is a ∗-algebra of operators, so

span(ℳ2) = ℳ. We have

( 0
1 )𝐴 ⊆ span(( 1

0 ) ( 0
1 ) ( 0

ℳ2 )𝐴( 0
ℳ )) ⊆ span(ℒ𝒯ℛℒ𝒯ℛ)

and we are done.

Proposition III.4.23. Cobordism of conformally generated cycles is an equivalence relation and is
compatible with direct sums.

Proof. For reflexivity, we take 𝑣 = 0 ∈ End∗(𝐸) to see that (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) is cobordant to itself.
For symmetry, note that 𝑣∗𝐴 = (𝑣𝐴)∗ ⊆ 𝐶∗((1 ⊗ 𝜓)(ℒ𝒯ℛ) ∣ 𝜓 ∈ 𝒮𝑐(𝐶)) so that making the

substitution of 𝑣∗ for 𝑣 reverses the roles of (𝐴,𝐸1,𝐵, 𝐷1; 𝐶1, 𝜇1) and (𝐴,𝐸2,𝐵, 𝐷2; 𝐶2, 𝜇2).
For transitivity, suppose that (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇; 𝑣) is a cobordism between (𝐴,𝐸1,𝐵, 𝐷1; 𝐶1, 𝜇1)

and (𝐴,𝐸2,𝐵, 𝐷2; 𝐶2, 𝜇2), and (𝐴,𝐸′
𝐵, 𝐷′; 𝐶′, 𝜇′; 𝑣′) is a cobordism between (𝐴,𝐸2,𝐵, 𝐷2; 𝐶2, 𝜇2) and

(𝐴,𝐸3,𝐵, 𝐷3; 𝐶3, 𝜇3). Let 𝑈 ∶ (1− 𝑣∗𝑣)𝐸 → 𝐸2 and 𝑈 ′ ∶ (1− 𝑣′𝑣′∗)𝐸 → 𝐸2 be the unitary equivalences
between the cycles

(𝐴, (1 − 𝑣∗𝑣)𝐸𝐵, (1 − 𝑣∗𝑣)𝐷(1 − 𝑣∗𝑣)) and (𝐴, (1 − 𝑣′𝑣′∗)𝐸′
𝐵, (1 − 𝑣′𝑣′∗)𝐷′(1 − 𝑣′𝑣′∗))

and the cycle (𝐴,𝐸2,𝐵, 𝐷2). Then

(𝐴, (𝐸 ⊕𝐸′)𝐵, 𝐷 ⊕𝐷′; 𝐶 ⊕ 𝐶2 ⊕𝐶′, 𝜇 ⊕ 1 ⊕ 𝑣∗𝑣 + 𝑈 ∗𝜇2𝑈 ⊕ 𝑣′𝑣′∗ +𝑈 ′∗𝜇2𝑈 ′ ⊕ 1⊕ 𝜇′; 𝑣 + 𝑈 ′∗𝑈 + 𝑣′),
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is a cobordism between (𝐴,𝐸1,𝐵, 𝐷1; 𝐶1, 𝜇1) and (𝐴,𝐸3,𝐵, 𝐷3; 𝐶3, 𝜇3), where

𝜇 ⊕ 1 ⊕ 𝑣∗𝑣+𝑈 ∗𝜇2𝑈 ⊕ 𝑣′𝑣′∗ + 𝑈 ′∗𝜇2𝑈 ′ ⊕ 1 ⊕ 𝜇′

∈ (𝐸 ⊗ 𝐶) ⊕ (𝐸′ ⊗𝐶) ⊕ (𝐸 ⊗ 𝐶2) ⊕ (𝐸′ ⊗𝐶2) ⊕ (𝐸 ⊗ 𝐶′) ⊕ (𝐸′ ⊗𝐶′).

We have

(𝑣 + 𝑈 ′∗𝑈 + 𝑣′)(𝑣 + 𝑈 ′∗𝑈 + 𝑣′)∗ = 𝑣𝑣∗ ⊕ 1 (𝑣 + 𝑈 ′∗𝑈 + 𝑣′)∗(𝑣 + 𝑈 ′∗𝑈 + 𝑣′) = 1 ⊕ 𝑣′∗𝑣′.

Let ℒ″, 𝒯″, and ℛ″ be the spaces of Definition III.4.1, corresponding to this cycle. We have

ℒ⊕ℒ′ ⊆ ℒ″ 𝒯⊕𝒯′ ⊆ 𝒯″ ℛ⊕ℛ′ ⊆ ℛ″,

so that (𝑣+𝑣′)𝐴 ⊆ 𝐶∗((1⊗𝜓)(ℒ″𝒯″ℛ″) ∣ 𝜓 ∈ 𝒮𝑐(𝐶 ⊕𝐶2⊕𝐶′)). Because 𝐷 commutes with (1−𝑣∗𝑣)
and 𝐷′ commutes with (1 − 𝑣′𝑣′∗), 𝐷′𝑈 ′∗𝑈 = 𝑈 ′∗𝐷2𝑈 = 𝑈 ′∗𝑈𝐷 on 𝐸 ⊕𝐸′. Hence

𝑈 ′∗ℒ2𝒯2ℛ2𝑈 ⊆ ℒ″𝒯″ℛ″

and

𝑈 ′∗𝑈𝐴 = 𝑈 ′∗𝐴𝑈 ⊆ 𝑈 ′∗𝐶∗((1 ⊗ 𝜓)(ℒ2𝒯2ℛ2) ∣ 𝜓 ∈ 𝒮𝑐(𝐶2))𝑈
⊆ 𝐶∗((1 ⊗ 𝜓)(ℒ″𝒯″ℛ″) ∣ 𝜓 ∈ 𝒮𝑐(𝐶 ⊕ 𝐶2 ⊕𝐶′))

as required.

Unlike additive perturbations of unbounded Kasparov modules, conformal transformations are not
necessarily reversible nor composable. The extra room in the definition of conformism circumvents
this issue. As a special case of Proposition III.4.23, we have

Corollary III.4.24. Conformism of unbounded Kasparov modules is an equivalence relation and is
compatible with direct sums.

Proposition III.4.25. Given two cobordant conformally generated cycles (𝐴,𝐸1,𝐵, 𝐷1; 𝐶1, 𝜇1) and
(𝐴,𝐸2,𝐵, 𝐷2; 𝐶2, 𝜇2), their bounded transforms (𝐴,𝐸1,𝐵, 𝐹𝐷1

) and (𝐴,𝐸2,𝐵, 𝐹𝐷2
) are cobordant and so

define the same element in 𝐾𝐾(𝐴,𝐵).

Proof. Let (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇; 𝑣) be a cobordism between (𝐴,𝐸1,𝐵, 𝐷1; 𝐶1, 𝜇1) and (𝐴,𝐸2,𝐵, 𝐷2; 𝐶2, 𝜇2).
By Theorem III.4.4, (𝐴,𝐸𝐵, 𝐹𝐷) is a bounded Kasparov module and [𝐹𝐷, 𝑣𝐴] ⊆ End0(𝐸). By Lemma
I.1.7, 𝐹(1−𝑣𝑣∗)𝐷(1−𝑣𝑣∗) = (1 − 𝑣𝑣∗)𝐹𝐷(1 − 𝑣𝑣∗) on the module (1 − 𝑣𝑣∗)𝐸 and 𝐹(1−𝑣∗𝑣)𝐷(1−𝑣∗𝑣) = (1 −
𝑣∗𝑣)𝐹𝐷(1 − 𝑣∗𝑣) on the module (1 − 𝑣∗𝑣)𝐸. Hence (𝐴,𝐸𝐵, 𝐹𝐷; 𝑣) is a bounded cobordism between
(𝐴,𝐸′

𝐵, 𝐹𝐷1
) and (𝐴,𝐸″

𝐵, 𝐹𝐷2
).

In the following, we use the notation 𝑍𝒳(𝑇 ) = {𝑥 ∈ 𝒳| [𝑇 , 𝑥] = 0} for the centraliser in a subspace
𝒳 ⊆ Mtc∗(𝐸 ⊗ 𝐶,𝐶) of an adjointable operator 𝑇 on 𝐸 ⊗ 𝐶.

Definition III.4.26. A conformally generated cycle (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) is positively degenerate if there
exists a self-adjoint unitary 𝑠 ∈ End∗(𝐸) (odd if the cycle is of even parity), preserving the domain of
𝐷, such that

• The anticommutator 𝐷𝑠 + 𝑠𝐷 is semibounded below, i.e. 𝐷𝑠 + 𝑠𝐷 ≥ −𝑐 for some 𝑐 > 0;
• [𝜇, 𝑠 ⊗ 1] = 0; and
• 𝐴 ⊆ 𝐶∗((1 ⊗ 𝜓)(𝑍ℒ(𝑠 ⊗ 1)𝑍𝒯(𝑠 ⊗ 1)𝑍ℛ(𝑠 ⊗ 1)) ∣ 𝜓 ∈ 𝒮𝑐(𝐶)).

Proposition III.4.27. A positively degenerate conformally generated cycle (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) is cobordant
to the zero cycle (𝐴, 0𝐵, 0; 0, 0).
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Proof. Let 𝑠 ∈ End∗(𝐸) be a symmetry implementing the degeneracy. Let 𝑁 be the number operator
and 𝑆 the unilateral shift on ℓ2(ℕ≥0). Then

(𝐴,𝐸𝐵 ⊗ ℓ2(ℕ≥0),𝐷 ⊗ 1 + 𝑠 ⊗ 𝑁;𝐶 ⊕ ℂ, (𝜇𝐿 ⊗ 1 ⊕ 1 ⊗ 1, 𝜇𝑅 ⊗ 1 ⊕ 1 ⊗ 1); 1 ⊗ 𝑆) (III.4.28)

is a cobordism from (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) to (𝐴, 0𝐵, 0; 0, 0). The compactness of the resolvent is as in
Proposition I.1.13.

Let ℒ′, 𝒯′, and ℛ′ be the spaces of Definition III.4.1, corresponding to the cycle (III.4.28). Using
the relation 𝑁𝑆 = 𝑆(𝑁 + 1), we check that

(𝐷 ⊗ 1 + 𝑠 ⊗𝑁)(1 ⊗ 𝑆) − (1 ⊗ 𝑆)(𝐷 ⊗ 1 + 𝑠 ⊗𝑁) = 𝑠 ⊗ [𝑁, 𝑆] = 𝑠 ⊗ 𝑆

is bounded. Hence, noting that [𝜇, 𝑠 ⊗ 1] = 0,

ℒ′ ⊇ 𝑍ℒ(𝑠 ⊗ 1) ⊕ ℂ1 ⊗ span{1, 𝑆}
ℛ′ ⊇ 𝑍ℛ(𝑠 ⊗ 1) ⊕ ℂ1 ⊗ span{1, 𝑆}
𝒯′ ⊇ 𝑍𝒯(𝑠 ⊗ 1) ⊕ ℂ1 ⊗ span{1, 𝑆}

and (1 ⊗ 𝑆)𝐴 ⊆ 𝐶∗((1 ⊗ 𝜓)(ℒ′𝒯′ℛ′) ∣ 𝜓 ∈ 𝒮𝑐(𝐶 ⊕ ℂ)), as required.

Corollary III.4.29. Given a conformally generated cycle (𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇),

(𝐴,𝐸𝐵, 𝐷;𝐶, 𝜇) ⊕ (𝐴,𝐸(op)
𝐵 , −𝐷;𝐶, 𝜇) = (𝐴, (𝐸 ⊕ 𝐸(op))𝐵, (𝐷

−𝐷 ) ; 𝐶 ⊕ 𝐶, 𝜇 ⊕ 1 ⊕ 1 ⊕ 𝜇) ,

where 𝐸(op) is 𝐸 with the opposite grading if 𝐸 is graded, is cobordant to (𝐴, 0𝐵, 0; 0, 0).

Proof. Using the observations of Remark III.4.16, we may replace the direct sum cycle with

(𝐴, (𝐸 ⊕ 𝐸(op))𝐵, (𝐷
−𝐷 ) ; 𝐶, 𝜇)

and the symmetry 𝑠 = ( 1
1 ) makes this positively degenerate.

We thus obtain

Theorem III.4.30. Cobordism classes of conformally generated 𝐴-𝐵-cycles form a ℤ/2ℤ-graded
abelian group which surjects onto 𝐾𝐾(𝐴,𝐵). Similarly, conformism classes of unbounded Kasparov
𝐴-𝐵-modules form a ℤ/2ℤ-graded abelian group which surjects onto 𝐾𝐾(𝐴,𝐵).



Chapter IV

Parabolic noncommutative geometry

IV.1 Strictly tangled cycles 141
IV.1.1 Three motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
IV.1.2 Assembling a strictly tangled cycle into a higher order cycle . . . . . . . . . . . . 148
IV.1.3 Finite summability of strictly tangled spectral triples . . . . . . . . . . . . . . . . 152
IV.1.4 Equivariance of strictly tangled spectral triples . . . . . . . . . . . . . . . . . . . 153

IV.2 Examples arising from differential complexes 155
IV.2.1 Hilbert complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IV.2.2 The Heisenberg calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
IV.2.3 Strictly tangled spectral triples for Rockland complexes . . . . . . . . . . . . . . 161

IV.2.3.1 Equivariance in Rockland complexes . . . . . . . . . . . . . . . . . . . 164
IV.2.4 The Rumin complex on contact manifolds . . . . . . . . . . . . . . . . . . . . . . 166

IV.2.4.1 A naïve attempt at a spectral triple for the Rumin complex . . . . . . 167
IV.2.4.2 Strictly tangled spectral triples from the Rumin complex . . . . . . . . 168
IV.2.4.3 CR-equivariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

IV.3 Examples arising from the Kasparov product 170
IV.3.1 Group C*-algebras of nilpotent groups . . . . . . . . . . . . . . . . . . . . . . . . 170

IV.3.1.1 Carnot groups and equivariance . . . . . . . . . . . . . . . . . . . . . . 176
IV.3.2 Spectral triples for crossed product C*-algebras and parabolic dynamics . . . . . 179

IV.3.2.1 Nilpotent flows on homogeneous spaces . . . . . . . . . . . . . . . . . . 185

In this Chapter, we introduce the notion of tangled cycle, which encompasses the anisotropies arising
in parabolic geometry as well as the parabolic commutator bounds arising in so-called ‘bad Kasparov
products’. Tangled cycles incorporate anisotropy by replacing the unbounded operator in a higher order
cycle that mimics a Dirac operator with several unbounded operators mimicking directional Dirac
operators. We allow for varying and dependent orders in different directions, controlled by a weighted
graph. We study the conformal equivariance of tangled cycles as well as how they fit into KK-theory
by means of producing higher order cycles. Our main examples fit into two classes: hypoelliptic
spectral triples constructed from Rockland complexes on parabolic geometries and Kasparov product
spectral triples for nilpotent group C*-algebras and crossed product C*-algebras of parabolic dynamical
systems.

IV.1 Strictly tangled cycles

The operator 𝐷 in an unbounded cycle will in a strictly tangled cycle be replaced by a collection of
operators 𝑫. We first introduce some terminology, make some preliminary observations and provide

141
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some examples that motivate our definition of strictly tangled cycles.

Definition IV.1.1. A collection of self-adjoint regular operators 𝑫 = (𝐷𝑗)𝑗∈𝐼 on a Hilbert 𝐵-module
𝐸 is said to be strictly anticommuting if, for all 𝑗 ≠ 𝑘,

𝐷𝑗𝐷𝑘 +𝐷𝑘𝐷𝑗 = 0

on a common core for (𝐷𝑗)𝑗∈𝐼.

Examples IV.1.2.

1. Assume that 𝑀1 and 𝑀2 are two oriented, compact, Riemannian manifolds, with Clifford bundles
𝐸1 → 𝑀1 and 𝐸2 → 𝑀2 with Dirac operators /𝐷1 and /𝐷2 thereon. For simplicity, we assume
that the manifolds are even dimensional so all Clifford bundles and Dirac operators are graded.
We write 𝐸1 ⊠̂ 𝐸2 → 𝑀1 ×𝑀2 for their graded exterior tensor product. By construction, the
pair of operators

𝐷1 ∶= /𝐷1 ⊗̂ 1𝐸2
𝐷2 ∶= 1𝐸1

⊗̂ /𝐷2

form a strictly anticommuting collection on the Hilbert space 𝐿2(𝑀1 ×𝑀2, 𝐸1 ⊠̃ 𝐸2). Here the
domain of 𝐷1 is the (graded) Hilbert space tensor product 𝐻1(𝑀1, 𝐸1) ⊗̂ 𝐿2(𝑀2, 𝐸2) and the
domain of 𝐷2 is the (graded) Hilbert space tensor product 𝐿2(𝑀1, 𝐸1) ⊗̂ 𝐻1(𝑀2, 𝐸2). Here
𝐷 ∶= 𝐷1 + 𝐷2 is a Dirac operator on the Clifford bundle 𝐸1 ⊠̃ 𝐸2 → 𝑀1 × 𝑀2. A similar
construction can also be made for a foliated manifold [CS84, Kor08], with 𝐷1 being a tangential
Dirac operator and 𝐷2 a transversal Dirac operator but in this case 𝐷1𝐷2 +𝐷2𝐷1 is generally
not zero, and only lower order if the foliation is Riemannian.

2. We can more generally consider the (constructive) external Kasparov product. If (𝒜1,𝐻1, 𝐷1) and
(𝒜2,𝐻2, 𝐷2) are two higher order spectral triples, their external Kasparov product is constructed
as (𝒜1 ⊗𝒜2,𝐻1 ⊗̃ 𝐻2, 𝐷1 ⊗̃ 1 + 1 ⊗̃ 𝐷2). Here (𝐷1 ⊗̃ 1, 1 ⊗̃ 𝐷2) form a strictly anticommuting
collection on the Hilbert space 𝐻1 ⊗̃ 𝐻2 and their sum is the operator in the external Kasparov
product. This example goes back to Baaj–Julg’s seminal paper [BJ83] where the unbounded
picture was first introduced. The two pairs of strictly anticommuting operators discussed in this
example will fit into the framework of ST2s discussed in the next section (see Definition IV.1.7).

3. A more simple-minded example is the direct sum of two higher order spectral triples. If
(𝒜1,𝐻1, 𝐷1) and (𝒜2,𝐻2, 𝐷2) are two higher order spectral triples, their direct sum is (𝒜1 ⊕
𝒜2,𝐻1 ⊕ 𝐻2, 𝐷1 ⊕ 𝐷2). Albeit in a somewhat trivial way, (𝐷1 ⊕ 0, 0 ⊕ 𝐷2) form a strictly
anticommuting collection on the Hilbert space 𝐻1 ⊕𝐻2.

4. Let 𝑀 be a compact Kähler manifold. Write 𝑑 for the complex dimension of 𝑀. We can consider
the Dolbeault complex

0 → 𝐶∞(𝑀)
𝜕1
−→ Γ∞(Λ1𝑇 0,1𝑀)

𝜕2
−→ Γ∞(Λ2𝑇 0,1𝑀)

𝜕3
−→ ⋯

⋯
𝜕𝑑−1
−−→ Γ∞(Λ𝑑−1𝑇 0,1𝑀)

𝜕𝑑
−→ Γ∞(Λ𝑑𝑇 0,1𝑀) → 0.

Here Λ∗𝑇 0,1𝑀 denotes the (complex) exterior algebra of the (0, 1)-forms. The operators /𝜕𝑗
obtained as the closure of 𝜕𝑗 + 𝜕∗𝑗 on 𝐿2(Λ∗𝑇 0,1𝑀) satisfy for 𝑗 ≠ 𝑘

/𝜕𝑗/𝜕𝑘 = 0 = −/𝜕𝑘/𝜕𝑗.

In particular, the collection (/𝜕𝑗)
𝑑
𝑗=1 is a strictly anticommuting collection of operators on

𝐿2(Λ∗𝑇 0,1𝑀). The collection of strictly anticommuting operators discussed in this example will
fit into the framework of ST2s discussed in the next section (see Definition IV.1.7).
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We can in fact for any partition {1, 2,… , 𝑑 − 1, 𝑑} = 𝑆1 ⊔ ⋯ ⊔ 𝑆𝑛 form 𝐷𝑙 ∶= ∑𝑗∈𝑆𝑙
/𝜕𝑗 and

the collection 𝑫 = (𝐷𝑙)𝑛𝑙=1 also forms a strictly anticommuting collection. In both of these
constructions

Δ𝑫
(1,1,…,1) =

𝑑
∑
𝑗=1

/𝜕2𝑗 =
𝑑

∑
𝑗=1

𝜕∗𝑗𝜕𝑗 + 𝜕𝑗𝜕
∗
𝑗 =

𝑛
∑
𝑙=1

𝐷2
𝑙

is the Kodaira Laplacian. In later examples arising from complexes, we see that the orders of
the differentials affect which partitions we can choose when building an ST2; see in particular
Remark IV.2.18.

As a simple consequence of the functional calculus, we have

Lemma IV.1.3. If 𝑫 = (𝐷𝑗)𝑗∈𝐼 is a strictly anticommuting collection of self-adjoint regular operators
on 𝐸𝐵 and 𝒕 ∈ (0,∞)𝐼, (sgn(𝐷𝑗)|𝐷𝑗|𝑡𝑗)𝑗∈𝐼 is also a strictly anticommuting collection of self-adjoint
regular operators.

We have the following consequence of [LM19, Theorems 2.6, 5.1, 5.4].

Lemma IV.1.4. If 𝑫 = (𝐷𝑗)𝑗∈𝐼 is a strictly anticommuting collection of self-adjoint regular operators
on 𝐸𝐵 and 𝒕 ∈ (0,∞)𝐼, then the operator

𝐷𝒕 ∶= ∑
𝑗∈𝐼

sgn(𝐷𝑗)|𝐷𝑗|𝑡𝑗

is self-adjoint and regular with dom(𝐷𝒕) = ⋂𝑗∈𝐼 dom |𝐷𝑗|𝑡𝑗 . Further,

𝐷2
𝒕 = ∑

𝑗∈𝐼
|𝐷𝑗|2𝑡𝑗 ,

with domain ⋂𝑗∈𝐼 dom |𝐷𝑗|2𝑡𝑗 . We also use the notation Δ𝑫
𝒕 = 𝐷2

𝒕 .

Lemma IV.1.4 certainly does not use the full power of [LM19]. We leave to the future the problem
of generalising Definition IV.1.7 to weakly anticommuting collections of operators.

We record the notation Δ𝑫
𝒕 ∶= 𝐷2

𝒕 .

Lemma IV.1.5. Let 𝑫 = (𝐷𝑗)𝑗∈𝐼 be a strictly anticommuting collection of self-adjoint regular operators
on 𝐸𝐵. For 𝒔, 𝒕 ∈ (0,∞)𝐼 and 𝜎, 𝜏 ∈ (0,∞) such that 𝜎𝑠𝑗 ≥ 𝜏𝑡𝑗 for all 𝑗 ∈ 𝐼, there exists a constant
𝐶 > 0 for which

(1 + Δ𝑫
𝒔 )−𝜎 ≤ 𝐶(1 +Δ𝑫

𝒕 )−𝜏

as positive elements of End∗𝐵(𝐸). As a consequence, the following are equivalent for 𝑎 ∈ End∗𝐵(𝐸):

• 𝑎(1 + Δ𝑫
𝒕 )−1 ∈ End0𝐵(𝐸) for every 𝒕 ∈ (0,∞)𝐼; and

• 𝑎(1 + Δ𝑫
𝒕 )−1 ∈ End0𝐵(𝐸) for some 𝒕 ∈ (0,∞)𝐼.

Proof. First, for (𝑥𝑗)𝑗∈𝐼 ∈ [0,∞)𝐼, one can check that

(1 +∑
𝑗∈𝐼

𝑥2𝑠𝑗
𝑗 )

−𝜎
≤ 𝐶(1 +∑

𝑗∈𝐼
𝑥2𝑡𝑗
𝑗 )

−𝜏

for some constant 𝐶 > 0 depending on 𝒔, 𝒕, 𝜎, and 𝜏. Noting that (𝐷2
𝑗 )𝑗∈𝐼 is a strictly commuting

collection of self-adjoint regular operators, the Lemma follows from functional calculus of several
commuting operators.
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We will encode the orders (relating to commutator properties as in a higher order spectral
triple) of the components in a finite collection 𝑫 = (𝐷𝑗)𝑗∈𝐼 of self-adjoint operators in a matrix
𝝐 = (𝜖𝑖𝑗)𝑖,𝑗∈𝐼 ∈ 𝑀𝐼([0,∞)). Here we write 𝑀𝐼 for the matrices indexed by a finite set 𝐼. We think of 𝝐
pictorially as a weighted directed graph. The weighted directed graph has vertices labelled by 𝐼 and
there is an edge from 𝑖 to 𝑗 labelled by 𝜖𝑖𝑗 whenever 𝜖𝑖𝑗 > 0. For instance, the diagram

𝜖11 𝜖21 𝜖22

𝜖12

pictorially describes a 2 × 2 matrix 𝝐 = (𝜖𝑖𝑗)2𝑖,𝑗=1 ∈ 𝑀2([0,∞)), and, if the reader imagines a larger
collection, they may begin to understand our use of the word ‘tangled’ for the main concept of this
Chapter.

Definition IV.1.6. We say that a matrix 𝝐 = (𝜖𝑖𝑗)𝑖,𝑗∈𝐼 ∈ 𝑀𝐼([0,∞)) satisfies the decreasing cycle
condition if for any 𝑘 and 𝛾 = (𝛾1, 𝛾2,… , 𝛾𝑘) ∈ 𝐼𝑘 with 𝛾1 = 𝛾𝑘 we have that

𝑘
∏
𝑗=1

𝜖𝛾𝑗𝛾𝑗+1
< 1.

The decreasing cycle condition means that the total weight along any cycle in the weighted directed
graph should be < 1. The condition that ∏𝑘

𝑗=1 𝜖𝛾𝑗𝛾𝑗+1
< 1 is indeed only a condition appearing along

the cycles in the weighted digraph associated with 𝜖 since 𝛾 = (𝛾1, 𝛾2,… , 𝛾𝑘) ∈ 𝐼𝑘 represents a cycle
if and only if ∏𝑘

𝑗=1 𝜖𝛾𝑗𝛾𝑗+1
> 0. In particular, if the weighted digraph associated with 𝜖 has no cycles

then 𝜖 automatically satisfies the decreasing cycle condition. It follows from [Jos21, Lemma 3.23] that
𝝐 ∈ 𝑀𝐼([0,∞)) satisfies the decreasing cycle condition if and only if the convex cone

Ω(𝝐) ∶= {𝒕 = (𝑡𝑗) ∈ (0,∞)𝐼 ∶ 𝜖𝑖𝑗𝑡𝑖 < 𝑡𝑗 ∀𝑖, 𝑗}

is nonempty.
We can interpret 𝝐 as a matrix valued in the tropical semiring, in which context Ω(𝝐) is a well-studied

object. The tropical semiring, in the multiplicative convention, is [0,∞) with addition ⊕ given by
𝑥 ⊕ 𝑦 = max{𝑥, 𝑦} and multiplication × defined just as usual. Remark that 0 is the additive identity,
1 is the multiplicative identity, and multiplication distributes over addition. The reader can find more
details on matrices in the tropical semiring and their relationship to weighted directed graphs in [Jos21]
(where an additive convention is used for the tropical semiring, related to our multiplicative convention
by the logarithm). It seems likely that there is more to be gleaned from interpreting 𝝐 as a matrix over
the tropical semiring but, for the purposes of this Chapter, it suffices to remember the nonemptiness
of the cone Ω(𝝐) as the antecedent of the decreasing cycle condition.

We now come to the main definition of this Chapter.

Definition IV.1.7. A strictly tangled 𝐴-𝐵-cycle consists of an 𝐴-𝐵-correspondence 𝐸 and a finite
collection 𝑫 = (𝐷𝑗)𝑗∈𝐼 of regular operators on 𝐸 such that for a matrix 𝝐 ∈ 𝑀𝐼([0,∞)) satisfying the
decreasing cycle condition (see Definition IV.1.6) we have that

1. every 𝐷𝑗 is self-adjoint and 𝑫 = (𝐷𝑗)𝑗∈𝐼 is strictly-anticommuting
2. for every 𝑎 ∈ 𝐴, (1 + Δ𝑫

𝒕 )−1𝑎 is compact for some 𝒕 ∈ (0,∞)𝐼 (and so for all 𝒕 ∈ (0,∞)𝐼 by
Lemma IV.1.5); and

3. 𝐴 is contained in the closure of 𝒬, the set of 𝑎 ∈ End∗(𝐸) such that, for all 𝑖 ∈ 𝐼, {𝑎, 𝑎∗} dom𝐷𝑖 ⊆
dom𝐷𝑖 and

(1 +∑
𝑗∈𝐼

|𝐷𝑗|𝜖𝑖𝑗)
−1
[𝐷𝑖, 𝑎] [𝐷𝑖, 𝑎](1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗)

−1

extend to adjointable operators on End∗(𝐸).
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We refer to 𝝐 as a bounding matrix or graph. If 𝐸 is graded, we require all operators in 𝑫 to be odd
and call (𝐴,𝐸𝐵,𝑫) an even strictly tangled cycle. If 𝐸 is ungraded, (𝐴,𝐸𝐵,𝑫) is odd.

If, for a dense ∗-subalgebra 𝒜 ⊆ 𝐴, 𝒜 ⊆ 𝒬, we will say that (𝒜, 𝐸𝐵,𝑫) is a strictly tangled
𝒜-𝐵-cycle.

When 𝐵 = ℂ, we will use the term strictly tangled spectral triple or ST2.

In §IV.1.2, we will show that, from any strictly tangled cycle (𝐴,𝐸𝐵,𝑫), one can build a higher
order cycle (𝐴,𝐸𝐵, 𝐷𝒕 ∶= ∑𝑗∈𝐼 sgn(𝐷𝑗)|𝐷𝑗|𝑡𝑗), for suitable 𝒕 ∈ Ω(𝝐). Before this, we make a few
observations and give some motivating examples.
Remark IV.1.8. A strictly tangled cycle (𝐴,𝐸𝐵,𝑫) with 𝑛 = 1 is the same as a higher order cycle.
Indeed, 𝝐 ∈ [0,∞) satisfies the decreasing cycle condition if and only if 𝝐 < 1. In this case, if 𝝐 ∈ [0, 1)
is the bounding matrix then (𝐴,𝐸𝐵,𝑫) is an unbounded cycle of order 𝑚 = (1 − 𝝐)−1. Furthermore,
we point out that there is an implicit lower bound 𝑚 ≥ 1 on the order of our higher order spectral
triples originating in the requirement on 𝝐 to have coefficients in [0,∞).
Remark IV.1.9. We note that our definition of a strictly tangled spectral triple is somewhat restrictive
in requiring the elements of the collection 𝑫 = (𝐷𝑗)𝑗∈𝐼 to be strictly anticommuting. We expect that
this definition can be relaxed to include collections 𝑫 = (𝐷𝑗)𝑗∈𝐼 on which there is a size constraint
on the anticommutator 𝐷𝑗𝐷𝑘 +𝐷𝑘𝐷𝑗 along the lines of for instance [LM19]. For our applications to
complexes, in particular Rockland complexes, we will make do with strictly anticommuting collections
but in order for more general applications to Rockland sequences [DH22, GK24, Gof24] and more
general Kasparov product constructions [GM15, KL13, Mes12] to fit into the framework one needs
to extend the notion above to a weaker anticommutation condition. See Remark IV.1.19 for further
comments on where in the proofs this is used.
Remark IV.1.10. If the operators 𝑫 = (𝐷𝑗)𝑗∈𝐼 have a prescribed order 𝒎 = (𝑚𝑗)𝑗∈𝐼 ∈ [1,∞)𝐼 in an
appropriate sense, e.g. in some pseudodifferential calculus, there is an intuitive guess of bounding
matrix 𝝐. Similar to the intuition of a higher order spectral triple, a commutator [𝐷𝑖, 𝑎] should behave
like one order lower than 𝐷𝑖 and therefore be controlled by operators of order 𝑚𝑖 − 1. Therefore, a
natural choice that turns out to be correct in examples is the bounding matrix 𝜖𝑖𝑗 =

𝑚𝑖−1
𝑚𝑗

, for 𝑖, 𝑗 ∈ 𝐼,
represented by the weighted digraph

⋯
𝑚𝑖−1
𝑚𝑗

𝑚𝑗−1
𝑚𝑖

𝑚𝑖−1
𝑚𝑖

𝑚𝑗−1
𝑚𝑗

⋯

which also matches the order of a higher order spectral triple in that 𝑚𝑖 = (1− 𝜖𝑖𝑖)−1. Such an 𝝐 fulfils
the decreasing cycle condition since

𝑘
∏
𝑗=1

𝜖𝛾𝑗,𝛾𝑗+1
=

∏𝑘
𝑗=1(𝑚𝛾𝑗

− 1)

∏𝑘
𝑗=1 𝑚𝛾𝑗+1

=
∏𝑘

𝑗=1(𝑚𝛾𝑗
− 1)

∏𝑘
𝑗=1 𝑚𝛾𝑗

=
𝑘
∏
𝑗=1

⎛⎜
⎝
1 − 1

𝑚𝛾𝑗

⎞⎟
⎠

< 1 (IV.1.11)

for any cycle 𝛾 = (𝛾1,… , 𝛾𝑘), where we use the cycle property 𝛾1 = 𝛾𝑘 in the second equality. In
particular, Ω(𝝐) contains a ray of the form

𝒕𝒎(𝜏) ∶= ( 𝜏
𝑚𝑗

)
𝑗∈𝐼

∈ Ω(𝝐), 𝜏 > 0.

Indeed, 𝒕𝒎(𝜏) ∈ Ω(𝝐) since 𝜖𝑖𝑗𝑡𝑖 = 𝜖𝑖𝑖𝑡𝑗 < 𝑡𝑗. The operator

𝐷𝜏 ∶= 𝐷𝒕𝒎(𝜏) = ∑
𝑗∈𝐼

sgn(𝐷𝑗)|𝐷𝑗|
𝜏

𝑚𝑗
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constructed from this ray should then morally be a sum of operators of order 𝜏, which is discussed
further in Remark IV.1.23 and placed in a solid mathematical foundation in Proposition IV.2.7.

Operators with prescribed orders 𝒎 with this type of bounding matrix 𝝐 will be considered further
in §IV.2 in the context of complexes. For an ST2 arising from a complex, we will depart from the
preceding discussion by setting 𝜖𝑖𝑗 = 0 if the operators 𝐷𝑖 and 𝐷𝑗 are ‘far apart’ in the complex. When
we consider the C*-algebras of nilpotent groups in §IV.3.1, we will see that one does not always have a
natural prescription of orders. However, in the case of a Carnot group, there will be a natural way of
assigning orders, related to conformal equivariance under the dilation action.

IV.1.1 Three motivating examples

Before delving into the general theory and the main examples of this Chapter, we provide some simpler
examples to clarify and justify the structure underlying ST2s. Further examples, generalising these,
will be presented in §§IV.2.4, IV.3.1, and IV.3.2.

The Rumin complex on a contact manifold, which we discussed in §III.2.1.3, is an example of a
Rockland complex. We will consider Rockland complexes in §IV.2 and return to explain and study
Rumin complexes in more generality in §IV.2.4. Let us start with the simplest situation to explain the
ideas motivating the notion of ST2s.

Example IV.1.12. We consider the 3-dimensional Heisenberg group 𝖧3. As a manifold, 𝖧3 coincides
with ℝ3 but is equipped with the product (𝑥, 𝑦, 𝑧)(𝑥′, 𝑦′, 𝑧′) = (𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑧 + 𝑧′ + 𝑥𝑦′). We write
Γ for the cocompact subgroup defined from the integer points ℤ3. On the nilmanifold 𝑀 = 𝖧3/Γ, the
Rumin complex takes the form

𝐶∞(𝑀)d𝑥 𝐶∞(𝑀)d𝑥 ∧ 𝜃

0 𝐶∞(𝑀) 𝐶∞(𝑀)d𝑥 ∧ d𝑦 ∧ 𝜃 0

𝐶∞(𝑀)d𝑦 𝐶∞(𝑀)d𝑦 ∧ 𝜃

𝑍+𝑋𝑌

𝑌 2

𝑌𝑋

𝑌

𝑍−𝑌𝑋

−𝑋2

−𝑋

where 𝑋 = 𝜕𝑥−𝑦𝜕𝑧, 𝑌 = 𝜕𝑦, and 𝑍 = 𝜕𝑧 are the standard basis elements of the Heisenberg Lie algebra
with the commutator identity [𝑋, 𝑌 ] = 𝑍, here acting as vector fields on 𝑀. Here 𝜃 = 𝑦d𝑥+d𝑧 denotes
the contact form. We equip 𝑀 with the volume density induced from the Haar measure on 𝖧3/Γ and
declare d𝑥, d𝑦 and 𝜃 to be an orthonormal frame. With these choices, the Rumin complex above is
completed into a Hilbert complex, see [BL92] or §IV.2 below.

We shall shorten the notation for the operators in the Rumin complex to d𝑅• = (d𝑅0 , d𝑅1 , d𝑅2 ). It is
a mixed order differential complex. Let

𝐷1 ∶= d𝑅0 + (d𝑅0 )∗ + d𝑅2 + (d𝑅2 )∗ and 𝐷2 ∶= d𝑅1 + (d𝑅1 )∗.

We view 𝐷1 and 𝐷2 as densely defined, self-adjoint operators on 𝐿2(𝑀;ℋ) where ℋ → 𝑀 is the sum
of all line bundles appearing in the Rumin complex; so ℋ ≅ 𝑀 ×ℂ6. The differential operators 𝐷1
and 𝐷2 are of order 𝑚1 = 1 and 𝑚2 = 2 respectively. We note that 𝐷1𝐷2 = 𝐷2𝐷1 = 0, so 𝐷1 and 𝐷2
are strictly anticommuting. The Rumin Laplacian takes the form

Δ𝑅 = 𝐷4
1 +𝐷2

2 .

The data (𝐶∞(𝑀), 𝐿2(𝑀;ℋ), (𝐷1, 𝐷2)) constitute an ST2 with bounding matrix

𝝐 = (0 0
1 1

2
) 1

1
2 .
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If one squints, the bounding matrix can be guessed from the structure of the Rumin complex. The
diagonal arrows, corresponding to the operators −𝑋2 and 𝑌 2, require the weight-1/2 loop and the
horizontal arrows, corresponding to the operators 𝑍 + 𝑋𝑌 and 𝑍 − 𝑌𝑋, require the weight-1 edge
from 𝐷2 to 𝐷1. The other arrows, forming part of 𝐷1 are all first order, making no contribution to the
bounding matrix. Of course, this is not a rigorous argument; for that we will have to wait until §IV.2.4.

In particular, for any 𝒕 = (𝑡1, 𝑡2) ∈ (0,∞)2 with 𝑡1 > 𝑡2, we arrive at a higher order spectral triple
with Dirac operator

𝐷𝒕 = 𝐷1|𝐷1|𝑡1−1 +𝐷2|𝐷2|𝑡2−1 = 𝐷1(Δ𝑅)
𝑡1−1

4 +𝐷2(Δ𝑅)
𝑡2−1

2 .

If 𝒕 lies along the ray spanned by (1, 1/2) then 𝐷𝒕 is an 𝐻-elliptic operator in the Heisenberg calculus
and if 𝒕 = (2𝑘1 + 1, 2𝑘2 + 1) where 𝑘1 > 𝑘2 are natural numbers then 𝐷𝒕 is a differential operator; see
§IV.2.4 for more details.

Below in §IV.2.4.1, we will show that the naïvely formed candidate 𝐷1 +𝐷2 for a noncommutative
geometry on 𝑀 fails to be a higher order spectral triple, motivating the need for ST2s.

In the following Example, we show that the order-2 spectral triple for the C*-algebra of the
Heisenberg group built in §II.4.2 and studied further in Example III.2.10 naturally arises from a strictly
tangled spectral triple.

Example IV.1.13. Let 𝖧3 be the 3-dimensional Heisenberg group. In the 3 × 3-matrix presentation,
we can write

𝖧3 =
⎧{
⎨{⎩
𝑔 ∈ 𝑀3(ℝ) ∶ 𝑔 = ⎛⎜⎜

⎝

1 𝑎 𝑐
0 1 𝑏
0 0 1

⎞⎟⎟
⎠

⎫}
⎬}⎭

The group 𝖧3 is a central extension of ℝ2 by ℝ, fitting into the exact sequence

0 ℝ 𝖧3 ℝ2 0.𝜄 𝜋

As in §II.4.2, we begin with the weights

ℓℝ ∶ ℝ → ℂ ℓℝ2 ∶ ℝ2 → 𝒞𝓁2 = Endℂ2

𝑐 ↦ 𝑐 (𝑎, 𝑏) ↦ 𝑎𝛾1 + 𝑏𝛾2

Again, let us define a weight ℓ̃ℝ ∶ 𝖧3 → ℂ by ℓ̃ℝ(𝑔) = 𝑐. As we saw in §II.4.2, ℓ̃ℝ exhibits the ‘parabolic’
feature that

∥(ℓ̃ℝ(𝑔ℎ) − ℓ̃ℝ(ℎ))(1 + |𝜋∗(ℓℝ2)(ℎ)|)−1∥ = |𝑐 + 𝑎𝑏′|(1 + (𝑎′2 + 𝑏′2)1/2)−1 ≤ ‖ℓ̃ℝ(𝑔)‖ + ‖𝜋∗(ℓℝ2)(𝑔)‖

so that
sup
ℎ

∥(ℓ̃ℝ(𝑔ℎ) − ℓ̃ℝ(ℎ))(1 + |𝜋∗(ℓℝ2)(ℎ)|)−1∥ < ∞.

Further,
sup
ℎ

‖𝜋∗(ℓℝ2)(𝑔ℎ) − 𝜋∗(ℓℝ2)(ℎ)‖ = ‖𝜋∗(ℓℝ2)(𝑔)‖ < ∞.

We therefore have a strictly tangled spectral triple

(𝐶∗(𝖧3), 𝐿2(𝖧3, ℂ2), (𝑀𝜋∗(ℓℝ2),𝑀ℓ̃ℝ
))

with bounding matrix

𝝐 = (0 0
1 0)

1 .

The set Ω(𝝐) consists of 𝑡1, 𝑡2 ∈ (0,∞) such that 𝑡1 > 𝑡2. We recover the order-2 spectral triple of
§II.4.2 by taking 𝑡1 = 2 and 𝑡2 = 1.
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In §IV.3.1, Example IV.1.13 will be generalized to all simply connected nilpotent Lie groups (and
their closed subgroups) where there are as many Dirac operators as the step length in the group.

In §IV.3.2, we will see that ST2s allow us to generalise the construction of spectral triples for elliptic
dynamical systems by Bellissard, Marcolli, and Reihani [BMR10] to parabolic dynamical systems,
including nilflows, horocycle flows, and large diffeomorphisms of tori, classical and noncommutative.
We here give a simple instance of this latter family of examples.

Example IV.1.14. Consider the group of diffeomorphisms (𝜙𝑛)𝑛∈ℤ of 𝕋2 given by

𝜙𝑛 = (1 𝑛
0 1) ∈ 𝑆𝐿(2,ℤ).

This family of diffeomorphisms is large, in the sense that each 𝜙𝑛 is in a distinct connected component
of the diffeomorphism group of 𝕋2. This induces a ℤ-action 𝛼 on 𝐶(𝕋2) given by 𝛼𝑛(𝑎) ∶= 𝜙∗

−𝑛(𝑎) for
𝑎 ∈ 𝐶(𝕋2), preserving 𝐶∞(𝕋2). Let (𝐶∞(𝕋2), 𝐿2(𝕋2, ℂ2),𝐷) be the Dirac spectral triple on the torus.
With 𝑁 the number operator on ℓ2(ℤ), we write (𝐶∞(𝕋2) ⋊ ℤ, ℓ2(ℤ) ⊗ 𝐶(𝕋2)𝐶(𝕋2), 𝑁 ⊗ 1) for the
unbounded Kasparov module associated with the crossed product.

In attempting to form the Kasparov product, we encounter the pointwise-boundedness condition
of [Pat14, §1], reproduced (and generalised) in Definition IV.3.12 below. For 𝑎 ∈ 𝐶∞(𝕋2) ⋊ ℤ, we
require uniform boundedness of ‖[𝐷, 𝛼𝑛(𝑎)]‖ in 𝑛. Let us see how ‖[𝐷, 𝛼𝑛(𝑎)]‖ behaves as |𝑛| → ∞.
For 𝑎 ∈ 𝐶∞(𝕋2)

𝛼𝑛(𝑎)(𝑥, 𝑦) = 𝑎(𝑥 − 𝑛𝑦, 𝑦),

and
𝐷 = 𝛾1𝜕𝑥 + 𝛾2𝜕𝑦,

so
[𝐷, 𝛼𝑛(𝑎)] = 𝛾1𝜙∗

−𝑛(𝜕𝑥𝑎) + 𝛾2 (𝜙∗
−𝑛(𝜕𝑦𝑎) − 𝑛𝜙∗

−𝑛(𝜕𝑥𝑎)) .

We conclude that there is a constant 𝐶 > 0 such that, for any 𝑎 ∈ 𝐶∞(𝕋2) and 𝑛 ∈ ℤ,

|𝑛|‖𝜕𝑥𝑎‖𝐿∞ −𝐶‖∇𝑎‖𝐿∞ ≤ ‖[𝐷, 𝛼𝑛(𝑎)]‖ ≤ |𝑛|‖𝜕𝑥𝑎‖𝐿∞ +𝐶‖∇𝑎‖𝐿∞ .

We see that the pointwise-boundedness condition is not satisfied, rather we have the growth behaviour
‖[𝐷, 𝛼𝑛(𝑎)]‖ ∼ |𝑛|‖𝜕𝑥𝑎‖𝐿∞ as |𝑛| → ∞. Hence

[1 ⊗ 𝐷, 𝜋(𝑎)](1 + |𝑁|)−1 ⊗ 1

is bounded. In particular, the collection

(𝐶0(𝕋2) ⋊ ℤ, ℓ2(ℤ) ⊗ 𝐿2(𝕋2, 𝑆), (𝑁 ⊗ 𝛾, 1 ⊗ 𝐷))

is a strictly tangled spectral triple with bounding matrix

𝝐 = (0 0
1 0)

1

and Ω(𝝐) = {(𝑡1, 𝑡2) ∈ (0,∞)2 ∶ 𝑡1 > 𝑡2}.

IV.1.2 Assembling a strictly tangled cycle into a higher order cycle

Let us study how to construct a higher order cycle from a strictly tangled cycle. In conjunction with
the bounded transform, we will see that there is a well-defined KK-class associated with a strictly
tangled cycle.
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Definition IV.1.15. A strictly 𝝐-tangled cycle (𝐴,𝐸𝐵,𝑫) is 𝝆-preserving for 𝝆 ∈ [1,∞]𝐼 if 𝐴 is
contained in the closure of 𝒬, the set of 𝑎 ∈ End∗(𝐸) such that, for all 𝑖 ∈ 𝐼, {𝑎, 𝑎∗} dom |𝐷𝑖|𝜌𝑖 ⊆
dom |𝐷𝑖|𝜌𝑖 and

(1 +∑
𝑗∈𝐼

|𝐷𝑗|𝜖𝑖𝑗)
−1
[𝐷𝑖, 𝑎] [𝐷𝑖, 𝑎](1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗)

−1

extend to adjointable operators on End∗(𝐸). If 𝜌𝑖 = ∞, the condition {𝑎, 𝑎∗} dom |𝐷𝑖|𝜌𝑖 ⊆ dom |𝐷𝑖|𝜌𝑖

should be interpreted as requiring that {𝑎, 𝑎∗} dom |𝐷𝑖|𝑡 ⊆ dom |𝐷𝑖|𝑡 for all 𝑡 ≥ 1.
If, for a dense ∗-subalgebra 𝒜 ⊆ 𝐴, 𝒜 ⊆ 𝒬, we will say that (𝒜, 𝐸𝐵,𝑫) is 𝝆-preserving.

Every strictly tangled cycle is by definition 𝝆-preserving for 𝝆 = (1,… , 1) and, if a strictly tangled
cycle is 𝝆-preserving, it is 𝝈-preserving for all 𝝈 ≤ 𝝆 by Theorem A.3.4. Recall that

Ω(𝝐) = {𝒕 = (𝑡𝑗) ∈ (0,∞)𝐼 ∶ 𝜖𝑖𝑗𝑡𝑖 < 𝑡𝑗 ∀𝑖, 𝑗},

For 𝝆 ∈ [1,∞]𝐼, we will define the subset

Ω(𝝐, 𝝆) = Ω(𝝐) ∩∏
𝑗∈𝐼

(0, 1] ∪ (1, 𝜌𝑗).

Here, the interval (0, 1] ∪ (1, 𝜌𝑗) = (0, 𝜌𝑗) ∪ {1} is simply the half-open interval (0, 1] if 𝜌𝑗 = 1 and the
open interval (0, 𝜌𝑗) if 𝜌𝑗 > 1. We remark that Ω(𝝐, 𝝆) is a convex set.

Theorem IV.1.16. Let (𝐴,𝐸𝐵,𝑫 = 𝑫 = (𝐷𝑗)𝑗∈𝐼) be a strictly 𝝐-tangled cycle which is 𝝆-preserving.
For 𝒕 ∈ (0,∞)𝐼, we define the operator

𝐷𝒕 = ∑
𝑗∈𝐼

sgn(𝐷𝑗)|𝐷𝑗|𝑡𝑗 .

If 𝒕 ∈ Ω(𝝐, 𝝆), then the triple (𝐴,𝐸𝐵, 𝐷𝒕) defines an order-𝑚 cycle for any

𝑚 > max
𝑖,𝑗∈𝐼

max{1, 𝜌𝑖 − 1
𝜌𝑖 − 𝑡𝑖

𝑡𝑖}(1 −
𝜖𝑖𝑗𝑡𝑖
𝑡𝑗

)
−1
. (IV.1.17)

(If 𝜌𝑖 = ∞ for some 𝑖 ∈ 𝐼, we interpret 𝜌𝑖−1
𝜌𝑖−𝑡𝑖

as 1. If 𝜌𝑖 = 𝑡𝑖 = 1 for some 𝑖 ∈ 𝐼, we also interpret 𝜌𝑖−1
𝜌𝑖−𝑡𝑖

as 1.)
If (𝒜, 𝐸𝐵,𝑫 = (𝐷𝑗)𝑗∈𝐼) is a 𝝆-preserving strictly 𝝐-tangled cycle, for 𝒕 ∈ Ω(𝝐, 𝝆), (𝒜, 𝐸𝐵, 𝐷𝒕) is

an order-𝑚 cycle for 𝑚 as in (IV.1.17).

We remark that it is impossible for 1 ≠ 𝜌𝑖 = 𝑡𝑖. To prove Theorem IV.1.16, we use results from
§A.3 about fractional powers and interpolation.

Proof. Let 𝒕 ∈ Ω(𝝐, 𝝆). The local compactness of the resolvent follows immediately from Lemma IV.1.5.
We now proceed to show that, for all 𝑖 ∈ 𝐼 and 𝑎 ∈ 𝒬 (where 𝒬 is as in Definition IV.1.15),

[sgn(𝐷𝑖)|𝐷𝑖|𝑡𝑖 , 𝑎]⎛⎜
⎝
1 +∑

𝑗∈𝐼
|𝐷𝑗|𝑡𝑗⎞⎟

⎠

−1+ 1
𝑚

(IV.1.18)

is bounded. If 𝑡𝑖 = 1, again using Lemma IV.1.5 we see that (IV.1.18) is bounded if (1−1/𝑚)𝑡𝑗 ≥ 𝜖𝑖𝑗𝑡𝑖
for all 𝑗, which is equivalent to 𝑚 ≥ (1 − 𝜖𝑖𝑗𝑡𝑖/𝑡𝑗)−1. In the context of Proposition A.3.8, let

𝐴 = 𝐷𝑖 𝐵 = 1 +∑
𝑗∈𝐼

|𝐷𝑗|𝑡𝑗

and
𝛼1 = 1 𝛽1 = max

𝑗∈𝐼

𝜖𝑖𝑗
𝑡𝑗

𝛼2 = 𝑡𝑖 𝛽2 = 1 − 1
𝑚
.
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We see that (IV.1.18) is bounded if 1−1/𝑚 > max𝑗∈𝐼 𝜖𝑖𝑗𝑡𝑖/𝑡𝑗, equivalent to 𝑚 > max𝑗∈𝐼(1−𝜖𝑖𝑗𝑡𝑖/𝑡𝑗)−1.
If 1 < 𝜌𝑖 < ∞ and 𝑡𝑖 ∈ (1, 𝜌𝑖), still in the context of Proposition A.3.8, let 𝛼3 = 𝜌𝑖 and 𝛽3 = 𝜌𝑖/𝑡𝑖. We
see that (IV.1.18) is bounded if

1 − 1
𝑚

> 1
𝜌𝑖 − 1

((𝜌𝑖 − 𝑡𝑖)max
𝑗∈𝐼

𝜖𝑖𝑗
𝑡𝑗

+ (𝑡𝑖 − 1)𝜌𝑖
𝑡𝑖
),

equivalent to

𝑚 > max
𝑗∈𝐼

𝜌𝑖 − 1
𝜌𝑖 − 𝑡𝑖

𝑡𝑖(1 −
𝜖𝑖𝑗𝑡𝑖
𝑡𝑗

)
−1
.

If 𝜌𝑖 = ∞ and 𝑡𝑖 ∈ (1, 𝜌𝑖), we see by taking the limit that (IV.1.18) is bounded if

𝑚 > 𝑡𝑖(1 −max
𝑗∈𝐼

𝜖𝑖𝑗𝑡𝑖
𝑡𝑗

)
−1
.

Noting that 𝜌𝑖−1
𝜌𝑖−𝑡𝑖

𝑡𝑖 > 1 if and only if 𝜌𝑖, 𝑡𝑖 > 1, we thus obtain the claimed order estimate.

Remark IV.1.19. Theorem IV.1.16 is proven under strong assumptions on the anticommutators
𝐷𝑗𝐷𝑘 + 𝐷𝑘𝐷𝑗, namely that they vanish for 𝑗 ≠ 𝑘. We expect that Theorem IV.1.16 holds under
much milder assumptions on the anticommutators 𝐷𝑗𝐷𝑘 +𝐷𝑘𝐷𝑗. In the proof of Theorem IV.1.16,
we rely heavily on Proposition A.3.8 for 𝐴 = 𝐷𝑖 and 𝐵 = Δ𝑫

𝒕/2. Assumptions such as those in
[KL13, KL12, LM19], modified according to an 𝝐-power of 𝑫, may allow one to extend Theorem
IV.1.16.

Let us discuss a prototypical example to which Theorem IV.1.16 extends, despite a lack of vanishing
anticommutators. In [CM95, §1.1–2], an order-2 spectral triple

(𝐶∞
𝑐 (𝑀) ⋊ Γ,𝐿2(𝑀,Λ∗𝑉 ∗ ⊗ Λ∗𝑁 ∗), (d𝐿d∗𝐿 − d∗𝐿d𝐿)(−1)𝜕𝑁 + d𝐻 + d∗𝐻) (IV.1.20)

is built from the data of a manifold 𝑀 with triangular structure preserved by a group of diffeomorphisms
Γ. To arrive at this higher order spectral triple, the longitudinal signature operator d𝐿 + d∗𝐿 is first
found to be homotopic to Δ−1/2

𝐿 (d𝐿d∗𝐿 − d∗𝐿d𝐿). At this point, we can consider the collection

(𝐶∞
𝑐 (𝑀) ⋊ Γ,𝐿2(𝑀,Λ∗𝑉 ∗ ⊗ Λ∗𝑁 ∗), (Δ−1/2

𝐿 (d𝐿d∗𝐿 − d∗𝐿d𝐿)(−1)𝜕𝑁 , d𝐻 + d∗𝐻)) . (IV.1.21)

The operators in the collection (IV.1.21) are not strictly anticommmuting but the anticommutators
are of lower order in the pseudodifferential calculus of [CM95]. The pseudodifferential calculus allow
us to think of (IV.1.21) as a ‘tangled spectral triple’ with bounding matrix

𝝐 = (0 0
1 1

2
) 1

1
2

so that taking 𝒕 = (2, 1) produces the order-2 spectral triple (IV.1.20).
Remark IV.1.22. Let us consider the consequences of Theorem IV.1.16 in the special case when the
collection 𝑫 has only one element. Let (𝐴,𝐸𝐵, 𝐷) be an order-𝑚 cycle which is 𝜌-preserving for
𝜌 ∈ [0,∞]. For 𝑡 ∈ (0, 1] ∪ (1, 𝜌), (𝐴,𝐸𝐵, sgn(𝐷)|𝐷|𝑡) is an order-𝑚′ cycle for

𝑚′ > 𝑚 max{1, 𝜌 − 1
𝜌 − 𝑡

𝑡}

If 𝜌 = ∞, this means 𝑚′ > 𝑚 max{1, 𝑡}.
In examples, it is frequently the case that the requirement in (IV.1.17) may be taken as an equality.
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Remark IV.1.23. For an strictly tangled cycle (𝐴,𝐸𝐵,𝑫) such that the operators 𝑫 have prescribed
orders 𝒎 ∈ [1,∞)𝐼 with bounding matrix on the form 𝜖𝑖𝑗 =

𝑚𝑖−1
𝑚𝑗

, as in Remark IV.1.10, then for any
𝜏 > 0 we would like the higher order cycle (𝐴,𝐸𝐵, 𝐷𝜏) to be of order 𝜏. Abstractly, Theorem IV.1.16
guarantees the order to be at most 𝜏 + 𝛿 for any 𝛿 > 0. In the examples below coming from Rockland
complexes (see Corollary IV.2.20), the pseudodifferential calculus ensures that the order can be taken
to be 𝜏 on the nose.

In light of the bounded transform for higher order cycles, Theorem IV.1.16 implies the following.

Corollary IV.1.24. Let (𝐴,𝐸𝐵,𝑫) be a 𝝆-preserving strictly 𝝐-tangled cycle. There is a well-defined
class

[(𝐴,𝐸𝐵,𝑫)] ∶= [(𝐴,𝐸𝐵, 𝐹𝐷𝒕
)] ∈ 𝐾𝐾∗(𝐴,𝐵)

for any 𝒕 ∈ Ω(𝝐, 𝝆) with the same parity as (𝐴,𝐸𝐵,𝑫). The class [(𝐴,𝐸𝐵,𝑫)] depends only on
(𝐴,𝐸𝐵,𝑫) and not on 𝒕.

Proof. That a class in KK-theory is obtain for any 𝒕 ∈ Ω(𝝐, 𝝆) follows immediately from the bounded
transform for higher order cycles, Corollary I.0.7. Consider distinct 𝒔, 𝒕 ∈ Ω(𝝐, 𝝆). Since Ω(𝝐, 𝝆) is a
convex set, 𝑥𝒔+ (1−𝑥)𝒕 ∈ Ω(𝝐, 𝝆) for all 𝑥 ∈ [0, 1]. That (𝐴,𝐸𝐵, 𝐹𝐷𝒔

) and (𝐴,𝐸𝐵, 𝐹𝐷𝒕
) are equivalent

can then be shown by taking the straight line homotopy.

We note that in Corollary IV.1.24, the fact that we retain the sign of each 𝐷𝑗 in the combined
operator𝐷𝒕 = ∑𝑗∈𝐼 sgn(𝐷𝑗)|𝐷𝑗|𝑡𝑗 ensures that the KK-classes can be non-trivial also when a component
of 𝒕 is an even integer.

Theorem IV.1.25. Let (𝐴1, 𝐸1,𝐵1
,𝑫𝟏) and (𝐴2, 𝐸2,𝐵2

,𝑫𝟐) be two strictly tangled cycles with bounding
matrices 𝝐𝟏 and 𝝐𝟐 respectively. Here we write 𝑫𝟏 = (𝐷1,𝑗)𝑗∈𝐼1 and 𝑫𝟐 = (𝐷2,𝑘)𝑘∈𝐼2 . Then, with the
collection 𝑫𝟏 ⊗̃ 1 ⊔ 1 ⊗̃ 𝑫𝟐 = (𝐷̂𝑙)𝑙∈𝐼1⊔𝐼2 , given by

𝐷̂𝑙 ∶=
⎧{
⎨{⎩

𝐷1,𝑙 ⊗̃ 1 𝑙 ∈ 𝐼1
1 ⊗̃ 𝐷2,𝑙 𝑙 ∈ 𝐼2

,

the data
(𝐴1 ⊗𝐴2, (𝐸1 ⊗̃ℂ 𝐸2)𝐵1⊗𝐵2

,𝑫𝟏 ⊗̃ 1 ⊔ 1 ⊗̃ 𝑫𝟐)

constitute a strictly tangled cycle with bounding matrix the direct sum 𝝐𝟏 ⊕ 𝝐𝟐. Moreover, the exterior
Kasparov product of the associated KK-classes can be written as

[(𝐴1, 𝐸1,𝐵1
,𝑫1)] ⊗ℂ [(𝐴2, 𝐸2,𝐵2

,𝑫2)] = [(𝐴1 ⊗𝐴2, (𝐸1 ⊗̃ℂ 𝐸2)𝐵1⊗𝐵2
,𝑫𝟏 ⊗̃ 1 ⊔ 1 ⊗̃ 𝑫𝟐)]

in 𝐾𝐾∗(𝐴1 ⊗𝐴2, 𝐵1 ⊗𝐵2).

Proof. It is straightforward to verify that (𝐴1 ⊗ 𝐴2, (𝐸1 ⊗̃ℂ 𝐸2)𝐵1⊗𝐵2
,𝑫𝟏 ⊗̃ 1 ⊔ 1 ⊗̃ 𝑫𝟐) is an ST2

with bounding matrix 𝝐𝟏 ⊕ 𝝐𝟐. It is also clear that Ω(𝝐𝟏 ⊕ 𝝐𝟐) = Ω(𝝐𝟏) × Ω(𝝐𝟐). For 𝒕 = (𝒕𝟏, 𝒕𝟐) we
have that

𝐷̂𝒕 = 𝐷𝒕𝟏 ⊗̃ 1 + 1 ⊗̃ 𝐷𝒕𝟐 ,

which is the form of the product operator for the external product of higher order cycles. Hence,
any higher order cycle assembled from (𝐴1 ⊗𝐴2, (𝐸1 ⊗̃ℂ 𝐸2)𝐵1⊗𝐵2

,𝑫𝟏 ⊗̃ 1 ⊔ 1 ⊗̃ 𝑫𝟐) represents the
exterior Kasparov product of the higher order spectral triples assembled from (𝐴1, 𝐸1,𝐵1

,𝑫𝟏) and
(𝐴2, 𝐸2,𝐵2

,𝑫𝟐). The Theorem follows.

In a simpler way, we obtain
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Theorem IV.1.26. Let (𝐴,𝐸1,𝐵,𝑫𝟏) and (𝐴,𝐸2,𝐵,𝑫𝟐) be two strictly tangled cycles (of the same
parity) with bounding matrices 𝝐𝟏 and 𝝐𝟐 respectively. Here we write 𝑫𝟏 = (𝐷1,𝑗)𝑗∈𝐼1 and 𝑫𝟐 =
(𝐷2,𝑘)𝑘∈𝐼2 . Then, with the collection 𝑫𝟏 ⊕𝑫𝟐 = (𝐷̂𝑙)𝑙∈𝐼1⊔𝐼2 , given by

𝐷̂𝑙 ∶=
⎧{
⎨{⎩

𝐷1,𝑙 ⊕ 0 𝑙 ∈ 𝐼1
0 ⊕ 𝐷2,𝑙 𝑙 ∈ 𝐼2

,

the data
(𝐴, (𝐸1 ⊕𝐸2)𝐵,𝑫𝟏 ⊕𝑫𝟐)

constitute a strictly tangled cycle with bounding matrix the direct sum 𝝐𝟏 ⊕ 𝝐𝟐. Moreover, the direct
sum of the associated KK-classes can be written as

[(𝐴,𝐸1,𝐵,𝑫𝟏)] ⊕ [(𝐴,𝐸2,𝐵,𝑫2)] = [(𝐴, (𝐸1 ⊕𝐸2)𝐵,𝑫𝟏 ⊕𝑫𝟐)]

in 𝐾𝐾∗(𝐴,𝐵).

It unclear whether it is an advantage or a disadvantage of the framework of ST2s that products and
sums are treated in the same way, in the sense that they have the same effect on the bounding matrix.
The difference is in the support of the operators: for an external product, every operator is supported
on the entire Hilbert module whereas, for the direct sum, the operators have disjoint support. In this
respect, when we come to consider complexes, we will see they behave more like sums than products;
on the other hand, examples coming from the constructive unbounded Kasparov product will behave
more like products than sums.

IV.1.3 Finite summability of strictly tangled spectral triples

The natural notion of dimension in noncommutative geometry is determined from spectral properties
in analogy with the Weyl law. We introduce a notion of summability of an ST2 that takes into account
the different directions by means of a function. To simplify the description, we restrict our discussion
of summability to the Schatten ideals with exponent 𝑝 > 0.

Definition IV.1.27. Assume that 𝑓 ∶ (0,∞)𝑛 → (0,∞) is a function decreasing in each argument. An
ST2 (𝒜,𝐻,𝑫), with 𝒜 unital, is said to be 𝑓-summable if, for 𝒕 = (𝑡1,… , 𝑡𝑛) ∈ (0,∞)𝑛, the domain
inclusion

∩𝑗 dom(|𝐷𝑗|𝑡𝑗) ↪ 𝐻

belongs to the Schatten class ℒ𝑓(𝒕)(∩𝑗 dom(|𝐷𝑗|𝑡𝑗),𝐻), where the left hand side is given the Hilbert
space topology from the intersection of graph topologies.

Example IV.1.28. The notion of 𝑓-summability is for 𝑛 = 1 compatible with the notion of summability
for spectral triples or, more generally, higher order spectral triples. Indeed, if (𝒜,𝐻,𝐷) is a 𝑝-summable
higher order spectral triple then it is an 𝑓-summable ST2 with 𝑛 = 1 for 𝑓(𝑡) = 𝑝/𝑡. Below in §IV.2,
we consider ST2s arising from Hilbert complexes defined from mixed order operators in which case the
function 𝑓 plays a role of controlling different orders of summability in the different directions.

Example IV.1.29. Let us return to the exterior Kasparov product of Theorem IV.1.25. Assume that
(𝒜1,𝐻1, 𝐷1) and (𝒜2,𝐻2, 𝐷2) are two even higher order spectral triples that are summable of order
𝑝1 and 𝑝2 respectively. Their external Kasparov product is represented by the ST2 (𝒜1 ⊗𝒜2,𝐻1 ⊗̃
𝐻2, (𝐷1 ⊗̃ 1, 1 ⊗̃ 𝐷2)). The ST2 (𝒜1 ⊗𝒜2,𝐻1 ⊗̃ 𝐻2, (𝐷1 ⊗̃ 1, 1 ⊗̃ 𝐷2)) will then be 𝑓-summable for any
𝑓 ∶ (0,∞)2 → (0,∞) such that

(1 + |𝐷1|𝑡1 ⊗̃ 1 + 1 ⊗̃ |𝐷2|𝑡2)−1 ∈ ℒ𝑓(𝑡1,𝑡2)(𝐻1 ⊗̃ 𝐻2).

For instance, we could take
𝑓(𝑡1, 𝑡2) ∶=

𝑝1
𝑡1

+ 𝑝2
𝑡2
.
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Example IV.1.30. We return to the direct sum of Theorem IV.1.26. Let us assume that (𝒜1,𝐻1, 𝐷1)
and (𝒜2,𝐻2, 𝐷2) are two higher order spectral triples that are summable of order 𝑝1 and 𝑝2 respectively.
Their direct sum is represented by the ST2 (𝒜1 ⊕ 𝒜2,𝐻1 ⊕ 𝐻2, (𝐷1 ⊕ 0, 0 ⊕ 𝐷2)). The ST2 (𝒜1 ⊕
𝒜2,𝐻1 ⊕𝐻2, (𝐷1 ⊕ 0, 0 ⊕ 𝐷2)) will be 𝑓-summable for any 𝑓 ∶ (0,∞)2 → (0,∞) such that

(1 + |𝐷1|𝑡1)−1 ⊕ (1 + |𝐷2|𝑡2)−1 ∈ ℒ𝑓(𝑡1,𝑡2)(𝐻1) ⊕ ℒ𝑓(𝑡1,𝑡2)(𝐻2).

For instance, we could take

𝑓(𝑡1, 𝑡2) ∶= max{𝑝1
𝑡1
, 𝑝2
𝑡2
}.

If (𝒜,𝐻,𝑫) is 𝑓1-summable and 𝑓2 ≥ 𝑓1, then (𝒜,𝐻,𝑫) is also 𝑓2-summable. The reader should
note that if (𝒜,𝐻,𝑫) is 𝑓-summable then by complex interpolation it is also 𝑓-summable for any
𝑓 > 𝑓0 where 𝑓0 is the homogeneous function of degree −1 given by

𝑓0(𝑡) ∶=
inf𝑠>0 𝑠𝑓(𝑠𝑡|𝑡|−1)

|𝑡|
.

Here | ⋅ | is an arbitrary norm on ℝ𝑛. If the infimum is attained, (𝒜,𝐻,𝑫) is 𝑓0-summable.
The following is immediate from the fact that dom(𝐷𝒕) = ∩𝑗∈𝐼 dom(|𝐷𝑗|𝑡𝑗) for a strictly anticom-

muting 𝑛-tuple (𝐷𝑗)𝑗∈𝐼.

Proposition IV.1.31. Let (𝒜,𝐻,𝑫) be an 𝑓-summable ST2. For 𝒕 ∈ Ω(𝝐), (𝒜,𝐻,𝐷𝒕) is an 𝑓(𝒕)-
summable higher order spectral triple.

IV.1.4 Equivariance of strictly tangled spectral triples

We now come to defining equivariance in strictly tangled spectral triples and, with the applications
to parabolic geometry and dynamics in mind, we allow for conformal actions. In the uniform case,
there are no additional technical issues arising in the equivariant setting. This follows from the same
method of proof as Theorem IV.1.16 (with an application of Remark I.2.8.2 in the nondiscrete group
case). We record this in a Definition and Proposition.

Definition IV.1.32. Let (𝐴,𝐸𝐵,𝑫) be an strictly 𝝐-tangled 𝐴-𝐵-cycle with 𝐸 a 𝐺-equivariant 𝐴-𝐵-
correspondence. We say that (𝐴,𝐸𝐵,𝑫) is uniformly 𝐺-equivariant if 𝐴 is contained in the closure of
𝒬, the set of 𝑎 ∈ End∗(𝐸) such that, for each 𝑖 ∈ 𝐼, 𝑎 dom𝐷𝑖 ⊆ 𝑈𝑔 dom𝐷𝑖 for all 𝑔 ∈ 𝐺 and the maps

𝑔 ↦ (𝑈𝑔𝐷𝑖𝑈∗
𝑔 𝑎 − 𝑎𝐷𝑖)(1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗)

−1
𝑔 ↦ 𝑈𝑔(1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗)

−1
𝑈∗
𝑔 (𝑈𝑔𝐷𝑖𝑈∗

𝑔 𝑎 − 𝑎𝐷𝑖)

are ∗-strongly continuous as maps from 𝐺 into End∗𝐵(𝐸). If 𝑈𝑔𝐷𝑖𝑈 ∗
𝑔 = 𝐷𝑖 for all 𝑖 ∈ 𝐼 and 𝑔 ∈ 𝐺, we

say that the cycle is isometrically equivariant. If 𝒜 is a dense ∗-subalgebra of 𝐴 contained in 𝒬, we
say that (𝒜, 𝐸𝐵,𝑫) is a uniformly 𝐺-equivariant strictly tangled 𝒜-𝐵-cycle.

Proposition IV.1.33. If (𝐴,𝐸𝐵,𝑫) is a uniformly 𝐺-equivariant strictly tangled cycle, the higher
order cycle (𝐴,𝐸𝐵, 𝐷𝒕) is uniformly 𝐺-equivariant for all 𝒕 ∈ Ω(𝝐) ∩ (0, 1]𝐼.

Naïvely, the right way of applying the idea of conformal equivariance to ST2s would seem to be to
have a collection of conformal factors, one for each operator in the collection 𝑫 = (𝐷𝑗)𝑗∈𝐼. Alas, this
idea falls apart already in the simple example of the exterior product of two real line Dirac spectral
triples,

(𝐶∞
𝑐 (ℝ2), 𝐿2(ℝ2) ⊗ ℂ2, (𝜕𝑥1

⊗ 𝛾1, 𝜕𝑥2
⊗ 𝛾2)) ,

whose bounding matrix is 𝝐 = 0. In this simple example the action of ℝ2 by dilation in each direction,
(𝑟1, 𝑟2) ∶ (𝑥1, 𝑥2) ↦ (𝑟1𝑥1, 𝑟2𝑥2), makes any resulting higher order spectral triple fail to be conformally
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ℝ2-equivariant. The source of this problem is actually deeper, however, because the bounded transform
of any resulting higher order spectral triple also cannot be ℝ2-equivariant.

However, under some circumstances, it may be possible to align the conformal factors so that the
resulting higher order spectral triple is conformally equivariant. We will see such a phenomenon for
Carnot groups in Proposition IV.3.11. In the example above with its dilation action, this is possible by
restricting to a subgroup where 𝑟1 = 𝑟𝛼2 , for some fixed 𝛼 ≠ 0. If we choose 𝒕 ∈ ℝ+(1, 𝛼) ⊂ Ω(𝝐) = ℝ2

+,
the higher order spectral triple

(𝐶∞
𝑐 (ℝ2), 𝐿2(ℝ2), sgn(𝜕𝑥1

)|𝜕𝑥1
|𝑡1 ⊗ 𝛾1 + sgn(𝜕𝑥2

)|𝜕𝑥2
|𝑡2 ⊗ 𝛾2)

is conformally equivariant, with conformal factor 𝑟−𝑡1/2
1 = 𝑟−𝑡2/2

2 .
Another example to consider is the direct sum of two real line Dirac spectral triples,

(𝐶∞
𝑐 (ℝ ⊔ ℝ), 𝐿2(ℝ) ⊕ 𝐿2(ℝ), (𝜕𝑥1

⊕ 0, 0 ⊕ 𝜕𝑥2
)) 𝝐 = 0

with an action of ℝ2 by dilation on each corresponding copy of ℝ,

(𝑟1, 𝑟2) ∶ 𝑥1 ↦ 𝑟1𝑥1 𝑥2 ↦ 𝑟2𝑥2 (𝑥1 ∈ ℝ ⊔ ∅, 𝑥2 ∈ ∅ ⊔ ℝ).

Here there is no restriction on 𝒕 ∈ Ω(𝝐) = ℝ2
+, as we may take the conformal factor to be 𝑟−𝑡1/2

1 ⊕𝑟−𝑡2/2
2

on the higher order spectral triple

(𝐶∞
𝑐 (ℝ ⊔ ℝ), 𝐿2(ℝ) ⊕ 𝐿2(ℝ), sgn(𝜕𝑥1

)|𝜕𝑥1
|𝑡1 ⊕ sgn(𝜕𝑥2

)|𝜕𝑥2
|𝑡2) .

Unfortunately, the development of an abstract framework for conformal equivariance of ST2s seems
elusive. The main technical problem is to find conditions guaranteeing that, if 𝑈𝐷𝑈∗ − 𝜇𝐷𝜇∗ is of
‘lower order’, 𝑈|𝐷|𝑡𝑈∗ − 𝜇𝑡|𝐷|𝑡(𝜇∗)𝑡 is also of ‘lower order’. For natural candidate conditions, we have
been able neither to prove such a result in the abstract nor to find a counterexample.

The approach we take in the examples below is to take the following Proposition as giving an ad
hoc notion of a conformally equivariant ST2. Here, we fix 𝒕 and give sufficient conditions for a single
conformal factor (𝜇𝑔)𝑔∈𝐺 to give rise to a conformally equivariant higher order spectral triple at 𝒕.
A more general statement would be possible but this will suffice for our needs. One could view this
approach as similar to the ‘guess-and-check’ method of computing Kasparov products, discussed in
§I.4.

Proposition IV.1.34. Let (𝐴,𝐻,𝑫) be an ST2 with a unitary action of 𝐺 on 𝐻, implementing the
action on 𝐴. Suppose there exists a family (𝜇𝑔)𝑔∈𝐺 of invertible bounded operators such that, for all
𝑔 ∈ 𝐺, 𝜇𝑔, 𝜇∗

𝑔, and 𝑈𝑔 preserve dom𝐷𝑖 for all 𝑖, with

𝑔 ↦ [𝐷𝑖, 𝜇𝑔]⎛⎜
⎝
1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗⎞⎟

⎠

−1

and 𝑔 ↦ [𝐷𝑖, 𝜇∗
𝑔]⎛⎜
⎝
1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗⎞⎟

⎠

−1

defining ∗-strongly continuous maps from 𝐺 into the space of bounded operators on 𝐻. Suppose
furthermore that, for some 𝒕 ∈ Ω(𝝐) ∩ (0, 1]𝐼, the maps

𝑔 ↦ (𝑈𝑔 sgn(𝐷𝑖)|𝐷𝑖|𝑡𝑖𝑈∗
𝑔 − 𝜇𝑔 sgn(𝐷𝑖)|𝐷𝑖|𝑡𝑖𝜇∗

𝑔)⎛⎜
⎝
1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗⎞⎟

⎠

−𝑡𝑖

and

𝑔 ↦ 𝑈𝑔
⎛⎜
⎝
1 +∑

𝑗∈𝐼
|𝐷𝑗|𝜖𝑖𝑗⎞⎟

⎠

−𝑡𝑖

𝑈∗
𝑔 (𝑈𝑔 sgn(𝐷𝑖)|𝐷𝑖|𝑡𝑖𝑈 ∗

𝑔 − 𝜇𝑔 sgn(𝐷𝑖)|𝐷𝑖|𝑡𝑖𝜇∗
𝑔)

are ∗-strongly continuous from 𝐺 into the space of bounded operators on 𝐻. Then (𝐴,𝐻,𝐷𝒕) is a
conformally 𝐺-equivariant higher order spectral triple with conformal factor 𝜇.
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The proof is a straightforward extension of the proof of Theorem IV.1.16. We give in Remark
IV.2.8 a statement in the context of Hilbert complexes. There, we will naturally begin with a collection
of conformal factors which will need to be cajoled into cooperating with one another and so into giving
a single conformal factor 𝜇 for the higher order spectral triple.

IV.2 Examples arising from differential complexes
The main application of strictly tangled spectral triples that we study in this Chapter comes from
Hilbert complexes and, more concretely, Rockland complexes on filtered manifolds. We first present an
abstract framework for Hilbert complexes and proceed to describe it in detail for Rockland complexes.
We here work only with Hilbert spaces and ST2 but it seems likely that our methods could be applied
to Hilbert C*-modules, using [VVD25].

IV.2.1 Hilbert complexes

We first recall the notion of a Hilbert complex. We follow the presentation of [BL92] and refer the
reader there for further details.

Definition IV.2.1. A Hilbert complex

0 → ℋ0
d0
−→ ℋ1

d1
−→ ⋯ℋ𝑛−1

d𝑛−1
−−−→ ℋ𝑛 → 0,

abbreviated as (ℋ•, d•), consists of Hilbert spaces ℋ0,ℋ1,… ,ℋ𝑛 and closed densely defined maps
d𝑖 ∶ ℋ𝑖 99Kℋ𝑖+1 with the property that

Ran(d𝑖−1) ⊆ ker(d𝑖).

We say that (ℋ•, d•) is Fredholm if the cohomology groups

𝐻𝑖(ℋ•, d•) = ker(d𝑖)/Ran(d𝑖−1)

are finite-dimensional. We say that (ℋ•, d•) has discrete spectrum if, for each 𝑖, the self-adjoint
Laplacian d∗𝑖d𝑖 + d𝑖−1d∗𝑖−1, densely defined on ℋ𝑖, has discrete spectrum, i.e. the spectrum consists of
isolated eigenvalues of finite multiplicity.

By [BL92, Theorem 2.4], (ℋ•, d•) is Fredholm if and only if 0 is not in the essential spectrum of
all the Laplacians d∗𝑖d𝑖 + d𝑖−1d∗𝑖−1. In particular, (ℋ•, d•) is Fredholm if it has discrete spectrum. We
shall make use of a construction analogous to Rumin–Seshadri’s construction of Laplacians in the
Rumin complex [RS12]; see also [DH22]. Given parameters 𝒎 = (𝑚0,… ,𝑚𝑛−1) ∈ [1,∞)𝑛 that we
refer to as an order and a Hilbert complex (ℋ•, d•) we define the Rumin Laplacians

Δ𝑅
𝒎,𝑖 = (d∗𝑖d𝑖)𝑎𝑖 + (d𝑖−1d∗𝑖−1)𝑎𝑖−1 ,

where 𝑎𝑖 = ∏𝑙≠𝑖 𝑚𝑙 = 𝑚/𝑚𝑖 for 𝑚 = ∏𝑛
𝑙=1 𝑚𝑙. Clearly, (ℋ•, d•) has discrete spectrum if and only if

all the self-adjoint operators Δ𝑅
𝒎,𝑖 have compact resolvent. We also introduce, for 𝑠 ≥ 0, the abstract

Sobolev spaces
ℋ𝑠

𝑖,𝒎 = dom((Δ𝑅
𝒎,𝑖)𝑠/2𝑚) ⊆ ℋ𝑖.

Definition IV.2.2. Let 𝒜 be a ∗-algebra. A Hilbert complex over 𝒜 of order 𝒎 = (𝑚0,… ,𝑚𝑛−1) ∈
[1,∞)𝑛 is a Hilbert complex

0 → ℋ0
d0
−→ ℋ1

d1
−→ ⋯

d𝑛−2
−−−→ ℋ𝑛−1

d𝑛−1
−−−→ ℋ𝑛 → 0,



156 Chapter IV. Parabolic noncommutative geometry

where each ℋ𝑖 is a left 𝒜-module under ∗-representations

𝜋𝑖 ∶ 𝒜 → 𝔹(ℋ𝑖)

such that, for all 𝑎 ∈ 𝒜, 𝜋𝑖(𝑎) preserves dom(d𝑖) and the densely defined operators

(d𝑖𝜋𝑖(𝑎) − 𝜋𝑖+1(𝑎)d𝑖)(1 + Δ𝒎,𝑖)
1−𝑚𝑖
2𝑚 and

(1 + Δ𝒎,𝑖+1)
1−𝑚𝑖
2𝑚 (d𝑖𝜋𝑖(𝑎) − 𝜋𝑖+1(𝑎)d𝑖)

are norm bounded.
If, for all 𝑠 ≥ 0, 𝜋𝑖(𝑎) preserves the domain of d𝑖 as an operator on the Sobolev spaces ℋ𝑠

𝑖,𝒎 and the
densely defined operator (d𝑖𝜋𝑖(𝑎) − 𝜋𝑖+1(𝑎)d𝑖) (1 +Δ𝒎,𝑖)

1−𝑚𝑖
2𝑚 is continuous in norm ℋ𝑠

𝑖,𝒎 → ℋ𝑠
𝑖+1,𝒎

then we say that (ℋ•, d•) is a regular Hilbert complex over 𝒜 of order 𝒎.

To ease the notation, we drop the representations 𝜋𝑖 when they are clear from the context, writing
[d𝑖, 𝑎] instead of d𝑖𝜋𝑖(𝑎) − 𝜋𝑖+1(𝑎)d𝑖 for 𝑎 ∈ 𝒜.

Lemma IV.2.3. Let (ℋ•, d•) be a Hilbert complex which is Fredholm and of order 𝒎 = (𝑚𝑗)𝑛−1
𝑗=0 ∈

[1,∞)𝑛. With 𝑎𝑖 = ∏𝑙≠𝑖 𝑚𝑙 = 𝑚/𝑚𝑖 for 𝑚 = ∏𝑛−1
𝑙=0 𝑚𝑙. Then, setting 𝐻 = ⨁𝑖 ℋ𝑖 and 𝐷𝑖 = d𝑖 + d∗𝑖 ,

the collection 𝑫 = (𝐷𝑖)𝑛−1
𝑖=0 is a strictly anticommuting collection of selfadjoint operators on 𝐻. Morever,

for any 𝛼 we have that

𝐷𝑖|𝐷𝑖|𝛼 = 𝐷𝑖((Δ𝑅
𝒎,𝑖)𝛼/2𝑎𝑖−1 + (Δ𝑅

𝒎,𝑖−1)𝛼/2𝑎𝑖−1).

Proof. We remark that 𝑎𝑖
1−𝑚𝑖
2𝑚 = 1−𝑚𝑖

2𝑚𝑖
= 1

2(−1 + 1
𝑚𝑖

). Since the Hilbert complex is Fredholm,

(Δ𝑅
𝒎,𝑖)𝛽 = (d∗𝑖d𝑖)𝛽𝑎𝑖 + (d𝑖−1d∗𝑖−1)𝛽𝑎𝑖−1 .

In particular,

𝐷𝑖(Δ𝑅
𝒎,𝑖)𝛽 = d∗𝑖−1(d𝑖−1d∗𝑖−1)𝛽𝑎𝑖−1 and 𝐷𝑖(Δ𝑅

𝒎,𝑖−1)𝛽 = d𝑖−1(d∗𝑖−1d𝑖−1)𝛽𝑎𝑖−1 .

On the other hand,
|𝐷𝑖|𝛼 = (d∗𝑖−1d𝑖−1)𝛼/2 + (d𝑖−1d∗𝑖−1)𝛼/2

so
𝐷𝑖|𝐷𝑖|𝛼 = d𝑖−1(d∗𝑖−1d𝑖−1)𝛼/2 + d∗𝑖−1(d𝑖−1d∗𝑖−1)𝛼/2

and the Lemma follows.

Theorem IV.2.4. Let (ℋ•, d•) be a Hilbert complex over 𝒜 of order 𝒎 with discrete spectrum. We set
𝐻 = ⨁𝑖 ℋ𝑖 and write 𝑫 = (𝐷𝑖)𝑛−1

𝑖=0 for the collection 𝐷𝑖 = d𝑖 + d∗𝑖 . It then holds that the collection
(𝒜,𝐻,𝐷) is a ST2 with bounding matrix 𝝐 = (𝜖𝑖𝑗)𝑛−1

𝑖,𝑗=0 where

𝜖𝑖𝑗 =
⎧{
⎨{⎩

𝑚𝑖−1
𝑚𝑗

𝑗 = 𝑖 − 1, 𝑖, 𝑖 + 1
0 otherwise.

(IV.2.5)

Furthermore, if (ℋ•, d•) is regular, (𝒜,𝐻,𝑫) is 𝝆-preserving for 𝝆 = (∞,… ,∞).

Proof. We have that the bounding matrix (IV.2.5) satisfies the decreasing cocycle condition by the
same argument as in (IV.1.11) (with the first equality of (IV.1.11) replaced by an upper bound). Since
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(ℋ•, d•) has discrete spectrum, what remains to prove is the commutator condition. And (ℋ•, d•) is a
Hilbert complex over 𝒜 of order 𝒎, so

[d𝑖, 𝑎](1 + Δ𝒎,𝑖)
1−𝑚𝑖
2𝑚 = [d𝑖, 𝑎](1 + Δ𝒎,𝑖)

1
2𝑚− 1

2𝑎𝑖 and

(1 + Δ𝒎,𝑖+1)
1−𝑚𝑖
2𝑚 [d𝑖, 𝑎] = (1 + Δ𝒎,𝑖+1)

1
2𝑚− 1

2𝑎𝑖 [d𝑖, 𝑎]

are bounded. Since Δ𝑅
𝒎,𝑖 = (d∗𝑖d𝑖)𝑎𝑖 + (d𝑖−1d∗𝑖−1)𝑎𝑖−1 , we conclude from the boundedness of the first

operator that

[d𝑖, 𝑎] (1 + |𝐷𝑖|
1− 1

𝑚𝑖−1 + |𝐷𝑖+1|
1−𝑚𝑖−1

𝑚𝑖 )
−1

is bounded and from the boundedness of the second operator that

[d∗𝑖 , 𝑎] (1 + |𝐷𝑖|
1− 1

𝑚𝑖−1 + |𝐷𝑖−1|
1−𝑚𝑖−1
𝑚𝑖−2 )

−1

is bounded.

For instance, for a complex with 𝑛 = 5, the graph corresponding to the bounding matrix would be

𝑚0−1
𝑚1

𝑚1−1
𝑚2

𝑚2−1
𝑚3

𝑚3−1
𝑚4

𝑚4−1
𝑚3

𝑚3−1
𝑚2

𝑚2−1
𝑚1

𝑚1−1
𝑚0

𝑚0−1
𝑚0

𝑚1−1
𝑚1

𝑚2−1
𝑚2

𝑚3−1
𝑚3

𝑚4−1
𝑚4

.

Remark IV.2.6. If (ℋ•, d•) is a Hilbert complex with discrete spectrum over 𝒜, there are multiple ways
of grading the ST2 (𝒜,𝐻,𝑫). The first option is to use the grading coming from the complex in which

𝐻+ = ⨁
𝑖

ℋ2𝑖 𝐻− = ⨁
𝑖

ℋ2𝑖+1.

Another option arises if (ℋ•, d•) satisfies a mild strengthening of Poincaré duality; see [BL92, Lemma
2.16]. Assume that we have 𝒜-linear unitaries 𝛾𝑖 ∶ ℋ𝑖 → ℋ𝑛−𝑖 such that

d∗𝑛−𝑖−1𝛾𝑖 = −𝛾𝑖+1d𝑖 and 𝛾𝑛−𝑖𝛾𝑖 = 1ℋ𝑖
.

We can then define a symmetry 𝛾 = ⨁𝛾𝑗 on 𝐻 that anticommutes with 𝐷𝑗, for 𝑗 = 1,… , 𝑛. In
particular, 𝛾 grades 𝐻 in such a way that the ST2 constructed in Theorem IV.2.4 forms an even ST2.
This construction is analogous to the grading induced from the Hodge star on differential forms defining
the signature operator from the Hodge–de Rham operator.

Proposition IV.2.7. Assume that (𝒜,𝐻,𝑫) is an ST2 defined from a Hilbert complex with discrete
spectrum (ℋ•, d•) over 𝒜 of order 𝒎 and bounding matrix 𝝐 as in (IV.2.5). Then, for any 𝜏 > 0,

𝒕𝒎(𝜏) ∶= ( 𝜏
𝑚0

, 𝜏
𝑚1

,… , 𝜏
𝑚𝑛−1

) ∈ Ω(𝝐)

and

𝐷𝒕𝒎(𝜏) =
𝑛−1
∑
𝑖=0

d𝑖(Δ𝑅
𝒎,𝑖)

𝜏−𝑚𝑖
2𝑚 + d∗𝑖 (Δ𝑅

𝒎,𝑖+1)
𝜏−𝑚𝑖
2𝑚 .

Proof. We see that 𝒕𝒎(𝜏) ∈ Ω(𝝐) since 𝜏
𝑚𝑗

> 𝑚𝑖−1
𝑚𝑗

𝜏
𝑚𝑖

and the expression for 𝐷𝒕𝒎(𝜏) follows from
Lemma IV.2.3.
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Recall the weak Hodge decomposition of [BL92, Lemma 2.1],

ℋ𝑖 = ℋ𝑖 ⊕ imd𝑖−1 ⊕ imd∗𝑖

where ℋ𝑖 = ker d𝑖 ∩ ker d∗𝑖−1 = kerΔ𝑅
𝒎,𝑖. Note that if (ℋ•, d•) is Fredholm, e.g. if it has discrete

spectrum, the ranges are automatically closed with

imd𝑖−1 = (ker d∗𝑖−1)⟂ and imd∗𝑖 = (ker d𝑖)⟂.

We can build up a conformally equivariant higher order spectral triple by specifying conformal factors
on each part of the decomposition.

Remark IV.2.8. Let 𝒜 be a unital ∗-algebra with an action of a locally compact group 𝐺. Let

0 → ℋ0
d0
−→ ℋ1

d1
−→ ⋯

d𝑛−2
−−−→ ℋ𝑛−1

d𝑛−1
−−−→ ℋ𝑛 → 0

be a Hilbert complex over 𝒜 of order 𝒎 with a unitary action 𝑈𝑖 of 𝐺 on each ℋ𝑖 intertwining the
representation of 𝒜 and preserving the domains of d•.

Let (𝜈𝑖,𝑔)𝑔∈𝐺 ⊂ 𝔹(imd∗𝑖 ) and (𝜈𝑖)𝑔∈𝐺 ⊂ 𝔹(imd𝑖−1) be families of invertible operators, all of them
and their adjoints preserving the domains of d•, such that the densely defined operators

(𝜈𝑖+1,𝑔d𝑖 − d𝑖𝜈𝑖,𝑔) (1 + Δ𝒎,𝑖)
1−𝑚𝑖
2𝑚 and (1 + Δ𝒎,𝑖+1)

1−𝑚𝑖
2𝑚 (𝜈𝑖+1,𝑔d𝑖 − d𝑖𝜈𝑖,𝑔)

are in fact bounded and define ∗-strongly continuous functions 𝐺 → 𝔹(ℋ𝑖,ℋ𝑖+1). Suppose that, for
some 𝒕 ∈ Ω(𝝐), the densely defined operators

(𝑈𝑖+1,𝑔d𝑖(Δ𝑅
𝒎,𝑖)

−1+𝑡𝑖
2𝑚 𝑚𝑖𝑈∗

𝑖,𝑔 − 𝜈𝑖+1,𝑔d𝑖(Δ𝑅
𝒎,𝑖)

−1+𝑡𝑖
2𝑚 𝑚𝑖𝜈𝑖,𝑔) (1 + Δ𝒎,𝑖)

1−𝑚𝑖
2𝑚 𝑡𝑖 and

(1 + Δ𝒎,𝑖)
1−𝑚𝑖
2𝑚 𝑡𝑖 (𝑈𝑖+1,𝑔d𝑖(Δ𝑅

𝒎,𝑖)
−1+𝑡𝑖
2𝑚 𝑚𝑖𝑈∗

𝑖,𝑔 − 𝜈𝑖+1,𝑔d𝑖(Δ𝑅
𝒎,𝑖)

−1+𝑡𝑖
2𝑚 𝑚𝑖𝜈𝑖,𝑔)

are in fact bounded and define ∗-strongly continuous functions 𝐺 → 𝔹(ℋ𝑖,ℋ𝑖+1). Then (𝒜,𝐻,𝐷𝒕) is
conformally equivariant with conformal factor

𝜇 = ⨁
𝑗

𝜈𝑗 + 𝜈𝑗 + 𝑃ℋ𝑗

by Proposition IV.1.34.

IV.2.2 The Heisenberg calculus

In §IV.2.3, we shall study Rockland sequences on filtered manifolds. Rockland sequences were studied
in detail in Dave and Haller’s work [DH22]. The associated analysis relies heavily on van Erp and
Yuncken’s Heisenberg calculus [EY17a] on a filtered manifold. Filtered manifolds are known also as
Carnot manifolds, and relate to the equiregular differential systems of sub-Riemannian geometry.

Let us therefore outline the geometry of filtered manifolds and their Heisenberg calculus. We refer
the details to the literature [DH22, GK24, EY17a]. A filtered manifold is a manifold 𝑋 whose tangent
bundle is equipped with a filtering

𝑇𝑋 = 𝑇−𝑟𝑋 ⊋ 𝑇−𝑟+1𝑋 ⊋ … ⊋ 𝑇−2𝑋 ⊋ 𝑇−1𝑋 ⊋ 0

of subbundles such that [𝑇−𝑗𝑋,𝑇−𝑘𝑋] ⊆ 𝑇−𝑗−𝑘𝑋 for any 𝑗, 𝑘. We call 𝑟 the depth of 𝑋. We write

𝔱𝐻𝑋 = ⨁
𝑗

𝑇−𝑗𝑋/𝑇−𝑗+1𝑋
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for the associated graded bundle. Taking commutators of vector fields induces a fibrewise Lie bracket
on 𝔱𝐻𝑋, making 𝔱𝐻𝑋 → 𝑋 a Lie algebroid. The fibres are nilpotent of step length at most 𝑟, so the
Baker–Campbell–Hausdorff formula implies that 𝔱𝐻𝑋 integrates to a Lie groupoid 𝑇𝐻𝑋 ⇉ 𝑋 (with
the same range and source map). Concretely, as a fibre bundle, 𝑇𝐻𝑋 = 𝔱𝐻𝑋. However, 𝑇𝐻𝑋 carries
a fibrewise polynomial group operation defined from the Baker–Campbell–Hausdorff formula and
the commutator of vector fields modulo lower order terms in the filtration. We call 𝑇𝐻𝑋 ⇉ 𝑋 the
osculating Lie groupoid. The osculating Lie groupoid carries an ℝ+-action 𝛿 defined from integrating
the ℝ+-action on 𝔱𝐻𝑋 defined from its grading.

The Heisenberg calculus on a filtered manifold introduced by van Erp and Yuncken [EY17a] is
built from operators whose Schwartz kernels in appropriate exponential coordinates are defined from
𝑟-fibred distributions on 𝑇𝐻𝑋 that expand asymptotically into a sum of almost homogeneous fibrewise
convolution operators. A way to formalize this statement uses van Erp and Yuncken’s parabolic tangent
groupoid [EY17b], a Lie groupoid 𝕋𝐻𝑋 ⇉ 𝑋 × [0,∞). As a set,

𝕋𝐻𝑋 = 𝑇𝐻𝑋 × {0} ⊔ 𝑋 ×𝑋 × (0,∞),

with the groupoid structure of 𝑇𝐻𝑋 on the first component and the pair groupoid structure on the
second component. The Lie groupoid structure on 𝕋𝐻𝑋 ⇉ 𝑋 × [0,∞) is defined using a blowup in
exponential coordinates defined from a graded connection. The parabolic tangent groupoid carries an
ℝ×

+-action called the zoom action, which by an abuse of notation we also denote by 𝛿, acting by

𝛿𝜆 ∶ (𝑥, 𝑣, 0) ↦ (𝑥, 𝛿𝜆(𝑣), 0) (𝑥, 𝑦, 𝑡) ↦ (𝑥, 𝑦, 𝜆−1𝑡).

A Heisenberg pseudodifferential operator 𝑇 of order 𝑚 is defined to be an operator on 𝐶∞(𝑋) whose
Schwartz kernel 𝑘𝑇 ∈ 𝒟′(𝑋 ×𝑋) can be written as the evaluation at 𝑡 = 1 of a properly supported,
𝑟-fibred distribution 𝐾 ∈ 𝒟′

𝑟 (𝕋𝐻𝑋) which is homogeneous of order 𝑚 modulo properly supported
elements under the zoom action. In exponential coordinates, we can Taylor expand such a 𝐾 at 𝑡 = 0
and arrive at an asymptotic sum

𝐾(𝑥, 𝑣, 𝑡) ∼
∞
∑
𝑗=0

𝑡𝑗𝑘𝑗(𝑥, 𝑣), (IV.2.9)

where 𝑘𝑗 ∈ ℰ′
𝑟(𝑇𝐻𝑋) is homogenenous modulo 𝐶∞

𝑐 (𝑇𝐻𝑋) of degree 𝑚− 𝑗. Here 𝐾 and the collection
(𝑘𝑗)∞𝑗=0 are uniquely determined by 𝑘𝑇 modulo respectively properly and compactly supported smooth
elements. Writing Ψ𝑚

𝐻 (𝑋) for the space of Heisenberg pseudodifferential operators of order 𝑚, we
arrive at a short exact sequence

0 → Ψ𝑚−1
𝐻 (𝑋) → Ψ𝑚

𝐻 (𝑋)
𝜎𝑚
𝐻

−−→ Σ𝑚
𝐻(𝑋) → 0,

where Σ𝑚
𝐻(𝑋) ⊆ ℰ′

𝑟(𝑇𝐻𝑋)/𝐶∞
𝑐 (𝑇𝐻𝑋) consists of elements homogenenous of degree 𝑚. The map 𝜎𝑚

𝐻
is called the principal symbol and is defined by 𝜎𝑚

𝐻 (𝑇 ) ∶= [𝑘0] for 𝑘0 the leading term in (IV.2.9). A
composition of Heisenberg pseudodifferential operators of order 𝑚 and 𝑚′ respectively as operators on
𝐶∞(𝑋) is again a Heisenberg pseudodifferential operator but of order 𝑚+𝑚′. The principal symbol
respects products in the sense that

𝜎𝑚+𝑚′

𝐻 (𝑇𝑇 ′) = 𝜎𝑚
𝐻 (𝑇 ) ∗ 𝜎𝑚′

𝐻 (𝑇 ′), 𝑇 ∈ Ψ𝑚
𝐻 (𝑋), 𝑇 ′ ∈ Ψ𝑚′

𝐻 (𝑋)

where ∗ denotes groupoid convolution on 𝑇𝐻𝑋.
We can realize the principal symbol algebra in a more concrete way. Write 𝒮(𝑇𝐻𝑋) ⊆ 𝐶∞(𝑇𝐻𝑋)

for the space of fibrewise Schwarz functions: functions that together with their derivatives decay faster
than the reciprocal of any polynomial in the fibre. We define 𝒮0(𝑇𝐻𝑋) to consist of those functions
𝑓 ∈ 𝒮(𝑇𝐻𝑋) such that for any 𝑥 ∈ 𝑋 and any polynomial 𝑝 on 𝑇𝑥𝑋 we have

∫
𝑇𝑥𝑋

𝑝(𝑣)𝑓(𝑥, 𝑣)d𝑣 = 0.
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The space 𝒮0(𝑇𝐻𝑋) is closed under convolution and is dense in the ideal of 𝐶∗(𝑇𝐻𝑋) of elements
vanishing in the fibrewise trivial representations. We embed Σ𝑚

𝐻(𝑋) in the multipliers of 𝒮0(𝑇𝐻𝑋) as
follows. Any element 𝑘 ∈ Σ𝑚

𝐻(𝑋) can be represented near the zero section 𝑋 ⊆ 𝑇𝐻𝑋 by an 𝑟-fibred
distribution 𝑘̂ ∈ 𝒟′

𝑟 (𝑇𝐻𝑋) of the form

𝑘̂ = 𝑘̂0 + 𝑝 log | ⋅ |,

where 𝑘̂0 is homogeneous of degree 𝑚, 𝑝 is fibrewise polynomial and where | ⋅ | is a fibrewise gauge
(smooth outside the zero section and homogeneous of degree 1). Upon fixing | ⋅ |, the distribution 𝑘̂ is
unique up to a fibrewise polynomial. In particular, the muliplier on 𝒮0(𝑇𝐻𝑋) defined by convolution
by 𝑘̂ depends only on 𝑘 ∈ Σ𝑚

𝐻(𝑋).
To understand further the principal symbol, we study its action in localizations of 𝒮0(𝑇𝐻𝑋) in

its ∗-representations. Whenever (𝜋,ℋ) is a unitary representation of a nilpotent group 𝐺, we write
𝒮0(𝜋) = 𝜋(𝒮0(𝐺))ℋ. If 𝜋 does not weakly contain the trivial representation, 𝒮0(𝜋) = 𝜋(𝒮(𝐺))ℋ and
is dense in ℋ. Moreover, any multiplier 𝑘 of 𝒮0(𝐺) localizes to an operator 𝜋(𝑘) on ℋ with domain
𝒮0(𝜋) defined by 𝜋(𝑘)(𝜋(𝑎)𝜉) = 𝜋(𝑘 ∗ 𝑎)𝜉 for 𝑎 ∈ 𝒮0(𝐺) and 𝜉 ∈ ℋ. We can therefore for a Heisenberg
pseudodifferential operator 𝑇 of order 𝑚, 𝑥 ∈ 𝑋 and a unitary representation 𝜋 of (𝑇𝐻𝑋)𝑥, define the
represented symbol

𝜎𝑚
𝐻 (𝑇 , 𝜋) = 𝜋(𝜎𝑚

𝐻 (𝑇 )) ∶ 𝒮0(𝜋) → 𝒮0(𝜋).

The discussion above readily extends to operators on vector bundles. We denote the space of Heisenberg
pseudodifferential operators of order 𝑚 from the vector bundle 𝐸1 to 𝐸2 by Ψ𝑚

𝐻 (𝑋;𝐸1, 𝐸2). We recall
the following important definition.

Definition IV.2.10. Let 𝑋 be a filtered manifold and 𝐸1, 𝐸2 → 𝑋 two vector bundles. Assume that
𝑇 ∶ 𝐶∞(𝑋,𝐸1) → 𝐶∞(𝑋,𝐸2) is a Heisenberg pseudodifferential operator of order 𝑚. We say that 𝑇
satisfies the Rockland condition if, for any 𝑥 ∈ 𝑋 and any irreducible, non-trivial, unitary representation
𝜋 of (𝑇𝐻𝑋)𝑥, the represented symbol

𝜎𝑚
𝐻 (𝑇 , 𝜋) = 𝜋(𝜎𝑚

𝐻 (𝑇 )) ∶ 𝒮0(𝜋) ⊗ 𝐸1,𝑥 → 𝒮0(𝜋) ⊗ 𝐸2,𝑥

is injective. If the represented symbol in all points and all irreducible, non-trivial, unitary representations
is bijective then we say that 𝑇 is 𝐻-elliptic.

Operators in the Heisenberg calculus act continuously in a scale of Sobolev spaces adapted to the
filtering. Fix a volume density on 𝑋. Following [DH19, DH22], we know that there exists a family
of 𝐻-elliptic operators (𝐴𝑡)𝑡∈ℝ (in fact the complex powers of a single 𝐻-elliptic operator) that we
can assume satisfies 𝐴0 = 1. We define 𝑊 𝑠

𝐻(𝑋) = 𝐴−𝑠𝐿2(𝑋) ⊆ 𝒟′(𝑋) with inner product defined by
declaring 𝐴𝑠 ∶ 𝑊 𝑠

𝐻(𝑋) → 𝐿2(𝑋) unitary. A similar definition can be made also for vector bundles. Any
𝑇 ∈ Ψ𝑚

𝐻 (𝑋;𝐸1, 𝐸2) extends by density to a continuous operator

𝑇 ∶ 𝑊 𝑠1
𝐻 (𝑋;𝐸1) → 𝑊 𝑠2

𝐻 (𝑋;𝐸2)

as soon as 𝑠1 +𝑚 ≥ 𝑠2 and a compact operator when 𝑠1 +𝑚 > 𝑠2.

Theorem IV.2.11. Let 𝑋 be a closed filtered manifold equipped with a volume density, let 𝐸1, 𝐸2 → 𝑋 be
two hermitian vector bundles, and let 𝑇 ∶ 𝐶∞(𝑋,𝐸1) → 𝐶∞(𝑋,𝐸2) be a Heisenberg pseudodifferential
operator of order 𝑚. Then the following are equivalent:

1. 𝑇 and 𝑇 ∗ satisfy the Rockland condition;
2. 𝑇 is 𝐻-elliptic;
3. 𝑇 ∶ 𝑊 𝑠

𝐻(𝑋;𝐸1) → 𝑊 𝑠−𝑚
𝐻 (𝑋;𝐸2) is Fredholm for some 𝑠; and

4. 𝑇 ∶ 𝑊 𝑠
𝐻(𝑋;𝐸1) → 𝑊 𝑠−𝑚

𝐻 (𝑋;𝐸2) is Fredholm for all 𝑠.



IV.2. Examples arising from differential complexes 161

Moreover, 𝐻-elliptic operators are hypoelliptic and admit parametrices in the Heisenberg calculus.

Here it is clear that 4. implies 3. and 2. implies 1.. That 3. implies 2. is proven in [AMY22] and
that 1. implies 4. is proven in [DH22].

For summability results of spectral triples and ST2s on filtered manifolds, we will use Dave–Haller’s
Weyl law in the Heisenberg calculus [DH19]. Its statement gives a leading term in the eigenvalue of
positive, even-order, 𝐻-elliptic, differential operators in the Heisenberg calculus. For a filtered manifold
𝑋, we define its homogeneous dimension as

dimℎ(𝑋) = ∑
𝑗

𝑗 rk(𝑇−𝑗𝑋/𝑇−𝑗+1𝑋). (IV.2.12)

Dave and Haller’s Weyl law [DH19] implies that if 𝑇 ∈ Ψ𝑚
𝐻 (𝑋;𝐸1, 𝐸2) for an 𝑚 < 0 then

𝜇𝑘(𝑇 ) = 𝑂(𝑘dimℎ(𝑋)/𝑚). (IV.2.13)

In particular, for 𝑚 < 0,

Ψ𝑚
𝐻 (𝑋;𝐸1, 𝐸2) ⊆ ℒ𝑝(𝐿2(𝑋,𝐸1), 𝐿2(𝑋,𝐸2)) (𝑝 > −dimℎ(𝑋)/𝑚).

IV.2.3 Strictly tangled spectral triples for Rockland complexes

We now turn to studying Rockland complexes in earnest. They play the role of elliptic complexes on
filtered manifolds. We start by recalling the definition and proceed to place it in the context of the
preceding subsection by building ST2s for filtered manifolds.

Definition IV.2.14. Consider a collection 𝐸• = (𝐸0, 𝐸1,… ,𝐸𝑛) of hermitian vector bundles 𝐸𝑗 → 𝑋
and numbers 𝒎 = (𝑚0,… ,𝑚𝑛−1) ∈ (0,∞)𝑛. We let

d• ∶ 0 → 𝐶∞(𝑋;𝐸0)
d0
−→ 𝐶∞(𝑋;𝐸1)

d1
−→ ⋯

⋯
d𝑛−2
−−−→ 𝐶∞(𝑋;𝐸𝑛−1)

d𝑛−1
−−−→ 𝐶∞(𝑋;𝐸𝑛) → 0 (IV.2.15)

be a complex with maps d𝑗 ∈ Ψ𝑚𝑗
𝐻 (𝑋;𝐸𝑗, 𝐸𝑗+1). We say that the complex d• in Equation (IV.2.15) is

a Rockland complex if the symbol sequence 𝜎𝐻(d•) defined by

𝜎𝐻(d•) ∶ 0 → 𝒮0(𝑇𝐻𝑋;𝐸0)
𝜎𝑚0
𝐻 (d0)

−−−−−→ 𝒮0(𝑇𝐻𝑋;𝐸1)
𝜎𝑚1
𝐻 (d1)

−−−−−→ ⋯

⋯
𝜎𝑚𝑛−2
𝐻 (d𝑛−2)

−−−−−−−−→ 𝒮0(𝑇𝐻𝑋;𝐸𝑛−1)
𝜎𝑚𝑛−1
𝐻 (d𝑛−1)

−−−−−−−−→ 𝒮0(𝑇𝐻𝑋;𝐸𝑛) → 0 (IV.2.16)

is localized to an exact sequence by any non-trivial, irreducible, unitary representation of the osculating
Lie groupoid 𝑇𝐻𝑋. We say that 𝒎 is the order of d•.

There are many interesting examples of Rockland sequences. As shown in [DH22], and further
discussed in [Gof24], there is a general procedure for producing (graded) Rockland complexes via Čap,
Slovák, and Souček’s [ČSS01] (curved) BGG complexes. The notion of a graded Rockland complex is
more general than that of a Rockland complex and arises from internal gradings in the bundles 𝐸𝑗. For
a curved BGG complex to be Rockland, and not just graded Rockland, all the bundles 𝐸0, 𝐸1,… ,𝐸𝑛
need to be constantly graded, corresponding to 𝔱𝐻𝑋 having pure cohomology groups [Hal22, §3.7].
This is known to hold for trivially filtered manifolds (where Rockland means elliptic), for contact
manifolds, for generic rank-two distributions in dimension five, and for parabolic geometries of the
same type as the full complex flag manifold of 𝑆𝐿(3,ℂ) (as implicitly used in [Yun11]). We discuss
contact manifolds in more detail below in §IV.2.4 and generic rank two distributions in dimension five
in Example IV.2.19.
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For the purpose of completing a Rockland complex into a Hilbert complex, we will henceforth fix a
volume density on 𝑋 and hermitian metrics on all the vector bundles 𝐸0, 𝐸1,… ,𝐸𝑛 → 𝑋, giving us
Hilbert spaces 𝐿2(𝑋;𝐸0),… , 𝐿2(𝑋;𝐸𝑛). By an abuse of notation, we write also d𝑗 for the closure of
d𝑗 as a densely defined operator

d𝑗 ∶ 𝐿2(𝑋;𝐸𝑗) 99K 𝐿2(𝑋;𝐸𝑗+1).

The Hilbert complex associated with a Rockland complex (𝐶∞(𝑋;𝐸•), d•) is given by

0 → 𝐿2(𝑋;𝐸0)
d0
−→ 𝐿2(𝑋;𝐸1)

d1
−→ ⋯

d𝑛−1
−−−→ 𝐿2(𝑋;𝐸𝑛) → 0.

Theorem IV.2.17. Assume that (𝐶∞(𝑋;𝐸•), d•) is a Rockland complex where all differentials are
differential operators and 𝑋 is compact. The Hilbert complex associated with a Rockland complex
(𝐶∞(𝑋;𝐸•), d•) of order 𝒎 = (𝑚1,… ,𝑚𝑛) is a regular Hilbert complex with discrete spectrum of
order 𝒎 over 𝐶∞(𝑋). In particular, with a Rockland complex we can associate the 𝑓-summable ST2

(𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝑫) where 𝑫 = (d𝑗 + d∗𝑗)𝑛−1
𝑗=0 and

𝑓(𝒕) > min𝑗
𝑚𝑗 dimℎ(𝑋)

𝑡𝑗
.

Proof. The result will, upon checking the definition, follow from Theorem IV.2.4. Chasing through the
definitions, we see that the Hilbert complex associated with a Rockland complex is a regular Hilbert
complex over 𝐶∞(𝑋) as soon as the Rumin Laplacians are hypoelliptic of order 2𝑚. Indeed, if this is
the case then, since the Rumin Laplacians additionally are even order differential operators, [DH19,
Theorem 2] implies that (Δ𝑅

𝒎,𝑖)
𝛽

2𝑚 ∈ Ψ𝛽
𝐻(𝑋,𝐸𝑖). The Theorem follows from order considerations in

the Heisenberg calculus. The Rumin Laplacians are hypoelliptic by [DH22, Lemma 2.14].
We note the finite summability statement follows from (IV.2.13). Indeed, if we set 𝛿(𝒕) ∶=

min𝑗
𝑚𝑗 dimℎ(𝑋)

𝑡𝑗
the interpolation as in Lemma IV.1.5 and (IV.2.13) implies that 𝜇𝑘((1 + Δ𝑫

𝒕 )−1) =
𝑂(𝑘−𝛿(𝒕)) as 𝑘 → +∞. In particular, (1 + Δ𝑫

𝒕 )−1 ∈ ℒ𝑝 for any 𝑝 > 𝛿(𝒕).

Remark IV.2.18. In the construction of Theorem IV.2.17 we group together the differentials in the
easiest way possible, following Theorem IV.2.4. We can in general group together the differentials
more efficiently, e.g. below in §IV.2.4 when studying the Rumin complex on a contact manifold we will
group together the differentials into only two self-adjoint operators. If (𝐶∞(𝑋;𝐸•), d•) is a Rockland
complex of order 𝒎 = (𝑚0,… ,𝑚𝑛−1), we can consider a partition

{0,… , 𝑛 − 1} =
𝑛0

⨆
𝑙=1

𝑆𝑙,

such that 𝑚𝑖 = 𝑚𝑗 whenever 𝑖 and 𝑗 belong to the same set 𝑆𝑙. Then the collection 𝑫̃ ∶= (∑𝑗∈𝑆𝑙
d𝑗 +

d∗𝑗)
𝑛0
𝑙=1 also fits into an ST2 (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗), 𝑫̃). The bounding matrix 𝝐 = (𝜖𝑙𝑘)

𝑛0
𝑙,𝑘=1 for 𝑫̃ is

similar to (IV.2.5) and is given by

𝜖𝑙𝑘 ∶=
⎧{
⎨{⎩

𝑚𝑖−1
𝑚𝑗

if there are 𝑖 ∈ 𝑆𝑙 and 𝑗 ∈ 𝑆𝑘 with |𝑗 − 𝑖| ≤ 1,
0 otherwise.

Example IV.2.19. Let us describe the Rockland complex constructed from the BGG complex on a
generic rank two distribution in dimension five, i.e. a parabolic geometry of type (𝐺2, 𝑃 ) where 𝐺2
is the split real form of the indicated exceptional Lie group and 𝑃 the maximal parabolic subgroup
corresponding to the shorter simple root. We aim only at describing the overall structure and refer the
details to [DH22, Example 4.21] (see also Example 4.24 in the arXiv version [DH17] of [DH22] and
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further computational details in its appendix). Let 𝑋 be a five dimensional manifold filtered by a
generic rank two distribution throughout the example. We also fix a finite-dimensional representation
𝑉 of 𝐺2. The BGG complex of 𝑋 looks like

0 → 𝐶∞(𝑋;𝐸0)
d0
−→ 𝐶∞(𝑋;𝐸1)

d1
−→ 𝐶∞(𝑋;𝐸2)

d2
−→ 𝐶∞(𝑋;𝐸3)

d3
−→ 𝐶∞(𝑋;𝐸4)

d4
−→ 𝐶∞(𝑋;𝐸5) → 0,

where 𝐸𝑗 → 𝑋 is a bundle induced from the parabolic structure and the cohomology group 𝐻𝑗(𝔭+, 𝑉 ).
The BGG complex is by [DH22] a Rockland sequence of order

𝒎 = (1, 3, 2, 3, 1).

To understand the principal symbol structure of the BGG complex of 𝑋, one uses the fact that 𝑋
locally admits filtered charts modelled on the nilpotent chart 𝑁 ⊆ 𝐺2/𝑃 arising from the open, dense
Bruhat cell 𝑁𝑀𝐴𝑁 ⊆ 𝐺2. In these charts, [DH22, Example 4.21] explicitly describes 𝜎𝑚𝑗

𝐻 (d𝑗) in terms
of elements of the universal enveloping Lie algebra of 𝑁.

In this example, we have the bounding matrix

𝝐 =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
2 2

3 1 0 0
0 1

3
1
2

1
3 0

0 0 1 2
3 2

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

and the associated weighted digraph takes the form

1 1
3

2

1
1
32

2
3

1
2

2
3

.

We now turn to discussing two special cases of Theorem IV.2.17. We produce two higher order
spectral triples from Rockland complexes, the first with an 𝐻-elliptic Heisenberg pseudodifferential
operator and the second with a differential operator.

Corollary IV.2.20. Let (𝐶∞(𝑋;𝐸•), d•) be a Rockland complex where all differentials are differential
operators. For any order 𝜏 > 0, we can form the higher order spectral triple (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝜏),
𝑝-summable for 𝑝 > dimℎ(𝑋)

𝜏 , from the 𝐻-elliptic Heisenberg operator

𝐷𝜏 ∶= 𝐷𝒕𝒎(𝜏) ≡
𝑛−1
∑
𝑖=0

d𝑖(Δ𝑅
𝒎,𝑖)

𝜏−𝑚𝑖
2𝑚 + d∗𝑖 (Δ𝑅

𝒎,𝑖+1)
𝜏−𝑚𝑖
2𝑚 ∈ Ψ𝜏

𝐻(𝑋,⊕𝑗𝐸𝑗).

Any 𝐻-elliptic Heisenberg operator of an order 𝜏 > 0 defines a 𝑝-summable higher order spectral
triple for 𝑝 > dimℎ(𝑋)

𝜏 , so Corollary IV.2.20 follows from the construction implying that 𝐷𝜏 is 𝐻-elliptic
of order 𝜏 > 0. On the other hand, Theorem IV.1.16 together with Theorem IV.2.17 implies the next
Corollary which allows us to construct from a Rockland complex a higher order spectral triple with a
differential operator as its Dirac operator.

Corollary IV.2.21. If (𝐶∞(𝑋;𝐸•), d•) is a Rockland complex where all differentials are differential
operators, there exist odd integers 𝒌 = (2𝑘𝑗 + 1)𝑗 ∈ Ω(𝝐) ∩ (2ℕ + 1)𝑛 so that the differential operator

𝐷𝒌 ∶=
𝑛−1
∑
𝑖=0

𝐷2𝑘𝑖+1
𝑖 ∶ 𝐶∞(𝑋;⊕𝑗𝐸𝑗) → 𝐶∞(𝑋;⊕𝑗𝐸𝑗)

defines a higher order spectral triple (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝒌).
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We end this section by describing the K-homology class associated with a Rockland complex via
Corollary IV.1.24 and Theorem IV.2.17.

Theorem IV.2.22. Assume that (𝐶∞(𝑋;𝐸•), d•) is a Rockland complex where all differentials
are differential operators and write (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝑫) for its associated ST2 graded by
𝐿2(𝑋;⊕𝑗𝐸𝑗) = 𝐿2(𝑋;⊕𝑗𝐸2𝑗) ⊕ 𝐿2(𝑋;⊕𝑗𝐸2𝑗+1). Take a 𝒕 ∈ Ω(𝝐). The class of the higher order
spectral triple (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝒕) in 𝐾0(𝑋) coincides with the class [d•] ∈ 𝐾0(𝑋) as defined
in [GK24].

Proof. The class [d•] ∈ 𝐾0(𝑋) as defined in [GK24] was defined by order reduction. If we use the
Rumin–Seshadri Laplacians to define order reduction, a short algebraic manipulation shows that |𝐷𝜏=1|
lifts the Fredholm module defining the class [d•] ∈ 𝐾0(𝑋) to a bounded perturbation of 𝐷𝜏=1.

IV.2.3.1 Equivariance in Rockland complexes

We now turn to studying conformal equivariance of Rockland complexes.

Definition IV.2.23. Assume that (𝐶∞(𝑋;𝐸•), d•) is a Rockland complex and that 𝐺 is a locally
compact group acting by filtered diffeomorphisms on 𝑋 and that 𝐸0,… ,𝐸𝑛 are 𝐺-equivariant. We
say that (𝐶∞(𝑋;𝐸•), d•) is a 𝐺-equivariant Rockland complex if the symbol complex 𝜎𝐻(d•) (see
(IV.2.16)) is 𝐺-equivariant.

If (𝐶∞(𝑋;𝐸•), d•) is a 𝐺-equivariant Rockland complex with each 𝐸𝑗 an hermitian vector bundle,
we say that the 𝐺-action is a conformal 𝐺-action on (𝐶∞(𝑋;𝐸•), d•) if for any 𝑗 the 𝐺-representation
𝑉𝑗 ∶ 𝐺 → GL(𝐿2(𝑋;𝐸𝑗)) defined from the 𝐺-action on 𝐸𝑗 → 𝑋 there is a function 𝜆𝑗,𝑔 ∈ 𝐶∞(𝑋,ℝ>0)
such that

𝑉𝑗,𝑔𝑉 ∗
𝑗,𝑔 = 𝜆2

𝑗,𝑔.

The associated unitary representations are

𝑈𝑗 ∶ 𝐺 → 𝑈(𝐿2(𝑋;𝐸𝑗)) 𝑈𝑗,𝑔 = 𝜆−1
𝑗,𝑔𝑉𝑗,𝑔

and we observe that 𝑈𝑗+1,𝑔d𝑗𝑈∗
𝑗,𝑔 = 𝜆−1

𝑗+1,𝑔d𝑗𝜆𝑗,𝑔.

Proposition IV.2.24. Assume that (𝐶∞(𝑋;𝐸•), d•) is a Rockland complex of order 𝒎 = (𝑚1,… ,𝑚𝑛),
where all differentials are differential operators and 𝑋 is compact, with a conformal action of 𝐺. For
𝒕 ∈ Ω(𝝐), the higher order spectral triple

(𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝒕)

is conformally 𝐺-equivariant with conformal factor

𝜇𝑔 =
𝑛

⨁
𝑗=0

𝑃ℋ𝑖
+ 𝑃imd𝑗−1

(𝜆−1
𝑗,𝑔𝜆𝑗−1,𝑔)𝑡𝑗−1/2𝑃imd𝑗−1

+ 𝑃imd∗
𝑗
(𝜆−1

𝑗+1,𝑔𝜆𝑗,𝑔)𝑡𝑗/2𝑃imd∗
𝑗
.

Proof. Because 𝜆𝑗,𝑔 is nonvanishing, bounded, and positive, 𝜇𝑔 is invertible and positive. Indeed,

𝜇𝑔 ≥
𝑛

⨁
𝑗=0

𝑃ℋ𝑖
+ ‖𝜆𝑗,𝑔𝜆−1

𝑗−1,𝑔‖
−𝑡𝑗−1/2
∞ 𝑃imd𝑗−1

+ ‖𝜆𝑗+1,𝑔𝜆−1
𝑗,𝑔‖−𝑡𝑗/2𝑃imd∗

𝑗
.

Using the notation (d𝑗)𝑡𝑗 = d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗 , one can check that the difference

𝑈𝑔d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗𝑈∗
𝑔 − 𝜇𝑔d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗𝜇∗

𝑔

= 𝑈𝑔d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗𝑈∗
𝑔 − 𝑃imd𝑗

(𝜆−1
𝑗+1,𝑔𝜆𝑗,𝑔)𝑡𝑗/2d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗(𝜆−1

𝑗+1,𝑔𝜆𝑗,𝑔)𝑡𝑗/2𝑃imd∗
𝑗

= 𝑃imd𝑗
(𝑈𝑔d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗𝑈∗

𝑔 − (𝜆−1
𝑗+1,𝑔𝜆𝑗,𝑔)𝑡𝑗/2d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗(𝜆−1

𝑗+1,𝑔𝜆𝑗,𝑔)𝑡𝑗/2)𝑃imd∗
𝑗
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and the commutator

[d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗 , 𝜇𝑔] = 𝑃imd𝑗
[d𝑗(d∗𝑗d𝑗)−1+𝑡𝑗 , (𝜆−1

𝑗+1,𝑔𝜆𝑗,𝑔)𝑡𝑗/2]𝑃imd∗
𝑗

are of lower order, since d𝑗(d∗𝑗d𝑗)−1+𝑡 belongs to the Heisenberg calculus by Lemma IV.2.3, as required
by the definition of conformal equivariance.

An undesirable feature of the above construction is that the conformal factors are not functions on
𝑋. Under some circumstances, this can be remedied but then only for certain 𝒕 ∈ Ω(𝝐).

Proposition IV.2.25. Assume that (𝐶∞(𝑋;𝐸•), d•) is a Rockland complex of order 𝒎 = (𝑚𝑗)𝑛−1
𝑗=0 ,

where all differentials are differential operators and 𝑋 is compact, with a conformal action of 𝐺.
Suppose that, for some 𝒔 ∈ Ω(𝝐),

𝜆𝑠𝑗−1
𝑗−1,𝑔𝜆

𝑠𝑗
𝑗+1,𝑔 = 𝜆𝑠𝑗+𝑠𝑗−1

𝑗,𝑔

for all 𝑗 = 1,… , 𝑛. Then, for all 𝜏 > 0, the higher order spectral triple

(𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝜏𝒔)

is conformally 𝐺-equivariant with conformal factor

𝜇𝑔 = (𝜆−1
1,𝑔𝜆0,𝑔)𝜏𝑠0 = ⋯ = (𝜆−1

𝑛,𝑔𝜆𝑛−1,𝑔)𝜏𝑠𝑛−1 .

Remark IV.2.26. If we can take 𝒔 = 𝒎, in the situation of Proposition IV.2.25, i.e. if

𝜆𝑚𝑗
𝑗−1,𝑔𝜆

𝑚𝑗−1
𝑗+1,𝑔 = 𝜆𝑚𝑗−1+𝑚𝑗

𝑗,𝑔 ,

the higher order spectral triple (𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝜏) of order 𝜏 > 0 defined from the 𝐻-elliptic
Heisenberg operator 𝐷𝜏 (as in Corollary IV.2.20), is a conformally 𝐺-equivariant higher order spectral
triple with conformal factor

𝜇𝑔 = (𝜆−1
1,𝑔𝜆0,𝑔)𝜏/𝑚0 = ⋯ = (𝜆−1

𝑛,𝑔𝜆𝑛−1,𝑔)𝜏/𝑚𝑛−1 .

We will see that this in fact does occur for the Rumin complex on a CR-manifold, in Theorem IV.2.34.
Remark IV.2.27. In the next section we provide further context for conformally equivariant Rockland
complexes by studying the Rumin complex on a contact manifold. It would be interesting to include
further examples of Rockland complexes, especially in higher rank parabolic geometries. As work by
Yuncken [Yun11] and Voigt–Yuncken [VY15] showcases, the interesting aspect lies in the equivariance
properties. However, the approach above cannot produce conformally equivariant noncommutative
geometries with nontrivial index theory, or even equivariant Fredholm modules, for a semisimple Lie
group 𝐺 of real rank > 1. Indeed, if 𝐺 is a higher rank semisimple Lie group and and 𝑇 is an 𝐻-elliptic
operator on 𝐺/𝑃 (for some parabolic subgroup 𝑃 ⊆ 𝐺) of order 𝑚 ≥ 0 commuting with 𝐺 up to lower
order terms then Puschnigg rigidity [Pus11] implies that 𝜎𝑚

𝐻 (𝑇 ) is positive and that 𝑇 defines the trivial
equivariant K-homology class. For 𝑆𝐿(3,ℂ), as studied in [VY15, Yun11], the BGG complex is an
equivariant Rockland complex (in the sense of Definition IV.2.23) but it is not conformally equivariant.
The same statement holds for the BGG complex of 𝐺2/𝑃, see Example IV.2.19 above.

A separate but equally serious issue at play, as discussed in [DH22, Hal22], is that a BGG complex
is frequently not a Rockland complex but only a graded Rockland complex. The BGG complex of
a parabolic geometry is Rockland in the usual sense only when the cohomology of the osculating
nilpotent group in each fibre has pure cohomology; see [Hal22, §3.7] for more details. For index theory
purposes [Gof24], the graded Rockland situation works well but it is less clear how to do spectral
noncommutative geometry with graded Rockland complexes. The BGG complex arising from the
quaternionic contact structure on 𝐒4𝑛−1 [Jul95, §3] [Rum05, (66–67)] is an example which fails to be
ungraded Rockland but for which the action of 𝑆𝑝(𝑛, 1) is conformal, in a sense made clear in [Jul19].
In particular, the two issues of conformally equivariant geometries and representing geometries by
ungraded Rockland complexes are quite distinct.
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IV.2.4 The Rumin complex on contact manifolds

In this section we will look at an explicit example of a Rockland complex, namely the Rumin complex
on a contact manifold. We will show that the naïve way of constructing a spectral triple from the
Rumin complex does not work. However, using our construction with tangled spectral triples we obtain
higher order spectral triples as in Theorem IV.1.16. Lastly, we will look at conformal equivariance
under CR-automorphisms when the manifold has an almost CR-structure.

We have already seen the Rumin complex in §III.2.1.3. Let 𝑋 be a (2𝑛 + 1)-dimensional contact
manifold with contact structure 𝐻 ⊆ 𝑇𝑋. Following [Rum00] we can obtain a different description of
the Rumin complex as follows. Let us fix a contact form 𝜃 and choose a Riemannian metric 𝐠 on 𝑋.
We require that these be compatible, in the sense that 𝐻 is orthogonal to the Reeb field, the (unique)
vector field 𝑍 such that 𝜃(𝑍) = 1 and 𝜄𝑍(𝑑𝜃) = 0. With our choice of metric, we have an orthogonal
splitting

𝑇 ∗𝑋 = 𝐻∗ ⊕𝐻⟂

defined from the contact coorientation 𝜃 spanning 𝐻⟂. The exterior derivative takes the form

d = (d𝐻 𝐿
ℒ𝑍 −d𝐻

) in the splitting Λ∗𝑇 ∗𝑋 = (Λ∗𝐻∗) ⊕ (𝐻⟂ ⊗ Λ∗𝐻∗).

Here ℒ𝑍 denotes the Lie derivative along the Reeb field 𝑍 and 𝐿 denotes exterior multiplication with
d𝜃. We note that 𝒥𝑘+1 = 𝐶∞(𝑋;𝐻⟂ ⊗ 𝐹𝑘) where 𝐹𝑘 = ker𝐿 ∩ Λ𝑘𝐻∗ and each element in Ω𝑘/ℐ𝑘 has
a unique representative in 𝐶∞(𝑋;𝐸𝑘) where 𝐸𝑘 = (im𝐿)⟂ ∩ Λ𝑘𝐻∗. With this, the Rumin complex
takes the form

0 −→ 𝐶∞(𝑋;𝐸0)
𝑃𝐸1d𝐻

−−−−→ 𝐶∞(𝑋;𝐸1)
𝑃𝐸2d𝐻

−−−−→ ⋯

⋯
𝑃𝐸𝑛d𝐻
−−−−→ 𝐶∞(𝑋;𝐸𝑛)

𝐷𝑅
−−→ 𝐶∞(𝑋;𝐻⟂ ⊗ 𝐹𝑛)

−d𝐻
−−−→ ⋯

⋯
−d𝐻
−−→ 𝐶∞(𝑋;𝐻⟂ ⊗ 𝐹2𝑛−1)

−d𝐻
−−→ 𝐶∞(𝑋;𝐻⟂ ⊗ 𝐹2𝑛) −→ 0

where the Rumin differential 𝐷𝑅 can be expressed as the second order differential operator
𝐷𝑅 = 𝜃 ∧ (ℒ𝑍 + d𝐻𝐿−1d𝐻). (IV.2.28)

Note that 𝐿∶ 𝐶∞(𝑋;Λ𝑘𝐻∗) → 𝐶∞(𝑋;Λ𝑘+1𝐻∗) is injective for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≥ 𝑛 − 1
[Rum94], which is utilized to show that 𝐷𝑅 is well-defined.

It is well known that the Rumin complex (𝐶∞(𝑋;𝐸•), d𝑅• ) on a cooriented contact manifold 𝑋 is a
Rockland complex [JK95, Rum94]. A detailed discussion thereof can be found in Example 4.21 of the
arXiv version of [DH22]. We shall write the Rumin complex as d𝑅• . This is a mixed order differential
complex.

Let us now describe the symbol complex of the Rumin complex in some more detail. We do the same
procedure as for the Rockland sequences in (IV.2.16) and identify 𝑇𝐻𝑋𝑥 ≅ 𝖧2𝑛+1 with the Heisenberg
group via Darboux coordinates for each point 𝑥 ∈ 𝑋. Write 𝑋1,… ,𝑋𝑛, 𝑌1,… , 𝑌𝑛, 𝑍 for the standard
generators of 𝔥2𝑛+1 with [𝑋𝑖, 𝑌𝑗] = 𝛿𝑖𝑗𝑍 corresponding to the Darboux coordinates near 𝑥. We will
identify the fibres 𝐸𝑘,𝑥 and 𝐻⟂

𝑥 ⊗ 𝐹𝑘,𝑥 with subspaces of Λ𝑘𝐻∗
𝑥 = Λ𝑘ℝ2𝑛 and 𝐻⟂

𝑥 ⊗ Λ𝑘𝐻∗
𝑥 = Λ𝑘ℝ2𝑛

respectively. Consider the 𝔥2𝑛+1-valued vector

𝜔1 = (𝑋1 … 𝑋𝑛 𝑌1 … 𝑌𝑛)
𝑇
∈ 𝔥2𝑛+1 ⊗𝐻∗

𝑥.
We can express the principal symbols of the differentials in the Rumin complex as

𝜎1
𝐻(d𝑅𝑗 )𝑥 = 𝜔1∧ ∶ 𝒮0(𝖧2𝑛+1, 𝐸𝑗,𝑥) → 𝒮0(𝖧2𝑛+1, 𝐸𝑗+1,𝑥) (𝑗 < 𝑛),

𝜎2
𝐻(d𝑅𝑗 )𝑥 = 𝜎2

𝐻(𝐷𝑅)𝑥
= 𝑍 + (𝜔1∧)𝐿−1(𝜔1∧) ∶ 𝒮0(𝖧2𝑛+1, 𝐸𝑛,𝑥) → 𝒮0(𝖧2𝑛+1, 𝐹𝑛,𝑥) (𝑗 = 𝑛),

𝜎1
𝐻(d𝑅𝑗 )𝑥 = −𝜔1∧ ∶ 𝒮0(𝖧2𝑛+1, 𝐹𝑗−1,𝑥) → 𝒮0(𝖧2𝑛+1, 𝐹𝑗,𝑥) (𝑗 > 𝑛).
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In the case of 𝑛 = 1, we can identify

𝐸0,𝑥 = ℂ, 𝐸1,𝑥 = 𝐹1,𝑥 = ℂ2, and 𝐹2,𝑥 = ℂ.

Under these identifications, we have that 𝜎2
𝐻(𝐷𝑅) = 𝑍 + 𝜔1𝜔∗

2 where

𝐽 = (0 −1
1 0 ) and 𝜔2 = 𝐽𝜔1 = (−𝑌

𝑋 ) .

The symbol complex over 𝑥 takes the form

0 −→ 𝒮0(𝖧3)

(𝑋
𝑌)

−−−−→ 𝒮0(𝖧3) ⊗ ℂ2

(𝑍 +𝑋𝑌 −𝑋2

𝑌 2 𝑍 − 𝑌𝑋)

−−−−−−−−−−−−−−→ 𝒮0(𝖧3) ⊗ ℂ2
(𝑌 −𝑋)
−−−−−→ 𝒮0(𝖧3) −→ 0.

The reader can compare this to Example IV.1.12 and the BGG complex for 𝑆𝐿(3,ℂ) studied by
Yuncken [Yun11]. In the next section, we continue to analyse this special case.

IV.2.4.1 A naïve attempt at a spectral triple for the Rumin complex

A first approach to study the noncommutative geometry of the Rumin complex is to naïvely roll up
the complex as

/𝐷𝑅 ∶= d𝑅• + (d𝑅• )∗.

Rolling up a complex in this way is how one produces the Hodge–de Rham Dirac operator from the de
Rham complex. We shall see that this approach fails to produce a higher order spectral triple, thereby
justifying the approach of §IV.2 and the need for the decreasing cycle condition.

By discreteness of the spectrum, /𝐷𝑅 has compact resolvent. However, taking commutators with
𝐶∞(𝑋) does not improve the order. We will show this in the case of three-dimensional contact
manifolds. In Darboux coordinates, the Rumin complex is up to lower order terms given by

d𝑅• =
⎛⎜⎜⎜⎜⎜
⎝

0 0 0 0
𝜔1 0 0 0
0 𝑍 + 𝜔1𝜔∗

2 0 0
0 0 𝜔∗

2 0

⎞⎟⎟⎟⎟⎟
⎠

.

Therefore /𝐷𝑅 takes the form

/𝐷𝑅 =
⎛⎜⎜⎜⎜⎜
⎝

0 𝜔∗
1 0 0

𝜔1 0 −𝑍 + 𝜔2𝜔∗
1 0

0 𝑍 + 𝜔1𝜔∗
2 0 𝜔2

0 0 𝜔∗
2 0

⎞⎟⎟⎟⎟⎟
⎠

.

Proposition IV.2.29. Let 𝑋 be a compact contact manifold of dimension 3 and 𝑎 ∈ 𝐶∞(𝑋). Then
[ /𝐷𝑅, 𝑎] is up to a vector bundle endomorphism of the form

⎛⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 𝜔2𝜔∗

1(𝑎) + 𝜔2(𝑎)𝜔∗
1 0

0 𝜔1𝜔∗
2(𝑎) + 𝜔1(𝑎)𝜔∗

2 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟
⎠

.

in local Darboux coordinates.

Proof. Follows from direct computation with the Leibniz rule.
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Proposition IV.2.30. Let 𝑋 be a compact contact manifold of dimension 3. If 𝛼 ∈ ℝ satisfies that
[ /𝐷𝑅, 𝑎](1 + ( /𝐷𝑅)2)−1/2+𝛼 is a bounded operator on 𝐿2(𝑋;ℋ) for any 𝑎 ∈ 𝐶∞(𝑋) then 𝛼 ≤ 0.

In consequence, /𝐷𝑅 does not define a higher order spectral triple for 𝐶∞(𝑋).

Proof. We need to show that, for all 𝛼 > 0, [ /𝐷𝑅, 𝑎](1+ ( /𝐷𝑅)2)−1/2+𝛼 fails to be bounded on 𝐿2(𝑋;ℋ)
for some 𝑎 ∈ 𝐶∞(𝑋). By Proposition IV.2.29 and the computations above, [ /𝐷𝑅, 𝑎](1 + ( /𝐷𝑅)2)−1/2+𝛼

is bounded if and only if (𝜔1𝜔∗
2(𝑎) + 𝜔1(𝑎)𝜔∗

2)(1 + 𝑇 )−1/2+𝛼 is bounded where 𝑇 = 𝜔1𝜔∗
1 + (−𝑍 +

𝜔2𝜔∗
1)(𝑍 + 𝜔1𝜔∗

2).
Were (𝜔1𝜔∗

2(𝑎) + 𝜔1(𝑎)𝜔∗
2)(1 + 𝑇 )−1/2+𝛼 to be bounded, we could freeze coefficients in a point 𝑥

and represent this operator in a non-trivial character 𝜉 ∈ ℝ2 ⊆ 𝖧̂2𝑛+1 and obtain a uniformly bounded
function in 𝜉. For notational simplicity, write

𝑣 ∶= 𝜔1(𝑎)𝑥.

In this notation, 𝜔2(𝑎)𝑥 = 𝐽𝑣. In a character 𝜉, 𝜔1 is represented as 𝜉, 𝜔2 is represented as 𝐽𝜉 and 𝑍
is represented as 0. Hence, 𝑇 is represented in the character 𝜉 ≠ 0 as the matrix valued function

𝐹(𝜉) = 𝜉𝜉∗ + |𝜉|2(𝐽𝜉)(𝐽𝜉)∗ = |𝜉|2𝑒1(𝜉) + |𝜉|4𝑒2(𝜉),

where 𝑒1(𝜉) = |𝜉|−2𝜉𝜉∗ and 𝑒2(𝜉) = 𝐽𝑒1(𝜉)𝐽 are the orthogonal projections onto the span of 𝜉 and
𝐽𝜉 respectively. Since 𝐽 is anti-symmetric, 𝑒1(𝜉) and 𝑒2(𝜉) have orthogonal ranges and 𝐹(𝜉) =
|𝜉|2𝑒1(𝜉) + |𝜉|4𝑒2(𝜉) is the eigenvalue decomposition of 𝐹(𝜉). By the discussion above, we need to show
that for 𝛼 > 0, boundedness fails for the matrix valued function

𝐴𝛼(𝜉) ∶= (𝜉(𝐽𝑣)∗ + 𝑣(𝐽𝜉)∗)(1 + 𝐹(𝜉))−1/2+𝛼.

By orthogonality of 𝑒1(𝜉) and 𝑒2(𝜉), we compute that

𝐴𝛼(𝜉) = (1 + |𝜉|2)− 1
2+𝛼(𝜉(𝐽𝑣)∗ + 𝑣(𝐽𝜉)∗)𝑒1(𝜉) + (1 + |𝜉|4)− 1

2+𝛼(𝜉(𝐽𝑣)∗ + 𝑣(𝐽𝜉)∗)𝑒2(𝜉)

= (1 + |𝜉|2)− 1
2+𝛼((𝐽𝑣)∗𝜉)𝑒1(𝜉) + 𝑂(|𝜉|−1+4𝛼)

and see that for 𝑡 > 0
𝐴𝛼(𝑡𝐽𝑣) = 𝑡(1 + 𝑡2)− 1

2+𝛼𝑒1(𝐽𝑣) + 𝑂(𝑡−1+4𝛼).

In particular, 𝐴𝛼 is bounded if and only if 𝛼 ≤ 0 so in particular boundedness fails for 𝛼 > 0.

IV.2.4.2 Strictly tangled spectral triples from the Rumin complex

Let us place the Rumin complex d𝑅• of a contact manifold in a spectral triple. We have a somewhat
simpler structure than seen in §IV.2.1, since all but one of the differentials are order one, see Remark
IV.2.18. We consider the two self-adjoint operators

𝐷1 = ∑
𝑗≠𝑛

d𝑅𝑗 + (d𝑅𝑗 )∗ 𝐷2 = 𝐷𝑅 + (𝐷𝑅)∗.

These are differential operators of order 𝑚1 = 1 and 𝑚2 = 2 respectively. We note that 𝐷1𝐷2 =
𝐷2𝐷1 = 0 on the common core 𝐶∞(𝑋;⊕𝑗𝐸𝑗), so 𝐷1 and 𝐷2 are strictly anticommuting. We compute
that

𝐷2
1 = ∑

𝑗≠𝑛
d𝑅𝑗 (d𝑅𝑗 )∗ + (d𝑅𝑗 )∗d𝑅𝑗 𝐷2

2 = 𝐷𝑅(𝐷𝑅)∗ + (𝐷𝑅)∗𝐷𝑅.

The Rumin Laplacian takes the form
Δ𝑅 = 𝐷4

1 +𝐷2
2 .

We can proceed as in §IV.2.3 to prove the following.
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Proposition IV.2.31. Consider the Rumin complex d𝑅• on a 2𝑛 + 1-dimensional compact contact
manifold 𝑋. Then with 𝐷1 and 𝐷2 as in the preceding paragraph, the data (𝐶∞(𝑋), 𝐿2(𝑋;ℋ), (𝐷1, 𝐷2))
constitute an ST2 with bounding matrix

𝝐 = (0 0
1 1

2
) 1

1
2 ,

which is 𝑓-summable for any function 𝑓 with

𝑓(𝑡1, 𝑡2) > 2min(𝑛 + 1
𝑡1

, 2(𝑛 + 1)
𝑡2

).

In particular, for any 𝒕 = (𝑡1, 𝑡2) ∈ (0,∞)2 with 𝑡1 > 𝑡2, we arrive at a higher order spectral triple
defined from the operator

𝐷𝒕 = 𝐷1|𝐷1|𝑡1−1 +𝐷2|𝐷2|𝑡2−1 = 𝐷1(Δ𝑅)
𝑡1−1

4 +𝐷2(Δ𝑅)
𝑡2−1

2 .

If 𝒕 lies along the ray spanned by (1, 1/2) then 𝐷𝒕 is an 𝐻-elliptic operator in the Heisenberg calculus
and if 𝒕 = (2𝑘1 + 1, 2𝑘2 + 1) where 𝑘1 > 𝑘2 are natural numbers then 𝐷𝒕 is a differential operator.

Remark IV.2.32. We note that

𝑑(𝑥, 𝑦) ∶= sup{|𝑎(𝑥) − 𝑎(𝑦)| ∣ ‖[𝐷1, 𝑎]‖ ≤ 1} = sup{|𝑎(𝑥) − 𝑎(𝑦)| ∣ 1
2‖[[𝐷2, 𝑎], 𝑎]‖ ≤ 1}

and coincides with the Carnot–Carathéodory distance of 𝑋. In [Has14, §3.3], compact quantum metric
spaces are built from Carnot manifolds using a ‘horizontal Dirac operator’ similar to 𝐷1. Related
results are found in [GG19]. There is a potential for interesting metric aspects of ST2s to be considered.
In this connection, we mention also the work [KK20, KK25] of Kaad and Kyed which uses a collection
of operators for constructing quantum metric spaces.

IV.2.4.3 CR-equivariance

We discussed to some extent the equivariance of the Rumin complex in §III.2.1.3; let us see how it
applies to the ST2 of the entire complex. Recall the setup: 𝑋 is a cooriented contact manifold with a
fixed contact form 𝜃 and a Riemannian metric 𝐠 in which the orthogonal complement of 𝐻 = ker 𝜃
is the Reeb field. The two-form d𝜃 defines a symplectic form on 𝐻. An almost CR-structure is the
additional datum of a complex structure 𝐽 on 𝐻 such that 𝐠(𝑣, 𝑤) = d𝜃(𝑣, 𝐽𝑤). Note that the complex
structure 𝐽 and the metric 𝐠 uniquely determine one another.

We let Aut𝐶𝑅(𝑋) denote the group of CR-automorphisms of 𝑋. That is, the group of diffeomor-
phisms 𝑔 ∶ 𝑋 → 𝑋 such that 𝐷𝑔 preserves 𝐻 (i.e. (𝐷𝑔)𝑥𝐻𝑥 ⊆ 𝐻𝑔(𝑥) for all 𝑥) and acts complex linearly
on 𝐻 (i.e. (𝐷𝑔)𝑥 ∶ (𝐻𝑥, 𝐽𝑥) → (𝐻𝑔(𝑥), 𝐽𝑔(𝑥)) is complex linear for all 𝑥). The group of CR-automorphisms
is generically a compact subgroup, as the following result of Schoen [Sch95] proves.

Theorem IV.2.33 (Schoen’s Ferrand–Obata theorem). Let 𝑋 be a compact cooriented contact manifold
with a choice of Riemannian metric as above. The group Aut𝐶𝑅(𝑋) can equivalently be topologized
by its compact-open topology, 𝐶0- or 𝐶∞-topology. The group Aut𝐶𝑅(𝑋) is compact unless 𝑋 is an
odd-dimensional sphere with its round contact structure and metric and in this case 𝑋 = 𝑆𝑈(𝑛, 1)/𝑃
for the standard parabolic subgroup 𝑃 ⊆ 𝑆𝑈(𝑛, 1) and Aut𝐶𝑅(𝑋) ≅ 𝑆𝑈(𝑛, 1).

As we saw in §III.2.1.3, the action of a CR-automorphism has features similar to being conformal.
A contact form for a given contact structure is unique up to multiplication by a nonvanishing smooth
function on 𝑋. Because the contact structure is preserved by a CR-automorphism 𝑔, the pullback 𝑔∗(𝜃)
of the contact form must be equal to 𝑓𝜃 for some nonvanishing smooth function 𝑓. Hence

𝑔∗(𝐠)(𝑋, 𝑌 ) = 𝑔∗(d𝜃)(𝑋, 𝐽𝑌 ) = (𝑓d𝜃 + d𝑓 ∧ 𝜃)(𝑋, 𝐽𝑌 ) = 𝑓d𝜃(𝑋, 𝐽𝑌 ) = 𝑓𝐠(𝑋, 𝑌 )
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for all 𝑋,𝑌 ∈ 𝐻. Moreover, the induced metric on 𝑇𝑋/𝐻 is multiplied by 𝑓2.
We conclude that, if 𝑔 ∈ Aut𝐶𝑅(𝑋), the differential of 𝑔 lifts to a graded vector-bundle action

𝑣𝑔 ∶ 𝐸• → 𝐸•,

with
𝑣∗𝑔𝑣𝑔 =

𝑛
⨁
𝑘=0

𝜆2𝑘
𝑔 ⊕

2𝑛
⨁
𝑘=𝑛

𝜆2(𝑘+2)
𝑔 ,

in accordance with the grading of 𝐸•. We define an action

𝑉 ∶ Aut𝐶𝑅(𝑋) → GL(𝐿2(𝑋;𝐸•)), 𝑉 (𝑔)𝑓(𝑥) ∶= 𝑣𝑔𝑓(𝑔−1𝑥).

Since the volume form belongs to Λ𝑛𝐻∗ ⊗𝐻⟂ it rescales with 𝜆2𝑛+2
𝑔 under 𝑔 ∈ Aut𝐶𝑅(𝑋). Therefore

𝑉 (𝑔)∗𝑉 (𝑔) = 𝜆2𝑛+2
𝑔 𝑣∗𝑔𝑣𝑔 =

𝑛
⨁
𝑘=0

𝜆2(𝑘+𝑛+1)
𝑔 ⊕

2𝑛
⨁
𝑘=𝑛

𝜆2(𝑘+𝑛+3)
𝑔 .

The Rumin complex of 𝑋 is defined from a quotient complex and a subcomplex of the de Rham
complex spliced with the Rumin differential. As such, the Rumin complex is invariant under Aut𝐶𝑅(𝑋).
In other words,

𝑉 (𝑔)d𝑅• 𝑉 (𝑔)−1 = d𝑅• .
Set Λ𝑔 = 𝑉 (𝑔)∗𝑉 (𝑔), so 𝑉 (𝑔)∗ = Λ𝑔𝑉 (𝑔−1). We conclude that

𝑉 (𝑔)∗d𝑅• 𝑉 (𝑔) = Λ𝑔d𝑅• .

If we pass to the unitarised action

𝑈 ∶ Aut𝐶𝑅(𝑋) → 𝒰(𝐿2(𝑋;𝐸•)), 𝑈(𝑔) ∶= 𝑉 (𝑔)Λ−1/2
𝑔 ,

we see that
𝑈(𝑔)∗d𝑅• 𝑈(𝑔) = Λ1/2

𝑔 d𝑅• Λ
−1/2
𝑔 .

From Proposition IV.2.25 we conclude the following.

Theorem IV.2.34. Let (𝐶∞(𝑋;𝐸•), d𝑅• ) denote a Rumin complex on a (2𝑛 + 1)-dimensional almost
CR-manifold 𝑋 with its conformal action of 𝐺 = Aut𝐶𝑅(𝑋). For 𝜏 > 0, the 𝐻-elliptic Heisenberg
operator

𝐷𝜏 = 𝐷1|𝐷1|𝜏−1 +𝐷2|𝐷2|
𝜏
2−1 = 𝐷1(Δ𝑅) 𝜏−1

4 +𝐷2(Δ𝑅) 𝜏−2
4

defines a conformally 𝐺-equivariant, ( 𝜏
2𝑛+2 ,∞)-summable, order 𝜏 spectral triple

(𝐶∞(𝑋), 𝐿2(𝑋;⊕𝑗𝐸𝑗),𝐷𝜏)

with conformal factor 𝜇 = 𝜆−𝜏.

IV.3 Examples arising from the Kasparov product

IV.3.1 Group C*-algebras of nilpotent groups

Let 𝐺 be a simply connected, nilpotent Lie group 𝐺. As a manifold 𝐺 is diffeomorphic to ℝ𝑛 for some
𝑛 and its maximal compact subgroup is trivial. Hence the dual Dirac element, as defined by Kasparov
[Kas88, §5], is an element of 𝐾𝐾𝐺

∗ (ℂ,𝐶0(𝐺)). By Baaj–Skandalis duality, there is an isomorphism of
the K-groups 𝐾𝐾𝐺

∗ (ℂ,𝐶0(𝐺)) and 𝐾𝐾𝐺
∗ (𝐶∗(𝐺),ℂ), where 𝐺̂ is the dual quantum group. Nilpotent

groups are generally not CAT(0), and we turn to the framework of ST2s.
Recall from Definition II.2.2 that a weight on a locally compact group 𝐺 is a continuous function ℓ

from 𝐺 to matrices on a finite-dimensional complex vector space 𝑉. If 𝑉 is ℤ/2ℤ-graded, ℓ is required
to be odd.



IV.3. Examples arising from the Kasparov product 171

Definition IV.3.1. Fixing a finite-dimensional complex vector space 𝑉, we will say that a finite
collection of weights ℓ = (ℓ𝑗)𝑗∈𝐼 ∶ 𝐺 → End𝑉 on a locally compact group 𝐺 is

1. self-adjoint if ℓ∗𝑗 = ℓ𝑗 for all 𝑗;

2. proper if (ℓ𝑗)𝑗∈𝐼 mutually anticommute and ∏𝑗(1 + |ℓ𝑗|)−1 ∈ 𝐶0(𝐺,End𝑉 ); and

3. translation bounded with bounding matrix 𝝐 ∈ 𝑀𝑛([0,∞)) if, for all 𝑔 ∈ 𝐺,

sup
ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥ < ∞

and there exists a neighbourhood 𝑈 of the identity in 𝐺 such that, for all 𝑠 ∈ 𝐺,

sup
𝑔∈𝑈,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(𝑠ℎ)|𝜖𝑖𝑗)
−1
∥ < ∞.

Note that the second part of the translation-boundedness condition is automatic for a discrete
group. Whether this condition can be simplified in general is unclear. For the time being, we content
ourselves with giving two equivalent conditions.

Lemma IV.3.2. Let 𝐺 be a locally compact group, 𝑉 a finite-dimensional complex vector space, and
(ℓ𝑗)𝑗∈𝐼 ∶ 𝐺 → End𝑉 a collection of weights. The following are equivalent:

1. For all 𝑔 ∈ 𝐺,

sup
𝑖∈𝐼,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥ < ∞

and there exists a neighbourhood 𝑈 of the identity in 𝐺 such that, for all 𝑠 ∈ 𝐺,

sup
𝑖∈𝐼,𝑔∈𝑈,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(𝑠ℎ)|𝜖𝑖𝑗)
−1
∥ < ∞.

2. For every compact subset 𝐾 ⊆ 𝐺,

sup
𝑖∈𝐼,𝑔∈𝐾,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥ < ∞.

3. The functions (𝜁𝑖)𝑖∈𝐼 ∶ 𝐺 → 𝐶(𝐺,End𝑉 ) given by

𝜁𝑖(𝑔)(ℎ) = (ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1

are elements of 𝐶(𝐺,𝐶𝑏(𝐺,End𝑉 )𝛽), where 𝛽 is the strict topology.
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Proof. Suppose that 1. holds and let 𝐾 be a compact subset of 𝐺. The open sets (𝑈𝑔)𝑔∈𝐾 cover 𝐾.
Let 𝑈𝑔1,… , 𝑈𝑔𝑘 be a finite subcover. We have

sup
𝑖∈𝐼,𝑔∈𝐾,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

≤ sup
1≤𝑟≤𝑘,𝑖∈𝐼,𝑔∈𝑈𝑔𝑟,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

= sup
1≤𝑟≤𝑘,𝑖∈𝐼,𝑔∈𝑈,ℎ∈𝐺

∥(ℓ𝑖(𝑔𝑔−1
𝑟 ℎ) − ℓ𝑖(ℎ))(1 +∑

𝑗∈𝐼
|ℓ𝑗(ℎ)|𝜖𝑖𝑗)

−1
∥

≤ sup
1≤𝑟≤𝑘,𝑖∈𝐼,𝑔∈𝑈,ℎ∈𝐺

(∥(ℓ𝑖(𝑔𝑔−1
𝑟 ℎ) − ℓ𝑖(𝑔−1

𝑟 ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

+ sup
1≤𝑟≤𝑘,𝑖∈𝐼,ℎ∈𝐺

∥(ℓ𝑖(𝑔−1
𝑟 ℎ) − ℓ𝑖(ℎ))(1 +∑

𝑗∈𝐼
|ℓ𝑗(ℎ)|𝜖𝑖𝑗)

−1
∥

≤ sup
1≤𝑟≤𝑘,𝑖∈𝐼,𝑔∈𝑈,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(𝑔𝑟ℎ)|𝜖𝑖𝑗)
−1
∥

+ sup
1≤𝑟≤𝑘,𝑖∈𝐼,ℎ∈𝐺

∥(ℓ𝑖(𝑔−1
𝑟 ℎ) − ℓ𝑖(ℎ))(1 +∑

𝑗∈𝐼
|ℓ𝑗(ℎ)|𝜖𝑖𝑗)

−1
∥

< ∞,

that is, 2. is satisfied.
Suppose that 2. holds and, by the local compactness of 𝐺, take an open neighbourhood 𝑈 of the

identity in 𝐺 contained in a compact set 𝐾. Then

sup
𝑖∈𝐼,𝑔∈𝑈,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(𝑠ℎ)|𝜖𝑖𝑗)
−1
∥

= sup
𝑖∈𝐼,𝑔∈𝑈,ℎ∈𝐺

∥(ℓ𝑖(𝑔𝑠−1ℎ) − ℓ𝑖(𝑠−1ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

≤ sup
𝑖∈𝐼,𝑔∈𝑈,ℎ∈𝐺

∥(ℓ𝑖(𝑔𝑠−1ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

+ sup
𝑖∈𝐼,ℎ∈𝐺

∥(ℓ𝑖(𝑠−1ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

≤ sup
𝑖∈𝐼,𝑔∈𝐾𝑠−1,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

+ sup
𝑖∈𝐼,ℎ∈𝐺

∥(ℓ𝑖(𝑠−1ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥

< ∞,

so 1. is satisfied.
The remaining implications follow as in the Proof of Lemma II.2.4.

Remark IV.3.3. In our construction of weights for nilpotent groups, we will have a bound of the form

sup
𝑖∈𝐼,ℎ∈𝐺

∥(ℓ𝑖(𝑔ℎ) − ℓ𝑖(ℎ))(1 +∑
𝑗∈𝐼

|ℓ𝑗(ℎ)|𝜖𝑖𝑗)
−1
∥ ≤ 𝑓((‖ℓ𝑖(𝑔)‖)𝑖∈𝐼),

for some continuous function 𝑓 ∶ [0,∞)𝐼 → [0,∞), which will imply the translation-boundedness of
(ℓ𝑖)𝑖∈𝐼 for a bounding matrix 𝝐.
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Theorem IV.3.4. Let 𝐺 be a locally compact group and 𝑉 be a finite-dimensional vector space. Let
(ℓ𝑗)𝑗∈𝐼 ∶ 𝐺 → End𝑉 be a finite collection of weights which is self-adjoint, proper, and translation
bounded with 𝝐 ∈ 𝑀𝐼([0,∞)). Let (𝑀ℓ𝑗)𝑗∈𝐼 be the operators densely defined on 𝐿2(𝐺, 𝑉 ) given by
multiplication by (ℓ𝑗)𝑗∈𝐼 respectively. Then, provided 𝝐 satisfies the decreasing cycle condition,

(𝐶∗
𝑟 (𝐺), 𝐿2(𝐺, 𝑉 ), (𝑀ℓ𝑗)𝑗∈𝐼)

is a strictly tangled spectral triple with bounding matrix 𝝐. If 𝑉 is ℤ/2ℤ-graded, the ST2 is even,
otherwise it is odd.

With Lemma IV.3.2 replacing II.2.4, the proof is a fairly straightforward extension of that of
Theorem II.2.24. A more general statement for fissured Fell bundles, generalising Theorem II.2.24 can
easily be made.

Proof. The local compactness of the resolvent is, as in the Proof of Theorem II.2.24, a consequence of
the properness of (ℓ𝑗)𝑗∈𝐼 and the isomorphism 𝐶0(𝐺) ⋊ 𝐺 ≅ 𝐾(𝐿2(𝐺)). For the commutator bounds,
fix an element 𝑓 ∈ 𝐶𝑐(𝐺) and let

𝑇 = [𝑀ℓ𝑖 , 𝑓](1 +∑
𝑗∈𝐼

|𝑀ℓ𝑗 |
𝜖𝑖𝑗)

−1
.

On a vector 𝜉 ∈ 𝐶𝑐(𝐺, 𝑉 ),

(𝑇 𝜉)(ℎ) = ∫
𝐺
(ℓ𝑖(ℎ) − ℓ𝑖(𝑠−1ℎ))(1 +∑

𝑗∈𝐼
|ℓ𝑗(𝑠−1ℎ)|𝜖𝑖𝑗)

−1
𝑓(𝑠)𝜉(𝑠−1ℎ)𝑑𝜇(𝑠).

With Lemma IV.3.2, a computation similar to that in the Proof of Theorem II.2.24 shows that 𝑇 is
bounded.

Let 𝐺 be a simply connected nilpotent Lie group. Recall the lower central series

𝔤1 = 𝔤 𝔤𝑛 = [𝔤1, 𝔤𝑛−1].

The successive quotients 𝔤𝑛/𝔤𝑛+1 are abelian Lie algebras. The largest 𝑛 for which 𝔤𝑛 is nonzero is
the step size 𝑠 of 𝔤. In the Baker–Campbell–Hausdorff formula for log(exp𝑋exp𝑌 ), we will call the
𝑛th-order term 𝑧𝑛(𝑋, 𝑌 ), so that, e.g.

𝑧1(𝑋, 𝑌 ) = 𝑋 + 𝑌 𝑧2(𝑋, 𝑌 ) = 1
2
[𝑋, 𝑌 ] 𝑧3(𝑋, 𝑌 ) = 1

12
([[𝑋, 𝑌 ], 𝑌 ] + [[𝑌 ,𝑋],𝑋]).

Because 𝑧𝑠+1(𝑋, 𝑌 ) = 0, the exponential map from 𝔤 to 𝐺 is a diffeomorphism.
A Malcev basis of 𝔤 through the lower central series is a basis ((𝑒𝑗,𝑘)

dim𝔤𝑗/𝔤𝑗+1
𝑘=1 )𝑠𝑗=1 of 𝔤 such that

((𝑒𝑗,𝑘)
dim𝔤𝑗/𝔤𝑗+1
𝑘=1 )𝑠𝑗=𝑛 is a basis of 𝔤𝑛 [CG90, Theorem 1.1.13]. Remark that the span of

{𝑒𝑗,𝑘,… , 𝑒𝑗,dim𝔤𝑗/𝔤𝑗+1
, 𝑒𝑗+1,1,… , 𝑒𝑠,dim𝔤𝑠

}

(in other words, the basis with some number of elements dropped from the beginning) is automatically
an ideal of 𝔤. Using the Malcev basis, we may write an arbitrary element of 𝑋 ∈ 𝔤 as a tuple
(𝑥1,… , 𝑥𝑠) ∈ ⨁𝑠

𝑛=1 ℝ
dim𝔤𝑛/𝔤𝑛+1 .

Proposition IV.3.5. Let 𝐺 be a simply connected 𝑠-step nilpotent Lie group and choose a Malcev basis
((𝑒𝑗,𝑘)

dim𝔤𝑗/𝔤𝑗+1
𝑘=1 )𝑠𝑗=1 of 𝔤 through the lower central series. Let 𝑉 be Clifford module for 𝒞𝓁dim𝔤, whose

generators we label ((𝛾𝑗,𝑘)
dim𝔤𝑗/𝔤𝑗+1
𝑘=1 )𝑠𝑗=1. Then the collection (ℓ𝑗)𝑠𝑗=1 ∶ 𝐺 → End𝑉 of weights given by

ℓ𝑗(exp𝔤(𝑥1,… , 𝑥𝑠)) =
dim𝔤𝑗/𝔤𝑗+1

∑
𝑘=1

𝑥𝑗,𝑘𝛾𝑗,𝑘
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is self-adjoint, proper, and translation bounded with the strictly lower triangular bounding matrix
𝜖𝑖𝑗 = max{𝑖 − 𝑗, 0}.

Proof. Self-adjointness is by construction. For properness, observe that

ℓ𝑗(exp𝔤(𝑥1,… , 𝑥𝑠))2 =
dim𝔤𝑗/𝔤𝑗+1

∑
𝑘=1

𝑥2
𝑗,𝑘.

For translation-boundedness, observe that ℓ𝑗 is well-defined on the quotient 𝐺/𝐺𝑗+1 and 𝜖𝑖𝑗 = 0 for
𝑗 ≥ 𝑖. Without loss of generality, then, we consider only the translation-boundedness of ℓ𝑠. For any
1 ≤ 𝑚 ≤ 𝑠, the map

‖ ⋅ ‖𝑚+1 ∶ 𝑋 ↦ √
𝑚
∑
𝑗=1

ℓ𝑗(exp𝔤 𝑋)2

defines a norm on the finite-dimensional vector space 𝔤/𝔤𝑚+1. By the necessary continuity of the Lie
bracket in this norm, there exists a constant 𝐶𝑚+1 such that

‖[𝑋, 𝑌 ]‖𝑚+1 ≤ 𝐶𝑚+1‖𝑋‖𝑚+1‖𝑌 ‖𝑚+1

for all 𝑋,𝑌 ∈ 𝔤/𝔤𝑚+1. Actually, since [𝑋 + 𝔤𝑚, 𝑌 + 𝔤𝑚] = [𝑋, 𝑌 ],

‖[𝑋, 𝑌 ]‖𝑚+1 ≤ 𝐶𝑚+1‖𝑋‖𝑚‖𝑌 ‖𝑚.

In the term 𝑧𝑛(𝑋, 𝑌 ) of the Baker–Campbell–Hausdorff formula, there are no more than 𝑛−1 instances
of 𝑋 or of 𝑌. (Actually, for even 𝑛 ≥ 4, the vanishing of the Bernoulli number 𝐵𝑛−1 means that there
are no more than 𝑛 − 2 instances of 𝑋 or 𝑌.) Because 𝔤 is 𝑠-step nilpotent,

𝑧𝑛(𝑋 + 𝔤𝑠−𝑛+2, 𝑌 + 𝔤𝑠−𝑛+2) = 𝑧𝑛(𝑋, 𝑌 )

for 𝑋,𝑌 ∈ 𝔤, and so
‖𝑧𝑛(𝑋, 𝑌 )‖𝑠+1 ≤ 𝐶𝑛−1

𝑠−𝑛+2‖𝑋‖𝑛−1
𝑠−𝑛+2‖𝑌 ‖𝑛−1

𝑠−𝑛+2

By the linearity of ℓ𝑠 ◦ exp𝔤,

ℓ𝑠(exp𝔤 𝑋exp𝔤 𝑌 ) − ℓ𝑠(exp𝔤 𝑌 ) = ℓ𝑠(exp𝔤 𝑋) +
𝑠

∑
𝑛=2

ℓ𝑠(exp𝔤 𝑧𝑛(𝑋, 𝑌 )).

We obtain a bound

‖ℓ𝑠(exp𝔤 𝑋exp𝔤 𝑌 ) − ℓ𝑠(exp𝔤 𝑌 )‖

≤ ‖ℓ𝑠(exp𝔤 𝑋)‖ +
𝑠

∑
𝑛=2

‖ℓ𝑠(exp𝔤 𝑧𝑛(𝑋, 𝑌 ))‖

≤ ‖ℓ𝑠(exp𝔤 𝑋)‖ +
𝑠

∑
𝑛=2

‖𝑧𝑛(𝑋, 𝑌 )‖𝑠+1

≤ ‖ℓ𝑠(exp𝔤 𝑋)‖ +
𝑠

∑
𝑛=2

𝐶𝑛−1
𝑠−𝑛+2‖𝑋‖𝑛−1

𝑠−𝑛+2‖𝑌 ‖𝑛−1
𝑠−𝑛+2

= ‖ℓ𝑠(exp𝔤 𝑋)‖ +
𝑠−1
∑
𝑚=1

𝐶𝑠−𝑚
𝑚+1 ‖𝑋‖𝑠−𝑚

𝑚+1‖𝑌 ‖𝑠−𝑚
𝑚+1

= ‖ℓ𝑠(exp𝔤 𝑋)‖ +
𝑠−1
∑
𝑚=1

𝐶𝑠−𝑚
𝑚+1 ‖𝑋‖𝑠−𝑚

𝑚+1
⎛⎜
⎝

𝑚
∑
𝑗=1

ℓ𝑗(exp𝔤 𝑌 )2⎞⎟
⎠

𝑠−𝑚
2

≤ ‖ℓ𝑠(exp𝔤 𝑋)‖ +
𝑠−1
∑
𝑚=1

𝐶𝑠−𝑚
𝑚+1 ‖𝑋‖𝑠−𝑚

𝑚+1𝑚𝑠−𝑚−1
𝑚
∑
𝑗=1

‖ℓ𝑗(exp𝔤 𝑌 )‖𝑠−𝑚

= ‖ℓ𝑠(exp𝔤 𝑋)‖ +
𝑠−1
∑
𝑗=1

𝑠−1
∑
𝑚=𝑗

𝐶𝑠−𝑚
𝑚+1 ‖𝑋‖𝑠−𝑚

𝑚+1𝑚𝑠−𝑚−1‖ℓ𝑗(exp𝔤 𝑌 )‖𝑠−𝑚.
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We conclude from this and Remark IV.3.3 that 𝜖𝑠𝑗 = 𝑠− 𝑗 is sufficient to give translation-boundedness.

The reader can note that a lower triangular bounding matrix automatically satisfies the decreasing
cycle condition since its associated weighted directed graph has no cycles. For instance, for a 5-step
nilpotent group, the bounding graph is

1 1 1 1

2 2 2

3 3

4

.

Proposition IV.3.6. Let 𝐺 be a simply connected 𝑠-step nilpotent Lie group. Then, for an irreducible
Clifford module 𝑉 for 𝒞𝓁dim𝔤,

(𝐶∗(𝐺), 𝐿2(𝐺, 𝑉 ), (𝑀ℓ𝑛)
𝑠
𝑛=1) 𝜖𝑖𝑗 = max{𝑖 − 𝑗, 0}

is an ST2 with nontrivial class in 𝐾𝐾dim𝔤(𝐶∗(𝐺),ℂ). This ST2 represents the Kasparov product

[(𝐶∗(𝐺1), (𝐶𝑐(𝐺1, 𝑉1))𝐶∗(𝐺2),𝑀ℓ1)]

⊗𝐶∗(𝐺2) [(𝐶
∗(𝐺2), (𝐶𝑐(𝐺2, 𝑉2))𝐶∗(𝐺3),𝑀ℓ2)]

⊗𝐶∗(𝐺3) ⋯⊗𝐶∗(𝐺𝑠) [(𝐶
∗(𝐺𝑠), 𝐿2(𝐺𝑠, 𝑉𝑠),𝑀ℓ𝑠)]

where each 𝐸𝑗 is a Clifford 𝒞𝓁dim𝔤𝑗/𝔤𝑗+1
-module with generators (𝛾𝑗,𝑘)

dim𝔤𝑗/𝔤𝑗+1
𝑘=1 and 𝑉 = 𝑉1 ⊗̃ ⋯ ⊗̃ 𝑉𝑠.

Proof. First, note that the maximal compact subgroup of 𝐺 is the trivial subgroup, so its dual
Dirac element 𝛽 is in 𝐾𝐾𝐺

dim𝔤(ℂ,𝐶0(𝐺)) [Kas88, Definition 5.1]. Take 𝒕 ∈ Ω(𝝐). Comparing
with [Kas88, Proof of Theorem 5.7], we see from the description as an iterated Kasparov prod-
uct that (ℂ,𝐶0(𝐺, 𝑉 )𝐶0(𝐺),𝑀ℓ𝑡) represents the dual Dirac class 𝛽. By definition, 𝛼 ⊗ℂ 𝛽 = 1 ∈
𝐾𝐾𝐺(𝐶0(𝐺), 𝐶0(𝐺)) for the Dirac class 𝛼 ∈ 𝐾𝐾𝐺

dim𝔤(𝐶0(𝐺),ℂ). The class of

(𝐶∗(𝐺), 𝐿2(𝐺, 𝑉 ), (𝑀ℓ𝑛)
𝑠
𝑛=1)

is the descent 𝑗𝐺(𝛽) ∈ 𝐾𝐾dim𝔤(𝐶∗(𝐺), 𝐶0(𝐺)⋊𝐺) = 𝐾𝐾dim𝔤(𝐶∗(𝐺),ℂ) of 𝛽, which is nonzero because
𝑗𝐺(𝛼) ⊗𝐶∗(𝐺) 𝑗𝐺(𝛽) = 𝑗𝐺(𝛼 ⊗ℂ 𝛽) = 1.

Proposition IV.3.7. Let 𝐺 be a simply connected 𝑠-step nilpotent Lie group and 𝐻 be a cocompact,
closed subgroup. Then

(𝐶∗(𝐻), 𝐿2(𝐻, 𝑉 ), (𝑀ℓ𝑛)
𝑠
𝑛=1) 𝜖𝑖𝑗 = max{𝑖 − 𝑗, 0}

is an ST2 with nontrivial class in 𝐾𝐾dim𝔤(𝐶∗(𝐻),ℂ).

Proof. To show nontriviality, we argue along the lines of the Proof of Theorem II.3.8. As in Remark
II.3.13, the spectral triple

(𝐶∗(𝐻), ℓ2(𝐻, 𝑉 ), (𝑀ℓ𝑛)
𝑠
𝑛=1)

has class 𝐱 = 𝑗𝐻(𝛽⊗𝐶0(𝐺 [𝜔])⊗𝐶0(𝐻)⋊𝐻 [𝐿2(𝐻)] in 𝐾𝐾dim𝔤(𝐶∗(𝐻),ℂ), where 𝛽 ∈ 𝐾𝐾𝐻
dim𝔤(ℂ,𝐶0(𝐺)) is

the dual Dirac element and 𝜔 is the inclusion map 𝐻 ↪ 𝐺. Using the cocompactness of 𝐻 ⊆ 𝐺, one can
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construct a class [𝜃] ∈ 𝐾𝐾0(ℂ,𝐶0(𝐺) ⋊𝐻), as in [Val02, §6.2], for which [𝜃] ⊗𝐶0(𝐺)⋊𝐻 𝑗𝐻([𝜔]) ⊗𝐶0(𝐻)⋊𝐻
[𝐿2(𝐻)] = 1 ∈ 𝐾𝐾0(ℂ,ℂ). With the Dirac element 𝛼 ∈ 𝐾𝐾𝐻

dim𝔤(𝐶0(𝐺),ℂ), we have

[𝜃] ⊗𝐶0(𝐺)⋊𝐻 𝑗𝐻(𝛼) ⊗𝐶∗(𝐻) 𝑗𝐻(𝛽 ⊗𝐶0(𝐺 [𝜔]) ⊗𝐶0(𝐻)⋊𝐻 [𝐿2(𝐻)]
= [𝜃] ⊗𝐶0(𝐺)⋊𝐻 1 ⊗𝐶0(𝐺)⋊𝐻 𝑗𝐻([𝜔]) ⊗𝐶0(𝐻)⋊𝐻 [𝐿2(𝐻)] = 1,

showing that 𝐱 is nontrivial.

Malcev completion says that a group Γ is isomorphic to a lattice in a simply connected nilpotent
Lie group if and only if Γ is finitely generated, torsion-free, and nilpotent; see e.g. [Rag72, Theorem
2.18]. We thereby obtain

Proposition IV.3.8. Let Γ be a finitely generated, torsion-free, nilpotent group. Let 𝐺 be a simply
connected nilpotent Lie group in which Γ is a lattice. Then

(𝐶∗(Γ), ℓ2(Γ, 𝑉 ), (𝑀ℓ𝑛)
𝑠
𝑛=1) 𝜖𝑖𝑗 = max{𝑖 − 𝑗, 0}

is an ST2 having a nontrivial class in 𝐾𝐾dim𝔤(𝐶∗(Γ), ℂ). The ST2 is 𝑓-summable for

𝑓(𝒕) >
𝑠

∑
𝑗=1

dim𝔤𝑗/𝔤𝑗+1

𝑡𝑗
.

Proof. For the statement about summability, first remark that for 𝒕 ∈ (0,∞)𝑠 the map

(𝑥1,… , 𝑥𝑠) ↦
⎛⎜⎜
⎝
1 +

𝑠
∑
𝑗=1

⎛⎜
⎝

dim𝔤𝑗/𝔤𝑗+1

∑
𝑘=1

𝑥2
𝑗,𝑘

⎞⎟
⎠

𝑡𝑗/2
⎞⎟⎟
⎠

−1

is an element of 𝐿𝑝(𝔤) for 𝑝 > ∑𝑠
𝑗=1

dim𝔤𝑗/𝔤𝑗+1
𝑡𝑗

. The Haar measure on a simply connected nilpotent
Lie group is the pushforward under the exponential of the Lebesgue measure on its Lie algebra, so
𝐿𝑝(𝔤) ≅ 𝐿𝑝(𝐺). By [CG90, Proposition 5.4.8(b)], log𝐺 Γ is the union of a finite number of additive
cosets of a lattice in 𝔤. By the integral test for convergence, then, the map

exp𝔤(𝑥1,… , 𝑥𝑠) ↦
⎛⎜⎜
⎝
1 +

𝑠
∑
𝑗=1

⎛⎜
⎝

dim𝔤𝑗/𝔤𝑗+1

∑
𝑘=1

𝑥2
𝑗,𝑘

⎞⎟
⎠

𝑡𝑗/2
⎞⎟⎟
⎠

−1

is an element of ℓ𝑝(Γ) for 𝑝 > ∑𝑠
𝑗=1

dim𝔤𝑗/𝔤𝑗+1
𝑡𝑗

.

If one chooses the Malcev basis to be strongly based on Γ, as is always possible [CG90, Theorem 5.1.6],
then each ℓ𝑗 will be valued in the ℚ-span of (𝛾𝑗,𝑘)

dim𝔤𝑗/𝔤𝑗+1
𝑘=1 [CG90, Theorem 5.1.8(a)]. By rescaling

by a suitable integer, one can ensure that each ℓ𝑗 will be valued in the ℤ-span of (𝛾𝑗,𝑘)
dim𝔤𝑗/𝔤𝑗+1
𝑘=1 ; cf.

[CG90, §5.4].

IV.3.1.1 Carnot groups and equivariance

A Carnot group is a simply connected nilpotent Lie group 𝐺 with a stratification 𝔤 = ⨁𝑠
𝑛=1 𝒱𝑛 of its

Lie algebra 𝔤 such that [𝒱1, 𝒱𝑛] = 𝒱𝑛+1. A basic consequence of the stratification is that 𝔤𝑛 = ⨁𝑠
𝑗=𝑛 𝒱𝑗

and so naturally 𝒱𝑛 = 𝔤𝑛/𝔤𝑛+1; for more details see e.g. [LD17].
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Proposition IV.3.9. Let 𝐺 be a Carnot group and 𝐻 be a cocompact, closed subgroup (including 𝐺
itself). Choose a Malcev basis ((𝑒𝑗,𝑘)

dim𝔤𝑗/𝔤𝑗+1
𝑘=1 )𝑠𝑗=1 with the property that (𝑒𝑗,𝑘)

dim𝔤𝑗/𝔤𝑗+1
𝑘=1 ⊂ 𝒱𝑗. Then

the collection (ℓ𝑗)𝑠𝑗=1 ∶ 𝐺 → End𝑉 of weights and, consequently, the ST2

(𝐶∗(𝐻), 𝐿2(𝐻, 𝑉 ), (𝑀ℓ𝑗)
𝑠
𝑗=1)

has the strictly lower triangular bounding matrix

𝜖𝑖𝑗 =
⎧{
⎨{⎩

⌊ 𝑖−1
𝑗 ⌋, 𝑖 > 𝑗,

0, 𝑖 ≤ 𝑗.

The reader can note that the bounding matrix in Proposition IV.3.9 for Carnot groups improves
the bounding matrix of Proposition IV.3.5 built from a general nilpotent Lie group’s lower central
series.

Proof. To verify the new bounding matrix, we again restrict to considering the translation-boundedness
of ℓ𝑠. Using the stratification of 𝔤, for 𝑋 ∈ 𝒱𝑖 and 𝑌 ∈ 𝒱𝑗,

‖ℓ𝑖+𝑗(exp𝔤[𝑋, 𝑌 ])‖ ≤ 𝐶𝑖,𝑗‖ℓ𝑖(exp𝔤 𝑋)‖‖ℓ𝑗(exp𝔤 𝑌 )‖

for some constant 𝐶𝑖,𝑗. Furthermore, for the Baker–Campbell–Hausdorff expansion 𝑧(𝑋, 𝑌 ) =
log(exp𝑋exp𝑌 ),

‖ℓ𝑠(exp𝔤 𝑧(𝑋, 𝑌 ))‖ ≤ 𝐶′
𝑖,𝑗,𝑠‖ℓ𝑖(exp𝔤 𝑋)‖⌊(𝑠−𝑗)/𝑖⌋‖ℓ𝑗(exp𝔤 𝑌 )‖⌊(𝑠−𝑖)/𝑗⌋

for some constant 𝐶′
𝑖,𝑗,𝑠. We obtain a bound

‖ℓ𝑠(exp𝔤 𝑋exp𝔤 𝑌 ) − ℓ𝑠(exp𝔤 𝑌 )‖

≤ ‖ℓ𝑠(exp𝔤 𝑋)‖ + ‖ℓ𝑠(exp𝔤 𝑧(𝑋, 𝑌 ))‖

≤ ‖ℓ𝑠(exp𝔤 𝑋)‖ + 𝐶′
𝑖,𝑗,𝑠‖ℓ𝑖(exp𝔤 𝑋)‖⌊(𝑠−𝑗)/𝑖⌋‖ℓ𝑗(exp𝔤 𝑌 )‖⌊(𝑠−𝑖)/𝑗⌋.

Hence, remembering Remark IV.3.3, 𝜖𝑠𝑗 = ⌊𝑠−1
𝑗 ⌋ is sufficient for translation-boundedness.

For a 5-step Carnot group, the bounding graph produced by Proposition IV.3.9 is

1 1 1 1

2 1 1

3 2

4

.

Remark IV.3.10. It is notable that the behaviour here, in contrast to the general nilpotent Lie group
case, is close to that of pseudodifferential operators. In the context of Remark IV.1.10, if we let
𝒎 = (1, 2,… , 𝑠), we expect a bounding matrix 𝜖′𝑖𝑗 = 𝑖−1

𝑗 , which is just fractionally larger than the 𝝐
given above. We therefore may think of 𝑀ℓ𝑗 as having order 𝑗. The ray

𝒕𝒎(𝜏) ∶= (𝜏
𝑗
)

𝑠

𝑗=1
(𝜏 > 0)

is in the cone Ω(𝝐) when 𝐺 is Carnot, but will not be, in general, for a nilpotent Lie group and
𝜖𝑖𝑗 = max{𝑖 − 𝑗, 0}.
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The stratification provides a canonical vector space isomorphism of 𝔤 and ⨁𝑠
𝑛=1 𝔤𝑛/𝔤𝑛+1 because

𝔤𝑛/𝔤𝑛+1 = 𝒱𝑛. We may write any element of 𝔤 as a tuple (𝑋1,… ,𝑋𝑠) ∈ ⨁𝑠
𝑛=1 𝒱𝑛 and any element of

𝐺 as the exponential of such a tuple. The stratification induces a dilation action of ℝ×
+ as Lie algebra

automorphisms on 𝔤, given by

𝛿𝑡 ∶ (𝑋1, 𝑋2,… ,𝑋𝑠) ↦ (𝑡𝑋1, 𝑡2𝑋2,… , 𝑡𝑠𝑋𝑠).

This action exponentiates to a dilation action on 𝐺 by automorphisms, given by

𝛿𝑡 ∶ exp𝔤(𝑋1, 𝑋2,… ,𝑋𝑠) ↦ exp𝔤(𝑡𝑋1, 𝑡2𝑋2,… , 𝑡𝑠𝑋𝑠).

Let 𝑉𝑡 be given by the pullback

𝑉𝑡𝜉(exp𝔤(𝑋1,… ,𝑋𝑠)) = 𝜉(exp𝔤(𝑡
−1𝑋1,… , 𝑡−𝑠𝑋𝑠))

on 𝜉 ∈ 𝐿2(𝐺). Recall that the Haar measure on a simply connected nilpotent Lie group is the
pushforward under the exponential of the Lebesgue measure on its Lie algebra. We compute that

⟨𝑉 ∗
𝑡 𝜉 ∣ 𝜂⟩ = ∫𝜉(exp𝔤(𝑡

−1𝑋1,… , 𝑡−𝑠𝑋𝑠))𝜂(exp𝔤(𝑋1,… ,𝑋𝑠))𝑑𝑋1 ⋯𝑑𝑋𝑆

= ∫𝜉(exp𝔤(𝑌1,… , 𝑌𝑠))𝜂(exp𝔤(𝑡𝑌1,… , 𝑡𝑠𝑌𝑠))𝑡dim𝑉1𝑑𝑌1 ⋯𝑡𝑠dim𝑉𝑠𝑑𝑌𝑆

= 𝑡dimℎ 𝔤⟨𝜉 ∣ 𝑉𝑡−1𝜂⟩

using the notation

dimℎ 𝔤 =
𝑠

∑
𝑛=1

𝑛dim𝒱𝑛

for the homogeneous dimension of 𝔤 (cf. (IV.2.12)). Hence 𝑉 ∗
𝑡 = 𝑡dimℎ 𝔤𝑉𝑡−1 . The unitary in the polar

decomposition of 𝑉𝑡 is given by 𝑈𝑡 = 𝑡−dimℎ(𝔤)/2𝑉𝑡. For 1 ≤ 𝑗 ≤ 𝑠,

ℓ𝑗(exp𝔤(𝑡
−1𝑋1,… , 𝑡−𝑠𝑋𝑠)) = 𝑡−𝑗ℓ(exp𝔤(𝑋1,… ,𝑋𝑠))

and we see that the operator 𝑀ℓ𝑗 transforms as

(𝑈𝑡𝑀ℓ𝑗𝑈
∗
𝑡 𝜉)(exp𝔤(𝑋1,… ,𝑋𝑠))

= 𝑡−dimℎ(𝔤)/2(𝑀ℓ𝑗𝑈
∗
𝑡 𝜉)(exp𝔤(𝑡

−1𝑋1,… , 𝑡−𝑠𝑋𝑠))

= 𝑡−dimℎ(𝔤)/2ℓ𝑗(exp𝔤(𝑡
−1𝑋1,… , 𝑡−𝑠𝑋𝑠))(𝑈∗

𝑡 𝜉)(exp𝔤(𝑡
−1𝑋1,… , 𝑡−𝑠𝑋𝑠))

= 𝑡−𝑗ℓ𝑗(exp𝔤(𝑋1,… ,𝑋𝑠))𝜉(exp𝔤(𝑋1,… ,𝑋𝑠))

= 𝑡−𝑗(𝑀ℓ𝑗𝜉)(exp𝔤(𝑋1,… ,𝑋𝑠))

on a vector 𝜉 ∈ 𝐿2(𝐺, 𝑉 ). We thereby obtain, generalising Example III.2.10,

Proposition IV.3.11. Let 𝐺 be an 𝑠-step Carnot group. Then

(𝐶∗(𝐺), 𝐿2(𝐺, 𝑉 ),
𝑠

∑
𝑗=1

sgn(𝑀ℓ𝑗)|𝑀ℓ𝑗 |
𝜏/𝑗)

is a conformally ℝ×
+-equivariant higher order spectral triple for the dilation action 𝛿 and conformal

factor 𝜇𝑡 = 𝑡−𝜏/2.
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IV.3.2 Spectral triples for crossed product C*-algebras and parabolic dynamics

Spectral triples for crossed products by groups of diffeomorphisms have been considered many times
in the literature, first by Connes for noncommutative tori; see e.g. [GBVF01, §12.3]. We mention
also [CM95, §1] in this connection, to which we shall refer again in Remark IV.1.19. The construction
which we emulate and generalise below appeared first in [CMRV08, BMR10] for the group ℤ and later
in [HSWZ13, Pat14] for other discrete groups.

Let 𝛼 be an action of a locally compact group 𝐺 by automorphisms of a C*-algebra 𝐴. The
(reduced) crossed product C*-algebra 𝐴 ⋊𝛼 𝐺 possesses a densely defined, completely positive map
Φ ∶ 𝐴 ⋊𝛼 𝐺 99K 𝐴 given on 𝑓 ∈ 𝐶𝑐(𝐺,𝐴) by evaluation at the identity 𝑒 ∈ 𝐺. We may complete
dom(Φ) ⊆ 𝐴 ⋊𝛼 𝐺 to a right Hilbert 𝐴-module under the inner product

⟨𝑓1 ∣ 𝑓2⟩𝐴 = Φ(𝑓∗
1𝑓2), for 𝑓1, 𝑓2 ∈ dom(Φ).

There is a natural isomorphism of this Hilbert module with 𝐿2(𝐺,𝐴)𝐴. The resulting representation
of 𝐴 ⋊𝛼 𝐺 on 𝐿2(𝐺,𝐴)𝐴 is given by

𝑓𝜉(𝑔) = ∫
𝐺
𝛼𝑔−1(𝑓(ℎ))𝜉(ℎ−1𝑔)𝑑𝜇(ℎ)

for 𝑓 ∈ 𝐶𝑐(𝐺,𝐴) ⊆ 𝐴 ⋊𝛼 𝐺 and 𝜉 ∈ 𝐶𝑐(𝐺,𝐴) ⊆ 𝐿2(𝐺,𝐴). Indeed, 𝐿2(𝐺,𝐴)𝐴 is the Hilbert module
associated with the semidirect Fell bundle; see Example II.2.12.2.

Given a self-adjoint, proper, translation-bounded weight ℓ ∶ 𝐺 → End𝑉, Theorem II.2.24 produces
a vertical calculus for 𝐴 ⋊𝛼 𝐺, in the form of an unbounded Kasparov 𝐴 ⋊𝛼 𝐺-𝐴-module

(𝐴 ⋊𝛼 𝐺,𝐿2(𝐺, 𝑉 ) ⊗ 𝐴𝐴,𝑀ℓ ⊗ 1).

Two weights which we shall particularly consider in later examples are the inclusions ℓℤ ∶ ℤ → ℂ and
ℓℝ ∶ ℝ → ℂ. The first of these gives rise to the number operator 𝑁 = 𝑀ℓℤ and the Pimsner–Voiculescu
extension class and the second is related to the Connes–Thom isomorphism.

A horizontal calculus is just a spectral triple (𝒜,𝐻,𝐷). Provided that 𝐴 is represented nondegen-
erately on 𝐻, the internal tensor product module 𝐿2(𝐺,𝐴) ⊗𝐴 𝐻 is naturally isomorphic to 𝐿2(𝐺,𝐻).
To construct the Kasparov product of the vertical and horizontal calculi, a compatibility condition is
required.

Let 𝑀 be a 𝜎-finite measure space and 𝐻 a separable Hilbert space. A function 𝑓 from 𝑀 to
bounded operators 𝔹(𝐻) is measurable if, for every pair 𝜉, 𝜂 ∈ 𝐻, the function 𝑚 ↦ ⟨𝜉 ∣ 𝑓(𝑚)𝜂⟩ is
measurable [RS78, §XIII.16]. It suffices to check measurability for 𝜉 and 𝜂 in a dense subspace of 𝐻
(such as dom𝐷 in the context below), because of the separability of 𝐻 and the fact that the pointwise
limit of measurable functions is measurable. One should compare the following Definition to the fact
that a Lipschitz function has a measurable weak derivative.

Definition IV.3.12. cf. [Pat14, §1] A spectral triple (𝒜,𝐻,𝐷) is pointwise bounded with respect to
an action 𝛼 of 𝐺 on 𝐴 if, for all 𝑎 ∈ 𝒜, the function 𝑔 ↦ [𝐷, 𝛼𝑔(𝑎)] is measurable and

sup
𝑔∈𝐺

‖[𝐷, 𝛼𝑔(𝑎)]‖ < ∞.

In other words, 𝑔 ↦ [𝐷, 𝛼𝑔(𝑎)] is 𝐿∞.

We remind the reader of Definition I.2.15.

Theorem IV.3.13. cf. [CMRV08, Theorem 3.4], [BMR10, §3.4], [HSWZ13, Theorem 2.7], [Pat14,
Proposition 4.1] Let (𝒜,𝐻,𝐷) be a spectral triple. Let 𝛼 be an action of a locally compact group 𝐺 on
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𝒜. Let ℓ ∶ 𝐺 → End𝑉 be a self-adjoint, proper, translation-bounded weight. If the spectral triple is
pointwise bounded with respect to the action of 𝐺,

(𝒜 ⋊𝛼 𝐺,𝐿2(𝐺, 𝑉 ) ⊗̃ 𝐻,𝑀ℓ ⊗̃ 1 + 1 ⊗̃ 𝐷)

is a spectral triple, representing the Kasparov product

(𝒜 ⋊𝛼 𝐺,𝐿2(𝐺, 𝑉 ) ⊗ 𝐴𝐴,𝑀ℓ ⊗ 1) ⊗𝐴 (𝒜,𝐻,𝐷).

Theorem IV.3.13 is known in the case of discrete groups but, to our knowledge, the generalisation to
locally compact groups has not appeared in the literature, although see [Pat14, Note after Proposition
4.1].

Proof. This is an instance of the constructive unbounded Kasparov product. We note that 𝑀ℓ ⊗̃ 1
and 1 ⊗̃ 𝐷 anticommute, so, in order to apply [LM19, Theorem 7.4] we need only checking the
boundedness of commutators and the connection condition. For the latter, let 𝜉 ⊗ 𝑎 ∈ 𝐶𝑐(𝐺, 𝑉 ) ⊗𝒜
and 𝑇𝜉⊗𝑎 ∈ 𝐵(𝐻,𝐿2(𝐺, 𝑉 ) ⊗̃ 𝐻) be given by

(𝑇𝜉⊗𝑎𝜂)(𝑔) = 𝜉(𝑔) ⊗̃ 𝛼𝑔−1(𝑎)𝜂 (𝜂 ∈ 𝐻).

Then, for 𝜂 ∈ dom𝐷,

(((1 ⊗̃ 𝐷)𝑇𝜉⊗𝑎 − 𝑇𝜉⊗𝑎𝐷)𝜂)(𝑔) =  𝜉(𝑔) ⊗̃ [𝐷, 𝛼𝑔−1(𝑎)]𝜂.

Because 𝜉 is compactly supported and 𝑔 ↦ [𝐷, 𝛼𝑔(𝑎)] is measurable, (1 ⊗̃ 𝐷)𝑇𝜉⊗𝑎 − 𝑇𝜉⊗𝑎𝐷 is bounded.
To check bounded commutators, by [FMR14, Corollary 2.2], it suffices to show that the elements

of 𝒜 ⋊𝛼 𝐺 take a core for 𝑀ℓ ⊗̃ 1 + 1 ⊗̃ 𝐷 to the domain and have bounded commutators on that core.
Let 𝜂 = 𝜂1 ⊗̃ 𝜂2 ∈ 𝐶𝑐(𝐺, 𝑉 ) ⊗̃ dom𝐷, a core for 𝑀ℓ ⊗̃ 1 + 1 ⊗̃ 𝐷. (If both 𝑉 and 𝐻 are ungraded, then
𝜂 should have an extra ℂ2 tensor factor, but this detail does not change the argument below.) Then

(𝜋(𝑎𝑓)𝜂)(𝑔) = ∫
𝐺
𝑓(ℎ)𝜂1(ℎ−1𝑔)𝑑𝜇(ℎ) ⊗̃ 𝛼𝑔−1(𝑎)𝜂2 ∈ 𝐸 ⊗̃ dom𝐷

for all 𝑔 ∈ 𝐺 and

∫
𝐺
∥(ℓ(𝑔) ⊗̃ 1 + 1 ⊗̃ 𝐷)∫

𝐺
𝑓(ℎ)𝜂1(ℎ−1𝑔)𝑑𝜇(ℎ) ⊗̃ 𝛼𝑔−1(𝑎)𝜂2∥

2

𝑑𝜇(𝑔)

≤ ∫
𝐺
∥(ℓ(𝑔)∫

𝐺
𝑓(ℎ)𝜂1(ℎ−1𝑔)𝑑𝜇(ℎ) ⊗̃ 𝛼𝑔−1(𝑎)𝜂2∥

2

𝑑𝜇(𝑔)

+∫
𝐺
∥∫

𝐺
𝑓(ℎ)𝜂1(ℎ−1𝑔)𝑑𝜇(ℎ) ⊗̃ ([𝐷, 𝛼𝑔−1(𝑎)] + 𝛼𝑔−1(𝑎)𝐷) 𝜂2∥

2

𝑑𝜇(𝑔)

is finite owing to the compactness of the supports of 𝑓 and 𝜂1 and pointwise-boundedness. By [RS78,
Theorem XIII.85], this implies that 𝜋(𝑎𝑓)𝜂 is in the domain of 𝑀ℓ ⊗̃ 1 + 1 ⊗̃ 𝐷. It is routine to check
that

[1 ⊗̃ 𝐷, 𝜋(𝑎𝑓)]𝜂(𝑔) = 1 ⊗̃ [𝐷, 𝛼𝑔−1(𝑎)]𝜋(𝑓)𝜂(𝑔)

and
[𝑀ℓ ⊗̃ 1, 𝜋(𝑎𝑓)]𝜂(𝑔) = 𝛼𝑔−1(𝑎)∫

𝐺
((ℓ(ℎ−1𝑔) − ℓ(𝑔))𝑓(ℎ) ⊗̃ 1) 𝜂(ℎ−1𝑔)𝑑𝜇(ℎ).

The commutator [𝑀ℓ ⊗̃ 1 + 1 ⊗̃ 𝐷, 𝜋(𝑎𝑓)] is then bounded because of pointwise-boundedness and the
facts that ℓ is translation bounded and that 𝑓 is compactly supported. By the Leibniz rule, we are
done.



IV.3. Examples arising from the Kasparov product 181

With the technology of ST2s available, we are not so constrained as in the spectral triple case. We
make the following definition.

Definition IV.3.14. A spectral triple (𝒜,𝐻,𝐷) has parabolic order 𝑠 ∈ [0,∞) with respect to an
action 𝛼 of 𝐺 on 𝐴 and a weight ℓ on 𝐺 if, for all 𝑎 ∈ 𝒜, the function 𝑔 ↦ [𝐷, 𝛼𝑔(𝑎)] is measurable
and, for all 𝑔, the matrix inequality

‖[𝐷, 𝛼𝑔(𝑎)]‖ ≤ 𝐶𝑎(1 + |ℓ(𝑔)|𝑠)

holds for some constant 𝐶𝑎 > 0. (If 𝑠 = 0, we recover pointwise-boundedness.)

Remark IV.3.15. Let 𝛼 be an action of a locally compact group 𝐺 on 𝒜. If 𝛽 is an automorphism of 𝐴
preserving 𝒜, there is an isomorphism

𝒜 ⋊𝛽◦𝛼◦𝛽−1 𝐺 ≅ 𝒜 ⋊𝛼 𝐺.

Let (𝒜,𝐻,𝐷) be a spectral triple which is parabolic of order 𝑠 with respect to the action and a weight
ℓ. Suppose that there is a constant 𝐶′ > 0 such that, for all 𝑎 ∈ 𝒜,

‖[𝐷, 𝛽(𝑎)]‖ ≤ 𝐶′‖[𝐷, 𝑎]‖.

Then (𝒜,𝐻,𝐷) also is parabolic of order 𝑠 with respect to 𝛽 ◦ 𝛼 ◦ 𝛽−1 and ℓ because

‖[𝐷, 𝛽 ◦ 𝛼𝑔 ◦ 𝛽−1(𝑎)]‖ ≤ 𝐶′‖[𝐷, 𝛼𝑔(𝛽−1(𝑎))]‖ ≤ 𝐶′𝐶𝛽−1(𝑎)(1 + |ℓ(𝑔)|𝑠).

Theorem IV.3.16. Let (𝒜,𝐻,𝐷) be a spectral triple. Let 𝛼 be an action of a locally compact group 𝐺
on 𝒜. Let ℓ ∶ 𝐺 → End𝑉 be a self-adjoint, proper, translation-bounded weight. If the spectral triple is
parabolic of order 𝑠 with respect to the action and weight,

(𝒜 ⋊𝛼 𝐺,𝐿2(𝐺, 𝑉 ) ⊗̃ 𝐻, (𝑀ℓ ⊗̃ 1, 1 ⊗̃ 𝐷))

is an ST2 with bounding matrix

𝝐 = (0 0
𝑠 0)

𝑠 .

The ST2 represents the Kasparov product

(𝒜 ⋊𝛼 𝐺,𝐿2(𝐺, 𝑉 ) ⊗ 𝐴𝐴,𝑀ℓ ⊗ 1) ⊗𝐴 (𝒜,𝐻,𝐷).

Proof. The proof of Theorem IV.3.13 carries over with the appropriate modifications for the tangled
boundedness of commutators implied by the pointwise order.

For the last point, using Kucerovsky’s theorem [Kuc97] (and in particular its extension to higher
order spectral triples in [GM15, Theorem A.7]), we see that, e.g. for 𝑚 > 𝑠, the higher order spectral
triple

(𝒜 ⋊ 𝐺,𝐿2(𝐺, 𝑉 ) ⊗̃ 𝐻,𝑀ℓ|ℓ|−1+𝑚 ⊗̃ 1 + 1 ⊗̃ 𝐷)

represents the Kasparov product of (𝐴 ⋊𝛼 𝐺,𝐿2(𝐺, 𝑉 ) ⊗ 𝐴𝐴,𝑀ℓ|ℓ|−1+𝑚 ⊗ 1) and (𝒜,𝐻,𝐷).

Remark IV.3.17. cf. [HSWZ13, Theorem 2.7] In the context of Theorem IV.3.16, if 𝐺 is discrete
and (1 + |ℓ|)−1 ∈ ℓ𝑝1(𝐺,End𝑉 ), so that (𝐶𝑐(𝐺), ℓ2(𝐺, 𝑉 ),𝑀ℓ) is 𝑝1-summable, and (𝒜,𝐻,𝐷) is
𝑝2-summable, then

(𝒜 ⋊𝛼 𝐺, ℓ2(𝐺, 𝑉 ) ⊗̃ 𝐻, (𝑀ℓ ⊗̃ 1, 1 ⊗̃ 𝐷))

is 𝑓-summable for 𝑓 ∶ (𝑡1, 𝑡2) ↦
𝑝1
𝑡1

+ 𝑝2
𝑡2
.
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To see the meaning of parabolic order, we specialise to the case of a complete Riemannian manifold
(𝑋, 𝐠) and a spectral triple (𝐶∞

𝑐 (𝑋), 𝐿2(𝑋, 𝑆),𝐷), with either the Atiyah–Singer or Hodge–de Rham
Dirac operator. Let 𝜑 be an action of a locally compact group 𝐺 by diffeomorphisms; the resulting
action on 𝐶∞

𝑐 (𝑋) is given by 𝜑−1∗, the pullback of the inverse. For 𝑓 ∈ 𝐶∞
𝑐 (𝑋), the commutator [𝐷, 𝑓]

is just the one-form d𝑓 acting by Clifford multiplication. Hence ‖[𝐷, 𝑓]‖ = ‖𝑑𝑓‖. Using the notation

(𝑑𝜑𝑔)𝑥 ∶ 𝑇𝑥𝑋 → 𝑇𝜑𝑔(𝑥)𝑋

for the pushforward by 𝜑𝑔 at 𝑥 ∈ 𝑋, the chain rule gives

𝑑𝜑∗
𝑔(𝑓)𝑥 = 𝑑𝑓𝜑𝑔(𝑥)(𝑑𝜑𝑔)𝑥.

Hence
‖𝑑𝜑∗

𝑔(𝑓)‖∞ ≤ ‖𝑑𝑓‖∞‖𝑑𝜑𝑔‖∞
and the parabolic order condition reduces to the matrix inequality

‖𝑑𝜑𝑔‖∞ ≤ 𝐶(1 + |ℓ(𝑔)|𝑠)

for a constant 𝐶 > 0. In other words, the supremum norm of the Jacobian should be of polynomial
order. To be clear, the norm of 𝑑𝜑𝑔 at 𝑥 ∈ 𝑋 is

‖(𝑑𝜑𝑔)𝑥‖ = sup
𝑢∈𝑇𝑥𝑀

‖(𝑑𝜑𝑔)𝑥𝑢‖
‖𝑢‖

= sup
𝑢∈𝑇𝑥𝑀

𝐠𝜑(𝑥)((𝑑𝜑𝑔)𝑥𝑢, (𝑑𝜑𝑔)𝑥𝑢)1/2

𝐠𝑥(𝑢, 𝑢)1/2
.

Making our observation precise, we obtain:

Corollary IV.3.18. Let (𝐶∞
𝑐 (𝑋), 𝐿2(𝑋, 𝑆),𝐷) be the Atiyah–Singer or Hodge–de Rham Dirac spectral

triple on a complete Riemannian manifold (𝑋, 𝐠). Let 𝜑 be an action of a locally compact group 𝐺
by diffeomorphisms on 𝑋. Let ℓ ∶ 𝐺 → End𝑉 be a self-adjoint, proper, translation-bounded weight.
Suppose that, for some 𝑠 ≥ 0, the matrix inequality

‖𝑑𝜑𝑔‖∞ ≤ 𝐶(1 + |ℓ(𝑔)|𝑠)

holds for some constant 𝐶 > 0. Then

(𝐶∞
𝑐 (𝑋) ⋊ 𝐺,𝐿2(𝐺, 𝑉 ) ⊗̃ 𝐿2(𝑋, 𝑆), (𝑀ℓ ⊗̃ 1, 1 ⊗̃ 𝐷)

is a strictly tangled spectral triple with bounding matrix

𝝐 = (0 0
𝑠 0)

𝑠 .

This ST2 represents the Kasparov product of

(𝐶∞
𝑐 (𝑋) ⋊ 𝐺,𝐿2(𝐺, 𝑉 ) ⊗ 𝐶0(𝑋)𝐶0(𝑋),𝑀ℓ ⊗ 1)

and (𝐶∞
𝑐 (𝑋), 𝐿2(𝑋, 𝑆),𝐷).

The behaviour of dynamical systems can be loosely classified into three paradigms: elliptic, parabolic,
and hyperbolic [HK02, §5.1.g]. These roughly refer to the Jacobian’s having respectively constant
growth, polynomial growth, or exponential growth. The classical example of the distinction is the
classification of Möbius transformations, which we discuss in the following Example. The meaning
of Corollary IV.3.18, then, is that ST2s can be built for parabolic dynamical systems in addition to
elliptic dynamical systems which already fall within the scope of Theorem IV.3.13. For a survey of
parabolic dynamics, we refer to [HK02, Chapter 8]; see also [Frą04, AFRU21].
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(a) elliptic (b) parabolic (c) loxodromic (d) hyperbolic

Figure IV.1: The classification of Möbius transformations of 𝐒2, taken from [Nee97, Figure 3.26].

Example IV.3.19. In terms of the complex coordinate 𝑧 on the Riemann sphere 𝐒2, a Möbius
transformation is given by

𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

(𝑎 𝑏
𝑐 𝑑) ∈ 𝑆𝐿(2,ℂ).

The centre {+1,−1} of 𝑆𝐿(2,ℂ) acts trivially, so that the group of Möbius transformations is 𝑃𝑆𝐿(2,ℂ).
Equip 𝐒2 with the round metric

𝑑𝑠2 = 4𝑑𝑧𝑑𝑧
(1 + |𝑧|2)2

and a corresponding spectral triple (𝐶∞(𝐒2), 𝐿2(𝐒2, 𝑆),𝐷). We will consider the behaviour of a
ℤ-action generated by a single Möbius transformation, with the weight ℓ corresponding to the number
operator. A Möbius transformation 𝜑 is classified by its eigenvalues 𝜆, 𝜆−1 into three types:

• If 𝜆, 𝜆−1 ∈ 𝕋 ∖ {−1, 1}, 𝜑 is elliptic, possessing two fixed points; see Figure IV.1(a). An
elliptic Möbius transformation 𝜑 is (smoothly) conjugate to a rotation 𝜏 ∶ 𝑧 ↦ 𝑒𝑖𝜃𝑧, for which
‖𝑑𝜏∗(𝑓)‖ = 1. By Remark IV.3.15, (𝐶∞(𝐒2), 𝐿2(𝐒2, 𝑆),𝐷) is pointwise bounded with respect to
the ℤ-action generated by 𝜑, placing it under the aegis of Theorem IV.3.13.

• If 𝜆 = 𝜆−1 = ±1, 𝜑 is either the identity or it is parabolic, possessing one fixed point (and
not diagonalisable as a matrix); see Figure IV.1(b). A parabolic Möbius transformation 𝜑 is
(smoothly) conjugate to a translation 𝜏 ∶ 𝑧 ↦ 𝑧 + 1. We compute that

‖𝑑𝜏𝑛‖∞ = sup
𝑧

1 + |𝑧|2

1 + |𝑧 + 𝑛|2
= 1

2
(𝑛2 + |𝑛|√𝑛2 + 4 + 2) ∈ 𝑂(𝑛2).

Again, by Remark IV.3.15, (𝐶∞(𝐒2), 𝐿2(𝐒2, 𝑆),𝐷) has pointwise order 2 with respect to the
ℤ-action generated by 𝜑 and the number operator weight ℓℤ.

• Otherwise, if 𝜆, 𝜆−1 ∈ ℂ ∖ 𝕋, 𝜑 is loxodromic, possessing two fixed points; see Figure IV.1(c). A
loxodromic Möbius transformation 𝜑 is (smoothly) conjugate to a dilation, perhaps combined
with a rotation, 𝜏 ∶ 𝑧 ↦ 𝜆2𝑧. In this case,

‖𝑑𝜏𝑛‖∞ = sup
𝑧

|𝜆|2𝑛 1 + |𝑧|2

1 + |𝜆|4𝑛|𝑧|2
= max{|𝜆|2𝑛, |𝜆|−2𝑛}

which is not of polynomial order in 𝑛. In the special case that 𝜆, 𝜆−1 ∈ ℝ ∖ {−1, 1}, 𝜑 is called
hyperbolic; see Figure IV.1(d).

Example IV.3.20. cf. [HK02, §8.3.a] The group 𝑆𝐿𝑑(ℤ) acts on the torus 𝕋𝑑 by large diffeomorphisms.
The action is realised by identifying 𝕋𝑑 with ℝ𝑑/ℤ𝑑 and 𝑆𝐿𝑑(ℤ) acting on ℝ𝑑 in the usual way that
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a matrix acts on a vector. For ease of exposition, equip 𝕋𝑑 with a constant Riemannian metric 𝐠.
For 𝐴 ∈ 𝑆𝐿𝑑(ℤ) and the corresponding action 𝜑𝐴 on 𝕋𝑑, ‖(𝑑𝜑𝑛)𝑥‖ = ‖𝐴−𝑛‖𝐠, which generically will
be exponentially divergent. However, suppose that 𝐴 ∈ 𝑆𝐿𝑑(ℤ) is a unipotent matrix, i.e. such that
(𝐴 − 1)𝑠+1 = 0 for some 𝑠 ∈ ℕ. By Newton’s binomial series, for 𝑛 ∈ ℤ,

𝐴𝑛 =
𝑠

∑
𝑘=0

(𝑛
𝑘
)(𝐴 − 1)𝑘

and

‖(𝑑𝜑−𝑛)𝑥‖ = ‖𝐴−𝑛‖𝐠 ≤
𝑠

∑
𝑘=0

∣(𝑛
𝑘
)∣ ‖(𝐴 − 1)𝑘‖𝐠 ∈ 𝑂(𝑛𝑠).

Hence
(𝐶∞(𝕋𝑑) ⋊𝜑𝐴 ℤ, ℓ2(ℤ) ⊗̃ 𝐿2(𝐻𝑑, 𝑆), (𝑁 ⊗̃ 1, 1 ⊗̃ 𝐷))

is an ST2 with bounding matrix

𝝐 = (0 0
𝑠 0)

𝑠 .

This Example admits the following generalisation to outer automorphisms of noncommutative tori.

Example IV.3.21. Let Θ be a skew symmetric 𝑑-by-𝑑 real matrix. For 𝑥 ∈ ℤ𝑑, define an operator
𝑙Θ(𝑥) on ℓ2(ℤ𝑑) by

(𝑙Θ(𝑥)𝜉)(𝑦) = 𝑒𝜋𝑖⟨Θ𝑥,−𝑥+𝑦⟩𝜉(−𝑥 + 𝑦).
The algebra 𝐶∞(𝕋𝑑

Θ) of smooth functions on the noncommutative torus 𝕋𝑑
Θ is the ∗-algebra spanned by

𝑙Θ(𝑥) for all 𝑥 ∈ ℤ𝑑. We call the C*-algebra envelope 𝐶(𝕋𝑑
Θ). When Θ = 0, we recover 𝐶(𝕋𝑑). As in

the classical case, integer matrices can act by automorphisms. Following [JL15, §2.3], let 𝐴 ∈ 𝑆𝐿𝑑(ℤ)
be such that 𝐴∗Θ𝐴 = Θ. Then 𝛼𝐴 ∶ 𝑙Θ(𝑥) ↦ 𝑙Θ(𝐴𝑥) defines an automorphism of 𝐶(𝕋𝑑

Θ). (For 𝑑 = 2,
the condition 𝐴∗Θ𝐴 = Θ is automatically satisfied.)

Let (𝑣𝑖)𝑑𝑖=1 be a basis of ℝ𝑑. To simplify notation, we will also write (𝑣𝑖)𝑑𝑖=1 for their images in
𝒞𝓁𝑑. Let 𝑆 be a Clifford module for 𝒞𝓁𝑑 and define an unbounded operator

(𝐷𝜉)(𝑦) =
𝑑

∑
𝑖=1

⟨𝑒𝑖, 𝑦⟩𝑣𝑖𝜉(𝑦) (𝑦 ∈ ℤ𝑑)

on ℓ2(ℤ𝑑, 𝑆). We obtain a spectral triple (𝐶∞(𝕋𝑑
Θ), ℓ2(ℤ𝑑, 𝑆),𝐷). We have

([𝐷, 𝑙Θ(𝑥)]𝜉)(𝑦) = −𝑒𝜋𝑖⟨Θ𝑥,−𝑥+𝑦⟩
𝑑

∑
𝑖=1

⟨𝑒𝑖, 𝑥⟩𝑣𝑖𝜉(−𝑥 + 𝑦)

so that

∥[𝐷, 𝑙Θ(𝑥)]∥ = ∥
𝑑

∑
𝑖,𝑗=1

⟨𝑒𝑖, 𝑥⟩⟨𝑒𝑗, 𝑥⟩𝑣𝑖𝑣𝑗∥

1
2

= ∥
𝑑

∑
𝑖,𝑗=1

⟨𝑥, 𝑒𝑖⟩⟨𝑣𝑖, 𝑣𝑗⟩⟨𝑒𝑗, 𝑥⟩∥

1
2

= ‖𝑉 𝑥‖

where 𝑉 ∶ ℤ𝑑 → ℝ𝑑 is the linear map taking 𝑒𝑖 ↦ 𝑣𝑖.
If 𝐴 ∈ 𝑆𝐿𝑑(ℤ) (with 𝐴∗Θ𝐴 = Θ) is unipotent, so that (𝐴 − 1)𝑠+1 = 0 for some 𝑠 ∈ ℕ, then

‖𝐴𝑛‖ ∈ 𝑂(𝑛𝑠) as in Example IV.3.20, and
∥[𝐷, 𝛼𝑛

𝐴(𝑙Θ(𝑥))]∥ = ∥[𝐷, 𝑙Θ(𝐴𝑛𝑥)]∥ = ‖𝑉 𝐴𝑛𝑥‖ ≤ ‖𝑉 ‖‖𝐴𝑛‖‖𝑥‖ ∈ 𝑂(𝑛𝑠).
Hence

(𝐶∞(𝕋𝑑
Θ) ⋊𝛼𝐴

ℤ, ℓ2(ℤ) ⊗̃ ℓ2(ℤ𝑑, 𝑆), (𝑁 ⊗̃ 1, 1 ⊗̃ 𝐷))

is an ST2 with bounding matrix

𝝐 = (0 0
𝑠 0)

𝑠 .
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IV.3.2.1 Nilpotent flows on homogeneous spaces

Let 𝐺 be a connected Lie group. Right-invariant Riemannian metrics on 𝐺 are in bijection with inner
products on 𝔤. If 𝐠𝑒 denotes such an inner product on 𝔤 = 𝑇𝑒𝐺, we define the Riemannian metric 𝔤 at
any other point 𝑔 ∈ 𝐺 by

𝐠𝑔(𝑢, 𝑣) = 𝐠𝑒((𝑑𝑅𝑔−1)𝑔𝑢, (𝑑𝑅𝑔−1)𝑔𝑣)

where 𝑅𝑔−1 is the diffeomorphism of 𝐺 given by right translation by 𝑔−1 and 𝑑𝑅𝑔−1 is its pushforward.
If the group is noncompact, the metric so obtained will not usually be left invariant [Mil76, §7]. The
norm of the Jacobian of left translation 𝐿𝑔 by 𝑔 ∈ 𝐺, at ℎ ∈ 𝐺 is

‖(𝑑𝐿𝑔)ℎ‖ = sup
𝑢∈𝑇ℎ𝐺

𝐠𝑔ℎ((𝑑𝐿𝑔)ℎ𝑢, (𝑑𝐿𝑔)ℎ𝑢)
𝐠ℎ(𝑢, 𝑢)

= sup
𝑢∈𝑇ℎ𝐺

𝐠𝑒((𝑑𝑅(𝑔ℎ)−1)𝑔ℎ(𝑑𝐿𝑔)ℎ𝑢, (𝑑𝑅(𝑔ℎ)−1)𝑔ℎ(𝑑𝐿𝑔)ℎ𝑢)
𝐠𝑒((𝑑𝑅ℎ−1)ℎ𝑢, (𝑑𝑅ℎ−1)ℎ𝑢)

= sup
𝑣∈𝑇𝑒𝐺=𝔤

𝐠𝑒((𝑑Ad𝑔)𝑒𝑣, (𝑑Ad𝑔)𝑒𝑣)
𝐠𝑒(𝑣, 𝑣)

= ‖(𝑑Ad𝑔)𝑒‖
= ‖Ad𝑔 ‖𝐠𝑒

where we have used the identity (𝑑𝑅ℎ−1)𝑔ℎ(𝑑𝐿𝑔)ℎ = (𝑑𝐿𝑔)𝑒(𝑑𝑅ℎ−1)ℎ resulting from the facts that left
and right actions commute and that the pushforward at 𝑒 ∈ 𝐺 of the adjoint action on 𝐺 is the adjoint
action on 𝔤.

If 𝐻 is any closed subgroup of 𝐺 then 𝐺/𝐻 is a quotient manifold. A right-invariant Riemannian
metric 𝐠 on 𝐺 reduces to a Riemannian metric 𝐡 on 𝐺/𝐻. To construct 𝐡, let 𝜋 ∶ 𝐺 → 𝐺/𝐻 be the
quotient map. Its pushforward at any point 𝑔 ∈ 𝐺,

𝑑𝜋𝑔 ∶ 𝑇𝑔𝐺 → 𝑇𝑔𝐻(𝐺/𝐻),

restricts to an isomorphism between 𝑇𝑔(𝑔𝐻)⟂ = (ker 𝑑𝜋𝑔)⟂ and 𝑇𝑔𝐻(𝐺/𝐻). Define 𝐡 by

𝐡𝑔𝐻(𝑢, 𝑣) = 𝐠𝑔(𝑑𝜋𝑔|−1
𝑇𝑔(𝑔𝐻)⟂𝑢, 𝑑𝜋𝑔|−1

𝑇𝑔(𝑔𝐻)⟂𝑣).

There remains a left action of 𝐺 on 𝐺/𝐻. As a crude estimate, we have

‖(𝑑𝐿𝑔)ℎ𝐻‖ ≤ ‖(𝑑𝐿𝑔)ℎ‖ = ‖Ad𝑔 ‖𝐠𝑒

for the Jacobian of left translation 𝐿𝑔.
Recall the Campbell identity

Adexp𝑋(𝑌 ) = exp(ad𝑋)(𝑌 ) =
∞
∑
𝑛=0

1
𝑛!

ad𝑛𝑋(𝑌 ).

An element 𝑋 ∈ 𝔤 is nilpotent if ad𝑠+1
𝑋 = 0 for some step size 𝑠 ∈ ℕ. In that case,

Adexp 𝑡𝑋(𝑌 ) =
𝑠

∑
𝑛=0

𝑡𝑛

𝑛!
ad𝑛𝑋(𝑌 ).

Consider the flow 𝜙𝑋 given by 𝜙𝑋
𝑡 = 𝐿exp 𝑡𝑋 on 𝐺/𝐻. We have

‖𝑑𝜙𝑋
𝑡 ‖∞ ≤ ‖Adexp 𝑡𝑋(𝑌 )‖𝐠𝑒

∈ 𝑂(𝑡𝑠)

so that
(𝐶∞

𝑐 (𝑋) ⋊𝜙𝑋 ℝ,𝐿2(ℝ) ⊗̃ 𝐿2(𝐺/𝐻, 𝑆), (𝑀ℓℝ ⊗̃ 1, 1 ⊗̃ 𝐷))
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is an ST2 with bounding matrix

𝝐 = (0 0
𝑠 0)

𝑠 .

Such flows 𝜙𝑋 constitute an important family of parabolic dynamical systems [HK02, §8.3.b].

Example IV.3.22. cf. [HK02, §8.3.3] Let Γ ⊂ 𝑆𝐿(2,ℝ) be a cocompact lattice. A horocycle flow 𝜙𝑋

on 𝑆𝐿(2,ℝ)/Γ is generated by a nilpotent element 𝑋 ∈ 𝔰𝔩(2,ℝ). Of necessity, 𝑋 will be conjugate to

(0 1
0 0) ∈ 𝔰𝔩(2,ℝ)

and so will be 2-step nilpotent.

Example IV.3.23. cf. [HK02, §8.3.2] [AFRU21, §2.2] A compact nilmanifold is a quotient 𝐺/Γ of a
simply connected nilpotent Lie group 𝐺 by a lattice Γ ⊂ 𝐺. The nilflow 𝜙𝑋 generated by a vector
field 𝑋 ∈ 𝔤 is the restriction of the left action of 𝐺 to the one-parameter subgroup (exp 𝑡𝑋)𝑡∈ℝ. Every
element of a nilpotent Lie algebra is nilpotent, with step size less than or equal to the step size of the
Lie algebra, so the above construction may be applied.

Example IV.3.24. Let 𝑃 ⊆ 𝑆𝑂0(𝑛, 1) denote the standard parabolic subgroup. The homogeneous
space 𝑆𝑂0(𝑛, 1)/𝑃 is 𝐒𝑛−1 and the Lorentz group 𝑆𝑂0(𝑛, 1) acts by Möbius transformations on 𝐒𝑛−1.
We thereby recover Example IV.3.19 as a special case.
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In this Appendix, we present a number tools relating to Hilbert C*-modules and their operators. The
main new idea is that of matched operators, explained in §A.1.2, and used extensively in §§III.3 and
III.4

Let us first set some conventions and notation.

Definition A.0.1. [RW98, Definition 2.1] Let 𝐴 be a C*-algebra. A right inner product 𝐴-module is a
right 𝐴-module 𝐸 with an 𝐴-valued ℂ-bilinear form ⟨⋅, ⋅⟩𝐴 on 𝐸 satisfying

• ⟨𝑥 ∣ 𝑦𝑎⟩𝐴 = ⟨𝑥 ∣ 𝑦⟩𝐴𝑎,
• ⟨𝑥 ∣ 𝑦⟩∗𝐴 = ⟨𝑦 ∣ 𝑥⟩𝐴𝑎, and
• ⟨𝑥 ∣ 𝑥⟩𝐴 ≥ 0, with equality if and only if 𝑥 = 0.

The last property means that the expression ‖𝑥‖ = ‖⟨𝑥 ∣ 𝑥⟩𝐴‖1/2 defines a norm on 𝐸. We call 𝐸 a
right Hilbert 𝐴-module if it is complete in this norm.

Definition A.0.2. e.g. [RW98, §2.2] Let 𝐸 be a right Hilbert 𝐵-module. The C*-algebra End∗𝐵(𝐸) is
defined as the set of ℂ-linear maps 𝑇 ∶ 𝐸 → 𝐸 for which there exist a map 𝑇 ∗ ∶ 𝐸 → 𝐸 such that

⟨𝑇 (𝑥) ∣ 𝑦⟩𝐵 = ⟨𝑥 ∣ 𝑇 ∗(𝑦)⟩𝐵
for 𝑥, 𝑦 ∈ 𝐸. These maps are automatically right 𝐵-linear, since

⟨𝑇 (𝑥)𝑏 ∣ 𝑦⟩𝐵 = 𝑏∗⟨𝑇 (𝑥) ∣ 𝑦⟩𝐵 = 𝑏∗⟨𝑥 ∣ 𝑇 ∗(𝑦)⟩𝐵 = ⟨𝑥𝑏 ∣ 𝑇 ∗(𝑦)⟩𝐵 = ⟨𝑇 (𝑥𝑏) ∣ 𝑦⟩𝐵
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In addition, 𝑇 ∗ ∈ End∗𝐵(𝐸), since

⟨𝑇 ∗(𝑥) ∣ 𝑦⟩𝐵 = ⟨𝑦 ∣ 𝑇 ∗(𝑥)⟩∗𝐵 = ⟨𝑇 (𝑦) ∣ 𝑥⟩∗𝐵 = ⟨𝑥 ∣ 𝑇 (𝑦)⟩𝐵

Let 𝐴 be another C*-algebra. An 𝐴-𝐵-correspondence is a right Hilbert 𝐵-module with which is made
a left 𝐴-module by a ∗-homomorphism 𝜙 ∶ 𝐴 → End∗𝐵(𝐸).

A.1 Hilbert C*-modules over spaces and algebras

A.1.1 Hilbert C*-modules over topological spaces

We review and extend some known facts about Hilbert modules built from functions 𝑋 → 𝐸𝐵 for a
fixed Hilbert module 𝐸𝐵 and a locally compact Hausdorff space 𝑋.

Definition A.1.1. e.g. [RW98, §B.2] Let 𝐴 be a C*-algebra and 𝑋 a locally compact Hausdorff space.
Define 𝐶0(𝑋,𝐴) to be the C*-algebra of norm-continuous functions 𝑓 ∶ 𝑋 → 𝐴 such that 𝑥 ↦ ‖𝑓(𝑥)‖𝐴
vanishes at infinity, equipped with the supremum norm. Let 𝐸 be a right Hilbert 𝐴-module. Define
𝐶0(𝑋,𝐸) to be the set of continuous functions 𝑓 ∶ 𝑋 → 𝐸 such that 𝑥 ↦ ‖𝑓(𝑥)‖𝐸 vanishes at infinity.

Lemma A.1.2. cf. [RW98, Example 2.13] Let 𝐸 be a right Hilbert 𝐴-module and 𝑋 a locally compact
Hausdorff space. Then 𝐶0(𝑋,𝐸) is a right Hilbert 𝐶0(𝑋,𝐴)-module with inner product and right action
defined pointwise in 𝑋.

Proof. The algebraic conditions on a Hilbert module are satisfied for 𝐶0(𝑋,𝐸) since they are satisfied
pointwise for 𝐸. The norm on an element 𝑓 ∈ 𝐶0(𝑋,𝐸) arising from the inner product is

∥⟨𝑓 ∣ 𝑓⟩𝐶0(𝑋,𝐴)∥
1/2

𝐶0(𝑋,𝐴)
= sup

𝑥∈𝑋
∥⟨𝑓 ∣ 𝑓⟩𝐶0(𝑋,𝐴)(𝑥)∥

1/2

𝐴
= sup

𝑥∈𝑋
∥⟨𝑓(𝑥) ∣ 𝑓(𝑥)⟩𝐴∥

1/2
𝐴

= sup
𝑥∈𝑋

‖𝑓(𝑥)‖𝐸

which is the supremum norm. Hence, 𝐶0(𝑋,𝐸) is complete as Hilbert module.

Lemma A.1.3. Let 𝐸 be a right Hilbert 𝐵-module and 𝑋 a locally compact Hausdorff space. Let
𝐽 = span⟨𝐸 ∣ 𝐸⟩𝐵 be the ideal of 𝐴 generated by inner products on 𝐸. There is an equality

span⟨𝐶0(𝑋,𝐸) ∣ 𝐶0(𝑋,𝐸)⟩𝐶0(𝑋,𝐵) = 𝐶0(𝑋, 𝐽)

of ideals of 𝐶0(𝑋,𝐵).

Proof. Consider 𝑓1, 𝑓2 ∈ 𝐶0(𝑋,𝐸). Their inner product is given at 𝑥 ∈ 𝑋 by

⟨𝑓1 ∣ 𝑓2⟩𝐶0(𝑋,𝐵)(𝑥) = ⟨𝑓1(𝑥) ∣ 𝑓2(𝑥)⟩𝐵 ∈ 𝐽.

Noting that

∥⟨𝑓1(𝑥) ∣ 𝑓2(𝑥)⟩𝐵∥𝐵 ≤ ∥⟨𝑓1(𝑥) ∣ 𝑓1(𝑥)⟩𝐵∥
1/2
𝐵

∥⟨𝑓2(𝑥) ∣ 𝑓2(𝑥)⟩𝐵∥
1/2
𝐵

= ‖𝑓1(𝑥)‖𝐸‖𝑓2(𝑥)‖𝐸,

we see that ⟨𝑓1 ∣ 𝑓2⟨𝐶0(𝑋,𝐵)∈ 𝐶0(𝑋, 𝐽). Hence

⟨𝐶0(𝑋,𝐸) ∣ 𝐶0(𝑋,𝐸)⟩𝐶0(𝑋,𝐵) ⊆ 𝐶0(𝑋, 𝐽).

Label the ideal 𝐼 = span⟨𝐶0(𝑋,𝐸) ∣ 𝐶0(𝑋,𝐸)⟩𝐶0(𝑋,𝐵) of 𝐶0(𝑋,𝐵). By e.g. [Fel61, §1.2], 𝐼 must have
the form

{𝑠 ∈ 𝐶0(𝑋,𝐵) ∣ ∀𝑥 ∈ 𝑋, 𝑠(𝑥) ∈ 𝐼𝑥}

where each 𝐼𝑥 = {𝑠(𝑥) ∣ 𝑠 ∈ 𝐼} is an ideal of 𝐵. We must have 𝐼𝑥 ⊆ 𝐽 for every 𝑥 ∈ 𝑋. Suppose
that 𝐼𝑥0

≠ 𝐽 for some 𝑥0 ∈ 𝑋. Since ⟨𝐸 ∣ 𝐸⟩𝐵 is linearly dense in 𝐽, it is not contained in 𝐼𝑥0
, and
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there must be a pair 𝑒1, 𝑒2 ∈ 𝐸 such that ⟨𝑒1 ∣ 𝑒2⟩𝐵 ∈ 𝐽 ∖ 𝐼𝑥0
. Choose a function ℎ ∈ 𝐶0(𝑋) for which

ℎ(𝑥0) = 1 and define 𝑓1, 𝑓2 ∈ 𝐶0(𝑋,𝐸) on 𝑥 ∈ 𝑋 by 𝑓𝑖(𝑥) = 𝑒𝑖ℎ(𝑥). Then

⟨𝑓1 ∣ 𝑓2⟩𝐶0(𝑋,𝐵)(𝑥0) = ⟨𝑓1(𝑥0) ∣ 𝑓2(𝑥0)⟩𝐵 = ⟨𝑒1 ∣ 𝑒2⟩𝐵

is not in 𝐼𝑥0
, so ⟨𝑓1 ∣ 𝑓2⟩𝐶0(𝑋,𝐵) is not in 𝐼, which is a contradiction. In other words, 𝐼𝑥 = 𝐽 for every

𝑥 ∈ 𝑋 and 𝐼 = 𝐶0(𝑋, 𝐽).

Lemma A.1.4. Let 𝐸 be a Morita equivalence 𝐴-𝐵-bimodule and 𝑋 a locally compact Hausdorff space.
Then 𝐶0(𝑋,𝐸) is a Morita equivalence 𝐶0(𝑋,𝐴)-𝐶0(𝑋,𝐵)-bimodule.

Proof. The left and right norms on 𝐸 agree by [RW98, Lemma 2.30], so there is no ambiguity in the
continuity used to define 𝐶0(𝑋,𝐸). The algebraic properties of a Morita equivalence bimodule are
satisfied for 𝐶0(𝑋,𝐸) because they are satisfied pointwise for 𝐸. The fullness of 𝐶0(𝑋,𝐸) as a right
and left Hilbert module follows from Lemma A.1.3 and the fullness of 𝐸.

Lemma A.1.5. Let 𝐸 be a right Hilbert 𝐵-module and 𝑋 a locally compact Hausdorff space. Then

End∗(𝐶0(𝑋,𝐸)) = 𝐶𝑏(𝑋,End∗(𝐸)∗−𝑠)

the C*-algebra of ∗-strong-continuous functions 𝑓 ∶ 𝑋 → End∗(𝐸) such that sup𝑥∈𝑋 ‖𝑓(𝑥)‖End∗(𝐸) < ∞.
Furthermore, End0(𝐶0(𝑋,𝐸)) = 𝐶0(𝑋,End0(𝐸)).

Proof. Let 𝐴 = End0(𝐸), so that 𝐸 is a Morita equivalence 𝐴-𝐵-bimodule. By [RW98, Corollary 2.54],
End∗(𝐸) = 𝑀(𝐴), the multiplier algebra of 𝐴. The equality

End0(𝐶0(𝑋,𝐸)) = 𝐶0(𝑋,End0(𝐸)) = 𝐶0(𝑋,𝐴)

is a consequence of Lemma A.1.4. Again by [RW98, Corollary 2.54],

End∗(𝐶0(𝑋,𝐸)) = 𝑀(End0(𝐶0(𝑋,𝐸))) = 𝑀(𝐶0(𝑋,𝐴)).

Let 𝑀(𝐴)𝛽 be 𝑀(𝐴) equipped with the strict topology. By [APT73, Corollary 3.4],

𝑀(𝐶0(𝑋,𝐴)) = 𝐶𝑏(𝑋,𝑀(𝐴)𝛽),

the C*-algebra of strictly continuous and norm-bounded functions. By [RW98, Proposition C.7], the
strict topology on 𝑀(𝐴) = End∗(𝐸) agrees with the ∗-strong topology on norm-bounded subsets.
Hence

𝐶𝑏(𝑋,𝑀(𝐴)𝛽) = 𝐶𝑏(𝑋,End∗(𝐸)∗−𝑠),

where the norm on both algebras is given by the operator norm on 𝐸 composed with the supremum
norm over 𝑋. Finally, we obtain

End∗(𝐶0(𝑋,𝐸)) = 𝐶𝑏(𝑋,End∗(𝐸)∗−𝑠),

as required.

Definition A.1.6. e.g. [Wil70, Definition 43.8] A topological space 𝑋 is a k-space if a subset 𝑌 of 𝑋 is
open if, and only if, for every compact subset 𝐾 of 𝑋, 𝑌 ∩ 𝐾 is open in 𝐾. Conditions on 𝑋 which
imply that it is a k-space include local compactness and first-countability [Wil70, Theorem 43.9].

Lemma A.1.7. e.g. [Wil70, Lemma 43.10] Let 𝑓 ∶ 𝑋 → 𝑌 be a map between topological spaces with 𝑋
a k-space. Then the continuity of 𝑓 is equivalent to the continuity of 𝑓 restricted to 𝐾 for all compact
subsets 𝐾 ⊆ 𝑋.
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Lemma A.1.8. Let 𝐸 be a right Hilbert 𝐴-module and 𝑋 a locally compact Hausdorff space. The norm-
continuity of a function 𝑓 ∶ 𝑋 → End0(𝐸) is equivalent to the condition that 𝑓|𝐾 ∈ End0(𝐶(𝐾,𝐸))
for all compact subsets 𝐾 ⊆ 𝑋.

Proof. By Lemma A.1.7, the norm-continuity of a function 𝑓 ∶ 𝑋 → End0(𝐸) is equivalent to the
norm-continuity of 𝑓|𝐾 for every compact subset 𝐾 ⊆ 𝑋. By Lemma A.1.5, the norm-continuous
functions from a given 𝐾 to End0(𝐸) can be identified with the elements of End0(𝐶(𝐾,𝐸)).

Theorem A.1.9. (Banach–Steinhaus or uniform boundedness principle) e.g. [RS80, Theorem III.9]
Let 𝑉 be a Banach space and 𝑊 a normed linear space. Let ℱ ⊂ 𝐵(𝑉 ,𝑊) be a family of bounded
operators from 𝑉 to 𝑊 with sup𝑇∈ℱ ‖𝑇 𝑣‖𝑊 < ∞ for each 𝑣 ∈ 𝑉. Then sup𝑇∈ℱ ‖𝑇 ‖𝐵(𝑉 ,𝑊) < ∞.

Corollary A.1.10. Let 𝑉 be a Banach space and 𝑋 be a compact space. Let 𝑓 ∶ 𝑋 → 𝐵(𝑉 ) be a strongly
continuous map. Then 𝑓 is bounded in operator norm; in other words, sup𝑥∈𝑋 ‖𝑓(𝑥)‖𝐵(𝑉 ) < ∞.

Proof. We have a family ℱ = (𝑓(𝑥))𝑥∈𝑋 ⊂ 𝐵(𝑉 ) of bounded operators. The strong continuity of 𝑓
implies that 𝑥 ↦ 𝑓(𝑥)𝑣 is continuous for every 𝑣 ∈ 𝑉. Since 𝑋 is compact, its image 𝑓(𝑋)𝑣 ⊆ 𝑉 is
compact and thus bounded. Hence, for a fixed 𝑣 ∈ 𝑉,

sup
𝑇∈ℱ

‖𝑇 𝑣‖𝑉 = sup
𝑥∈𝑋

‖𝑓(𝑥)𝑣‖𝑉 < ∞.

Applying Theorem A.1.9, we obtain that

sup
𝑥∈𝑋

‖𝑓(𝑥)‖𝐵(𝑉 ) = sup
𝑇∈ℱ

‖𝑇 ‖𝐵(𝑉 ) < ∞,

as required.

Lemma A.1.11. Let 𝐸 be a right Hilbert 𝐴-module and 𝑋 a compact Hausdorff space. The ∗-strong
continuity of a function 𝑓 ∶ 𝑋 → End∗(𝐸) is equivalent to the condition that 𝑓 ∈ End∗(𝐶(𝑋,𝐸)).

Proof. By Lemma A.1.5, End∗(𝐶(𝑋,𝐸)) = 𝐶𝑏(𝑋,End∗(𝐸)∗−𝑠), the C*-algebra of ∗-strongly continuous
functions 𝑓 ∶ 𝑋 → End∗(𝐸) such that sup𝑥∈𝑋 ‖𝑓(𝑥)‖End∗(𝐸) < ∞. If 𝑓 ∈ End∗(𝐶(𝑋,𝐸)), then it is ∗-
strongly continuous as a function 𝑓 ∶ 𝑋 → End∗(𝐸). On the other hand, if we assume 𝑓 ∶ 𝑋 → End∗(𝐸)
is ∗-strongly continuous, we may apply Corollary A.1.10. Thereby, sup𝑥∈𝑋 ‖𝑓(𝑥)‖End∗(𝐸) < ∞ and so
𝑓 ∈ End∗(𝐶(𝑋,𝐸)).

Lemma A.1.12. Let 𝐸 be a right Hilbert 𝐴-module and 𝑋 a locally compact Hausdorff space. The
∗-strong continuity of a function 𝑓 ∶ 𝑋 → End∗(𝐸) is equivalent to the condition that 𝑓|𝐾 ∈
End∗(𝐶(𝐾,𝐸)) for all compact subsets 𝐾 ⊆ 𝑋.

Proof. By Lemma A.1.7, the ∗-strong continuity of a function 𝑓 ∶ 𝑋 → End∗(𝐸) is equivalent to the
∗-strong continuity of 𝑓|𝐾 for every compact subset 𝐾 ⊆ 𝑋. By Lemma A.1.11, the ∗-strong continuity
of 𝑓|𝐾 ∶ 𝐾 → End∗(𝐸) for a given 𝐾 is equivalent to the condition that 𝑓|𝐾 ∈ End∗(𝐶(𝐾,𝐸)).

A.1.2 Matched operators

Definition A.1.13. Let 𝐸 be a Hilbert 𝐵-module and 𝐶 a C*-algebra represented on the right of 𝐸 by
a nondegenerate C*-homomorphism 𝜌 ∶ 𝐶 → 𝑀(𝐵). A regular operator 𝑇 on 𝐸 is 𝐶-matched if those
𝑐 ∈ 𝐶 for which

𝐸𝜌(𝑐) ⊆ dom(𝑇 )

are dense in 𝐶.
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Remark A.1.14. The condition that 𝐸𝜌(𝑐) ⊆ dom(𝑇 ) combined with Lemma A.3.2 implies that the
ℂ-linear map

𝐸 → 𝐸 𝜉 ↦ 𝑇𝜉𝑐

is bounded.

Lemma A.1.15. Let 𝐸 be a Hilbert 𝐵-module and 𝐶 a C*-algebra represented on the right of 𝐸 by a
C*-homomorphism 𝜌 ∶ 𝐶 → 𝑀(𝐵). Let 𝑇 be a regular operator on 𝐸. The set of 𝑐 ∈ 𝐶 for which

𝐸𝜌(𝑐) ⊆ dom(𝑇 )

form a (not necessarily closed) two-sided ideal in 𝐶.

Proof. This follows from a general statement about rings and modules. Suppose that we have
𝐸𝜌(𝑐) ⊆ dom(𝑇 ) for some 𝑐 ∈ 𝐶. If 𝑐1, 𝑐2 ∈ 𝐶, then

𝐸𝜌(𝑐1𝑐𝑐2) = 𝐸𝜌(𝑐1)𝜌(𝑐)𝜌(𝑐2) ⊆ 𝐸𝜌(𝑐)𝜌(𝑐2) ⊆ dom(𝑇 )𝜌(𝑐2) ⊆ dom(𝑇 )

and we are done.

Recall that the Pedersen ideal 𝐾𝐶 of a C*-algebra 𝐶 is the minimal dense two-sided ideal of 𝐶; see
e.g. [Bla06, §II.5.2].

Proposition A.1.16. Let 𝑇 be a regular operator on 𝐸𝐵 which is 𝐶-matched. Then

𝐸𝜌(𝑐) ⊆ dom(𝑇 )

for all 𝑐 ∈ 𝐾𝐶, the Pedersen ideal of 𝐶. Furthermore, 𝐸𝜌(𝐾𝐶)𝐵 is a core for 𝑇.

Proof. As those 𝑐 ∈ 𝐶 for which 𝐸𝜌(𝑐) ⊆ dom(𝑇 ) form a dense two-sided ideal, they must include the
Pedersen ideal. For an element 𝑐 ∈ 𝐾𝐶, there exists an element 𝑑 ∈ 𝐾𝐶 such that 𝑑𝑐 = 𝑐. Hence

𝐸𝜌(𝑐) = 𝐸𝜌(𝑑)𝜌(𝑐) ⊆ dom(𝑇 )𝜌(𝑐) ⊆ 𝐸𝜌(𝑐)

and 𝐸𝜌(𝐾𝐶) = dom(𝑇 )𝜌(𝐾𝐶) = (1 + 𝑇 ∗𝑇 )−1/2𝐸𝜌(𝐾𝐶). Next, note that 𝜌(𝐾𝐶) is dense in 𝜌(𝐶). By
the continuity of multiplication, 𝐸𝜌(𝐾𝐶)𝐵 is dense in 𝐸𝜌(𝐶)𝐵. By nondegeneracy of 𝜌, 𝐵𝜌(𝐶) is
dense in 𝐵 and, again, by the continuity of multiplication, 𝐸𝐵𝜌(𝐶)𝐵 = 𝐸𝜌(𝐶)𝐵 is dense in 𝐸𝐵 = 𝐸.
Hence 𝐸𝜌(𝐾𝐶)𝐵 is dense in 𝐸 and 𝐸𝜌(𝐾𝐶)𝐵 = (1 + 𝑇 ∗𝑇 )−1/2𝐸𝜌(𝐾𝐶)𝐵 is consequently a core for
𝑇.

Remark A.1.17. In [Web04], the multiplier algebra Γ(𝐾𝐵) of the Pedersen ideal of 𝐵 is shown to
consist of exactly those unbounded operators affiliated with 𝐵, in the sense of [Wor91], whose domains
include 𝐾𝐵. A similar characterisation is given in [Pie06, Théorème 1.30]. The previous Proposition
can be used to show that, if 𝜌(𝐶) = 𝐵, the 𝐶-matched operators on 𝐸𝐵 are exactly the multipliers
Γ(𝐾End0(𝐸)) of the Pedersen ideal of End0(𝐸). See [Ara01, Proposition 1.7] for the details of passing
through the Morita equivalence bimodule End0(𝐸)𝐸𝐵.

Lemma A.1.18. Let 𝐸 be a Hilbert 𝐵-module and 𝐶 a C*-algebra represented on the right of 𝐸 by
a C*-homomorphism 𝜌 ∶ 𝐶 → 𝑀(𝐵). A regular operator 𝑇 on 𝐸 is 𝐶-matched if and only if, for all
𝑐 ∈ 𝐾𝐶, the restriction 𝑇 |𝐸𝜌(𝑐) of 𝑇 to the Hilbert submodule 𝐸𝜌(𝑐) over the hereditary C*-subalgebra
𝜌(𝑐)∗𝐵𝜌(𝑐) of 𝐵 is bounded.

Proof. Assume that 𝐸𝜌(𝑐) ⊆ dom(𝑇 ) for 𝑐 ∈ 𝐾𝐶. Choose 𝑑 ∈ 𝐾𝐶 such that 𝑑𝑐 = 𝑐. As 𝐸𝜌(𝑑) ⊆
dom(𝑇 ), the ℂ-linear map 𝜉 ↦ 𝑇𝜉𝜌(𝑑) on 𝐸 is bounded by Lemma A.3.2. On 𝐸𝜌(𝑐), 𝜌(𝑑) acts as the
identity, meaning 𝑇 restricts to a bounded operator on 𝐸𝜌(𝑐).

On the other hand, assume that 𝑇 |𝐸𝜌(𝑐) is bounded for 𝑐 ∈ 𝐾𝐶. Then dom(𝑇 ) ⊇ 𝐸𝜌(𝑐) ⊇ 𝐸𝜌(𝑐),
as required.
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The following is well-known.

Lemma A.1.19. Let 𝑎 be an element of the multiplier algebra of a C*-algebra 𝐴. Then the closed
right ideal 𝑎𝐴 is a Morita equivalence bimodule between the hereditary C*-subalgebra 𝑎𝐴𝑎∗ of 𝐴 and
the (closed two-sided) ideal span(𝐴𝑎∗𝑎𝐴) ⊴ 𝐴.

Proposition A.1.20. Let 𝐸 be a Hilbert 𝐵-module and 𝐶 a C*-algebra represented on the right of 𝐸
by a C*-homomorphism 𝜌 ∶ 𝐶 → 𝑀(𝐵). A regular operator 𝑇 on 𝐸 is 𝐶-matched if and only if, for
all positive 𝑐 ∈ 𝐾𝐶, the restriction 𝑇 |span(𝐸𝜌(𝑐)𝐵) of 𝑇 to the Hilbert submodule span(𝐸𝜌(𝑐)𝐵) over the
ideal span(𝐵𝜌(𝑐)𝐵) ⊴ 𝐵 is bounded.

Proof. Assume that 𝐸𝜌(𝑐) ⊆ dom(𝑇 ) for 𝑐 ∈ 𝐾𝐶. Then the restriction of 𝑇 to 𝐸𝜌(𝑐)𝜌(𝑐)∗𝐵𝜌(𝑐) is bounded.
The closed right ideal 𝜌(𝑐)∗𝐵 of 𝐵 is a Morita equivalence 𝜌(𝑐)∗𝐵𝜌(𝑐)-span(𝐵𝜌(𝑐𝑐∗)𝐵)-bimodule. We
have a natural isomorphism

span(𝐸𝜌(𝑐𝑐∗)𝐵)span(𝐵𝜌(𝑐𝑐∗)𝐵) ≅ 𝐸𝜌(𝑐)𝜌(𝑐)∗𝐵𝜌(𝑐) ⊗𝜌(𝑐)∗𝐵𝜌(𝑐) 𝜌(𝑐)∗𝐵span(𝐵𝜌(𝑐𝑐∗)𝐵)

of Hilbert span(𝐵𝜌(𝑐𝑐∗)𝐵)-modules, under which 𝑇 |𝐸𝜌(𝑐𝑐∗)𝐵 ≅ 𝑇 |𝐸𝜌(𝑐)⊗𝜌(𝑐)∗𝐵𝜌(𝑐)1. Hence the restriction
𝑇 |span(𝐸𝜌(𝑐𝑐∗)𝐵) is bounded. Since every positive element of 𝐾𝐶 is of the form 𝑐𝑐∗, we conclude this
direction of the argument.

On the other hand, assume that 𝑇 |span(𝐸𝜌(𝑐)𝐵) is bounded for 𝑐 ∈ 𝐾𝐶. Recall that the product of
(two-sided) closed ideals in a C*-algebra is again a closed ideal, so that 𝐵𝜌(𝑐)𝐵 = 𝐵𝑀(𝐵)𝜌(𝑐)𝑀(𝐵).
Then

dom(𝑇 ) ⊇ 𝐸 span(𝐵𝜌(𝑐)𝐵) = 𝐸 span(𝑀(𝐵)𝜌(𝑐𝑐∗)𝑀(𝐵)) ⊇ 𝐸𝜌(𝑐),
as required.

Lemma A.1.21. cf. [LT76, Proof of Proposition 4.5] Let 𝜋 be an irreducible representation of a
C*-algebra 𝐴 on a Hilbert space 𝐻. Then 𝐾𝐴𝐻 = 𝐻.

Proof. Let 𝜉 ∈ 𝐻 be a cyclic vector and choose 𝑎 ∈ 𝐾𝐴 such that ‖𝜋(𝑎)𝜉‖ = 1. (Such an 𝑎 ∈ 𝐾𝐴
can always be found; otherwise the density of 𝐾𝐴 in 𝐴 would imply that 𝜉 = 0.) Let 𝜂 ∈ 𝐻 be any
non-zero vector. The finite rank operator |𝜂⟩⟨𝜋(𝑎)𝜉| takes 𝑎𝜉 to 𝜂. By [Dix77, Theorem 2.8.3(i)], there
exists an element 𝑏 ∈ 𝐴 such that

𝜂 = |𝜂⟩⟨𝜋(𝑎)𝜉|𝜋(𝑎)𝜉 = 𝜋(𝑏)𝜋(𝑎)𝜉 ∈ 𝐾𝐴𝐻

as required.

Proposition A.1.22. The 𝐶-matched operators on 𝐸𝐵 form a ∗-algebra Mtc∗𝐵(𝐸,𝐶).

Proof. Let 𝑇 be a regular operator on 𝐸𝐵 which is 𝐶-matched. By Lemma A.1.18, 𝑇 restricts to a
bounded operator on 𝐸𝜌(𝑐)|𝜌(𝑐)𝐵𝜌(𝑐) for all 𝑐 ∈ 𝐾𝐶. The restrictions (𝑇 |𝐸𝜌(𝑐))∗ = 𝑇 ∗|𝐸𝜌(𝑐) of the adjoint
𝑇 ∗ of 𝑇 are consequently bounded, and so 𝑇 ∗ is also 𝐶-matched, again by Lemma A.1.18.

Let 𝑇1 and 𝑇2 be 𝐶-matched operators. For an element 𝑐 ∈ 𝐾𝐶, we have

𝑇2𝐸𝜌(𝑐) = 𝑇2 dom(𝑇2)𝜌(𝑐) ⊆ 𝐸𝜌(𝑐) ⊆ dom(𝑇1)

so that 𝑇1𝑇2 is well-defined on 𝐸𝜌(𝐾𝐶)𝐵. Similarly, 𝑇 ∗
2 𝑇 ∗

1 is also well-defined on 𝐸𝜌(𝐾𝐶)𝐵 so that
𝑇1𝑇2 is semiregular. The localisation of 𝐸𝐾𝐵 ⊆ 𝐸𝜌(𝐾𝐶)𝐵 to any irreducible 𝜋 ∈ 𝐵̂ is equal to

𝐸𝐵𝐾𝐵 ⊗𝜋 𝐻𝜋 = 𝐸𝐵 ⊗𝜋 𝜋(𝐾𝐵)𝐻𝜋 = 𝐸𝐵 ⊗𝜋 𝐻𝜋

by Lemma A.1.21. Hence, dom((𝑇1𝑇2)𝜋) = 𝐸𝐵 ⊗𝜋 𝐻𝜋 and (𝑇1𝑇2)𝜋 is bounded. As the same is true for
(𝑇 ∗

2 𝑇 ∗
1 )𝜋, we may apply the local-global principle [Pie06, Théorème 1.18(2)] to obtain that the closure

of 𝑇1𝑇2 is a regular operator on 𝐸. By similar reasoning, we conclude that the closure of the sum
𝑇1 + 𝑇2, defined on the common core 𝐸𝜌(𝐾𝐶)𝐵, is a regular operator on 𝐸.
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Remark A.1.23. Combined with Proposition A.1.20, Proposition A.1.22 could be used to show that
Mtc∗𝐵(𝐸,𝐶) is a pro-C*-algebra (or locally C*-algebra) [Phi88], [Fra05, Chapter II].

Proposition A.1.24. Let 𝑋 be a locally compact Hausdorff space and 𝐸 a Hilbert 𝐵-module. Then
the 𝐶0(𝑋)-matched operators on 𝐶0(𝑋,𝐸) are exactly the elements of 𝐶(𝑋,End∗(𝐸)∗−𝑠), the (not
necessarily bounded) ∗-strongly continuous functions from 𝑋 to End∗(𝐸).

Proof. Suppose that 𝑇 is a 𝐶0(𝑋)-matched operator on 𝐶0(𝑋,𝐸). Because 𝑇 (1 + 𝑇 ∗𝑇 )−1/2 ∈
End∗(𝐶0(𝑋,𝐸)) = 𝐶𝑏(𝑋,End∗(𝐸)∗−𝑠) uniquely determines 𝑇, we may conclude that 𝑇 is given by a
function from 𝑋 to regular operators on 𝐸. Let 𝐾 be a compact subset of 𝑋. The Pedersen ideal of
𝐶0(𝑋) is 𝐶𝑐(𝑋), the compactly supported functions on 𝑋. Let 𝑓 be a positive element of 𝐶𝑐(𝑋) which
is nonzero on 𝐾. We have

dom(𝑇 ) ⊇ 𝐶0(𝑋,𝐸)𝑓 = 𝐶0(supp 𝑓,𝐸)

so that 𝑇 restricts to a bounded operator on 𝐶0(supp 𝑓,𝐸)𝐶0(supp𝑓,𝐵). By Lemma A.1.5,

End∗(𝐶0(supp 𝑓,𝐸)) = 𝐶𝑏(supp 𝑓, End
∗(𝐸)∗−𝑠).

Furthermore, the localisation of 𝑇 to 𝐶(𝐾,𝐸)𝐶(𝐾,𝐵) must also be bounded and so an element of
𝐶𝑏(𝐾,End∗(𝐸)∗−𝑠). Given that 𝑇 is a ∗-strongly continuous function on every compact subset 𝐾 of
the k-space 𝑋, by Lemma A.1.7, 𝑇 is a ∗-strongly continuous function on 𝑋.

Let 𝑇 ∈ 𝐶(𝑋,End∗(𝐸)∗−𝑠). Then 𝑇 (1 + 𝑇 ∗𝑇 )−1/2 ∈ 𝐶𝑏(𝑋,End∗(𝐸)∗−𝑠) and

(1 + 𝑇 ∗𝑇 )−1/2𝐶0(𝑋,𝐸) ⊇ 𝐶𝑐(𝑋,𝐸)

so that 𝑇 is a regular operator on 𝐶0(𝑋,𝐸). (For a more detailed argument, cf. [Pal99, §4].)
Furthermore, for an element 𝑓 ∈ 𝐾𝐶0(𝑋) = 𝐶𝑐(𝑋), 𝐶0(𝑋,𝐸)𝑓 ⊆ 𝐶𝑐(𝑋,𝐸) ⊆ dom(𝑇 ) and 𝑇 is
𝐶0(𝑋)-matched.

A.1.3 Compactly supported states

Definition A.1.25. [Har23, Definition 6.11] A state 𝜓 on a C*-algebra 𝐴 is compactly supported if
there exists an 𝑎 ∈ 𝐴 such that 𝜓(𝑎) = ‖𝑎‖. We denote the set of compactly supported states on 𝐴 by
𝒮𝑐(𝐴).

Proposition A.1.26. For a state 𝜓 of a C*-algebra 𝐴, the following are equivalent:

(1) 𝜓 is compactly supported, i.e. there exists an 𝑎 ∈ 𝐴 such that 𝜓(𝑎) = ‖𝑎‖.
(2) There exists an 𝑎 ∈ 𝐾𝐴 such that 𝜓(𝑎) = ‖𝑎‖.
(3) There exists a positive 𝑎 ∈ 𝐾𝐴 such that 𝜓(𝑎) = 1 = ‖𝑎‖ and 𝜓(𝑎𝑏) = 𝜓(𝑏) for all 𝑏 ∈ 𝐴.

(4) 𝜓 is given by 𝑏 ↦ 𝜙(𝑎∗𝑏𝑎)
𝜙(𝑎∗𝑎) for a state 𝜙 of A and an 𝑎 ∈ 𝐾𝐴.

Proof. (2) clearly implies (1). (4) implies (2) almost by definition of the Pedersen ideal. If 𝜓 ∶ 𝑏 ↦ 𝜙(𝑎∗𝑏𝑎)
𝜙(𝑎∗𝑎)

for 𝑎 ∈ 𝐾𝐴, there exists positive 𝑐 ∈ 𝐴 such that 𝑐𝑎 = 𝑎. Let 𝑓 ∈ 𝐶𝑐(ℝ×
+) be a compactly supported

continuous function which is equal to 1 on the spectrum of 𝑐. By the continuous functional calculus,
we obtain 𝑓(𝑐) ∈ 𝐾𝐴 such that 𝑓(𝑐)𝑎 = 𝑎 and ‖𝑓(𝑐)‖ = 1, and therefore

𝜓(𝑓(𝑐)) = 𝜙(𝑎∗𝑓(𝑐)𝑎)
𝜙(𝑎∗𝑎)

= 1 = ‖𝑓(𝑐)‖.

To see that (1) implies (3), let 𝑎 ∈ 𝐴 be such that 𝜓(𝑎) = 1 = ‖𝑎‖. By the Kadison inequality,
𝜓(𝑎∗𝑎) ≥ |𝜓(𝑎)|2 = 1 and since ‖𝑎∗𝑎‖ = ‖𝑎‖2 = 1, we must have 𝜓(𝑎∗𝑎) = 1. We may assume, without
loss of generality, that 𝑎 is positive. Let 𝐴 be the minimal unitisation of 𝐴 and 𝜓 the unique extension
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of 𝜓. Let 𝐻𝜓 be the Hilbert space of the corresponding GNS representation and 𝜉𝜓 the cyclic vector.
Then

‖𝜉𝜓 − 𝑎𝜉𝜓‖ = ⟨(1 − 𝑎)2𝜉𝜓 ∣ 𝜉𝜓⟩ = 𝜓(1 − 2𝑎 + 𝑎2) = 0

and so 𝑎𝜉𝜓 = 𝜉𝜓. Let 𝑓 ∈ 𝐶𝑐(ℝ×
+) be a compactly supported continuous function such that 𝑓(1) = 1

and ‖𝑓‖∞ = 1. By the continuous functional calculus, 𝑓(𝑎) is an element of the Pedersen ideal of 𝐴
such that 𝑓(𝑎)𝜉𝜓 = 𝜉𝜓 and 𝜓(𝑓(𝑎)) = ⟨𝑓(𝑎)𝜉𝜓 ∣ 𝜉𝜓⟩ = 1 = ‖𝑓(𝑎)‖. Hence 𝜓 satisfies

𝜓(𝑓(𝑎)𝑏) = ⟨𝑓(𝑎)𝑏𝜉𝜓 ∣ 𝜉𝜓⟩ = ⟨𝑏𝜉𝜓 ∣ 𝑓(𝑎)𝜉𝜓⟩ = ⟨𝑏𝜉𝜓 ∣ 𝜉𝜓⟩ = 𝜓(𝑏) (A.1.27)

for all 𝑏 ∈ 𝐵.
To see that (3) implies (4), let positive 𝑎 ∈ 𝐴 be such that 𝜓(𝑎) = 1 = ‖𝑎‖. As before, we must

have 𝜓(𝑎2) = 1. For all 𝑏 ∈ 𝐴, as in (A.1.27) we have

𝜓(𝑎𝑏𝑎)
𝜓(𝑎2)

= 𝜓(𝑎𝑏𝑎) = ⟨𝑎𝑏𝑎𝜉𝜓, 𝜉𝜓⟩ = ⟨𝑏𝜉𝜓, 𝜉𝜓⟩ = 𝜓(𝑏)

so we may simply choose 𝜙 = 𝜓.

Remarks A.1.28.
1. In [LT76, Chapter 3], a topology 𝜅 on Γ(𝐾𝐴), the multipliers of the Pedersen ideal of 𝐴, is

introduced. In [LT76, Proposition 6.5], condition (4) of Proposition A.1.26 is shown to be
equivalent to 𝜓 being a norm-1 positive 𝜅-continuous functional on Γ(𝐾𝐴).

2. For a locally compact Hausdorff space 𝑋, recall that the states on 𝐶0(𝑋) are exactly given by
the Radon probability measures on 𝑋 [Bla98, II.6.2.3(ii)]. The compactly supported states on
𝐶0(𝑋) are then exactly given by the compactly supported Radon probability measures on 𝑋.

Proposition A.1.29. cf. [Har23, Lemma 6.12] The compactly supported states 𝒮𝑐(𝐴) on a C*-algebra
𝐴 are weak-∗-dense in 𝒮(𝐴).

Proof. Let 𝜓 be a state on 𝐴. Using [Bla98, II.4.1.4], let (ℎ𝜆)𝜆∈Λ be an approximate unit for 𝐴
contained in the Pedersen ideal 𝐾𝐴. Consider the net of states (𝜓𝜆)𝜆∈Λ given by

𝜓𝜆 ∶ 𝑎 ↦ 𝜓(ℎ𝜆𝑎ℎ𝜆)
𝜓(ℎ2

𝜆)
.

Each of these is compactly supported by Proposition A.1.26(4). The net (𝜓(ℎ2
𝜆))𝜆∈Λ converges to 1 by

[Bla98, II.6.2.5(i)]. To see that the net (𝜓(ℎ𝜆𝑎ℎ𝜆))𝜆∈Λ converges to 𝜓(𝑎), observe that

‖𝜓(𝑎) − 𝜓(ℎ𝜆𝑎ℎ𝜆)‖ = ‖𝜓((1 − ℎ𝜆)𝑎) + 𝜓(ℎ𝜆𝑎(1 − ℎ𝜆))‖
≤ (‖(1 − ℎ𝜆)𝑎‖ + ‖𝑎(1 − ℎ𝜆)‖)
→ 0,

where we have used the bounds ‖𝜓‖ = 1 and ‖ℎ𝜆‖ ≤ 1.

Proposition A.1.30. Let 𝐸 be a Hilbert 𝐵-module and 𝐶 a C*-algebra. Let 𝑇 be a regular operator
on (𝐸 ⊗ 𝐶)𝐵⊗𝐶 which is 𝐶-matched. Then, for any compactly supported state 𝜓 on 𝐶, (1 ⊗ 𝜓)(𝑇 ) is
well-defined and a bounded operator on 𝐸.

Proof. The state 𝜓 extends to a completely positive map 1 ⊗ 𝜓 from End0(𝐸 ⊗ 𝐶) = End0(𝐸) ⊗ 𝐶
to End0(𝐸). Being nondegenerate, this completely positive map further extends to a map from
𝑀(End0(𝐸) ⊗ 𝐶) = End∗(𝐸 ⊗ 𝐶) to 𝑀(End0(𝐸)) = End∗(𝐸) [Lan95, Corollary 5.7].

Let 𝑎 be a positive element of 𝐾𝐶 such that 𝜓(𝑎) = 1 = ‖𝑎‖ and 𝜓(𝑐) = 𝜓(𝑎𝑐) = 𝜓(𝑐𝑎) for all 𝑐 ∈ 𝐶.
As (𝐸 ⊗ 𝐶)𝐾𝐶 ⊆ dom𝑇, 1 ⊗ 𝑎(𝐸 ⊗ 𝐶) ⊆ dom𝑇. By Lemma A.3.2, 𝑇 (1 ⊗ 𝑎) is a bounded operator
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on 𝐸 ⊗ 𝐶. Hence we may apply 1 ⊗ 𝜓 to 𝑇 (1 ⊗ 𝑎) to obtain an element of End∗(𝐸). To see that the
choice of 𝑎 does not affect the value of (1 ⊗ 𝜓)(𝑇 (1 ⊗ 𝑎)), let 𝑏 ∈ 𝐾𝐶 be another positive element such
that 𝜓(𝑏) = 1 = ‖𝑏‖ and 𝜓(𝑐) = 𝜓(𝑏𝑐) = 𝜓(𝑐𝑏) for all 𝑐 ∈ 𝐶. We note that, because 𝑇 ∗ is 𝐶-matched,
𝑇 ∗(1 ⊗ 𝑎) is also a bounded operator. We have a series of equalities

(1 ⊗ 𝜓)(𝑇 (1 ⊗ 𝑏)) = (1 ⊗ 𝜓)((1 ⊗ 𝑎)𝑇 (1 ⊗ 𝑏))
= (1 ⊗ 𝜓)((1 ⊗ 𝑏)𝑇 ∗(1 ⊗ 𝑎))∗

= (1 ⊗ 𝜓)(𝑇 ∗(1 ⊗ 𝑎))∗

= (1 ⊗ 𝜓)((1 ⊗ 𝑎)𝑇 ∗(1 ⊗ 𝑎))∗

= (1 ⊗ 𝜓)((1 ⊗ 𝑎)𝑇 (1 ⊗ 𝑎))
= (1 ⊗ 𝜓)(𝑇 (1 ⊗ 𝑎))

so that (1 ⊗ 𝜓)(𝑇 ) has a unique meaning.

Proposition A.1.31. Let 𝐸 be a Hilbert 𝐵-module and 𝐶 a C*-algebra. Then 1 ⊗ 𝒮𝑐(𝐶) is dense in
1 ⊗ 𝒮(𝐶) in the pointwise-norm topology on completely positive maps from End0(𝐸) ⊗ 𝐶 to End0(𝐸).
That is, for 𝜓 ∈ 𝒮(𝐶), there exists a net (𝜓𝜆)𝜆∈Λ ⊆ 𝒮𝑐(𝐶) such that, for all 𝑦 ∈ End0(𝐸) ⊗ 𝐶,
(1 ⊗ 𝜓)(𝑦) ∈ End0(𝐸) is the norm limit of (1 ⊗ 𝜓𝜆)(𝑦). As a consequence, 1 ⊗ 𝒮𝑐(𝐶) is dense in
1 ⊗ 𝒮(𝐶) in the pointwise-norm topology on completely positive maps from End∗(𝐸 ⊗ 𝐶) to End∗(𝐸).

Proof. Let (ℎ𝜆)𝜆∈Λ be an approximate unit for 𝐶 contained in the Pedersen ideal 𝐾𝐶. Let

𝜓𝜆 ∶ 𝑎 ↦ 𝜓(ℎ𝜆𝑎ℎ𝜆)
𝜓(ℎ2

𝜆)
.

By [Fra05, Lemma 29.8], (1 ⊗ ℎ𝜆)𝜆∈Λ is an approximate unit for End∗(𝐸) ⊗ 𝐶. For 𝑦 ∈ End0(𝐸) ⊗ 𝐶,

‖(1 ⊗ 𝜓)(𝑦) − (1 ⊗ 𝜓𝜆)(𝑦)‖ = ‖(1 ⊗ 𝜓)((1 ⊗ (1 − ℎ𝜆))𝑦) + (1 ⊗ 𝜓)((1 ⊗ ℎ𝜆)𝑦(1 ⊗ (1 − ℎ𝜆)))‖
≤ ‖1 ⊗ 𝜓‖ (‖(1 ⊗ (1 − ℎ𝜆))𝑦‖ + ‖𝑦(1 ⊗ (1 − ℎ𝜆))‖)
→ 0,

as required.
For the second statement, let 𝐻𝜓 be the Hilbert space of the GNS representation of 𝐶 corresponding

to 𝜓. One can check that the KSGNS construction [Lan95, Chapter 5] gives

(End0(𝐸) ⊗ 𝐶) ⊗1⊗𝜓 𝐸 ≅ 𝐻𝜓 ⊗𝐸.

Let 𝜉𝜓 be the cyclic vector of the GNS construction. Then, by [Lan95, Theorem 5.6],

(1 ⊗ 𝜓)(𝑦) = (1 ⊗ 𝜉𝜓)∗𝑦(1 ⊗ 𝜉𝜓)

for 𝑦 ∈ End0(𝐸) ⊗ 𝐶. By [Lan95, Corollary 5.7], 1 ⊗ 𝜓 is extended to a completely positive map from
End∗(𝐸 ⊗ 𝐶) to End∗(𝐸) by the same formula, viz.

(1 ⊗ 𝜓)(𝑦) = (1 ⊗ 𝜉∗𝜓)𝑦(1 ⊗ 𝜉𝜓)

for 𝑦 ∈ End∗(𝐸 ⊗ 𝐶). We have

‖(1 ⊗ 𝜓)(𝑦) − (1 ⊗ 𝜓𝜆)(𝑦)‖ = ‖(1 ⊗ 𝜓)((1 ⊗ (1 − ℎ𝜆))𝑦) + (1 ⊗ 𝜓)((1 ⊗ ℎ𝜆)𝑦(1 ⊗ (1 − ℎ𝜆)))‖
= ‖(1 ⊗ 𝜉∗𝜓)(1 ⊗ (1 − ℎ𝜆))𝑦(1 ⊗ 𝜉𝜓)

+ (1 ⊗ 𝜉∗𝜓)(1 ⊗ ℎ𝜆)𝑦(1 ⊗ (1 − ℎ𝜆))(1 ⊗ 𝜉𝜓)‖
≤ 2‖𝑦‖‖(1 − ℎ𝜆)𝜉𝜓‖
→ 0,

as required.
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A.2 Proper actions, cut-off functions, and a partial imprimitivity
bimodule

In this Appendix, we recall a few details of proper actions and cut-off functions and construct a partial
imprimitivity bimodule.

Definition A.2.1. [Pal61, Definition 1.2.2, Theorem 1.2.9] A proper action of a locally compact group
𝐺 on a locally compact Hausdorff space 𝑋 is one for which the map given by

𝐺×𝑋 → 𝑋 ×𝑋

(𝑔, 𝑥) ↦ (𝑔 ⋅ 𝑥, 𝑥)

is proper, meaning that the preimages of compact subsets are compact. An equivalent definition of a
proper action is that, for any compact 𝐾 ⊂ 𝑋, the closed subset

{𝑔 ∈ 𝐺 ∣ 𝑔 ⋅ 𝐾 ∩𝐾 ≠ ∅}

of 𝐺 be compact. Some basic consequences are that

• The orbit space 𝑋/𝐺 is locally compact Hausdorff;
• The stabiliser group 𝐺𝑥 at any point 𝑥 ∈ 𝑋 is compact;
• The orbit 𝐺𝑥 of any point 𝑥 ∈ 𝑋 is locally compact Hausdorff; and
• The restriction of the action to any closed subgroup of 𝐺 is also proper.

The following is presumably well-known but we provide a proof for completeness.

Proposition A.2.2. Let 𝐺 be a locally compact group acting on a metric space (𝑋, 𝑑) (not necessarily
isometrically). Picking a point 𝑥0 ∈ 𝑋, define the function 𝑏 ∈ 𝐶𝑏(𝐺) by

𝑏(𝑔) = (1 + 𝑑(𝑥0, 𝑔 ⋅ 𝑥0)2)−1

The action is proper if and only if 𝑏 ∈ 𝐶0(𝐺).

Proof. The continuity of 𝑏 results from the continuity of each of the maps

𝐺 𝑋 [0,∞) (0, 1]

𝑔 𝑔𝑥0 = 𝑥 𝑑(𝑥0, 𝑥) = 𝑙 (1 + 𝑙2)−1

which, in turn, result from the continuity of the group action and the continuity of the metric.
Suppose that the action is proper. To show that 𝑏 vanishes at infinity, we need to find for a given

𝜀 > 0 a compact set 𝑆 ⊆ 𝐺 outside of which (that is, for all 𝑔 ∈ 𝐺 ∖ 𝑆) 𝑏(𝑔) < 𝜀. Take 0 < 𝜀 < 1 and
let 𝐿 = (𝜀−1 − 1)1/2 so that 𝜀 = (1 + 𝐿2)−1. Let 𝐵(𝑥0, 𝐿) ⊆ 𝑋 be the closed ball of radius 𝐿 centred
at 𝑥0. By the properness of the action, the subset

𝑆 = {𝑔 ∈ 𝐺 ∣ 𝑔 ⋅ 𝐵(𝑥0, 𝐿) ∩ 𝐵(𝑥0, 𝐿) ≠ ∅}

of 𝐺 is compact. For 𝑔 ∈ 𝐺 ∖ 𝑆,
𝑔 ⋅ 𝐵(𝑥0, 𝐿) ∩ 𝐵(𝑥0, 𝐿) = ∅

and so
𝑑(𝑥0, 𝑔 ⋅ 𝑥0) > 𝐿 = (𝜀−1 − 1)1/2

Finally,
𝑏(𝑔) = (1 + 𝑑(𝑥0, 𝑔 ⋅ 𝑥0)2)−1 < 𝜀
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and 𝑏 ∈ 𝐶0(𝐺) as required.
On the other hand, suppose that 𝑏 ∈ 𝐶0(𝐺). Let 𝐾 ⊆ 𝑋 be any compact subset. The subset

𝑌 = {𝑔 ∈ 𝐺 ∣ 𝑔 ⋅ 𝐾 ∩𝐾 ≠ ∅}

closed in 𝐺. Since 𝐾 is compact, it is bounded with diameter diam𝐾. For a fixed 𝑔 ∈ 𝑌, pick
𝑥 ∈ 𝐾 ∩ 𝑔 ⋅ 𝐾. Then

𝑑(𝑥0, 𝑔 ⋅ 𝑥0) ≤ 𝑑(𝑥0, 𝑥) + 𝑑(𝑥, 𝑔 ⋅ 𝑥) + 𝑑(𝑔 ⋅ 𝑥, 𝑔 ⋅ 𝑥0) = 2𝑑(𝑥0, 𝑥) + 𝑑(𝑥, 𝑔 ⋅ 𝑥) ≤ 𝑑(𝑥0,𝐾) + 3diam𝐾

Hence, 𝑏|𝑌 ≥ (1 + (𝑑(𝑥0,𝐾) + 3diam𝐾)2)−1. Choosing

0 < 𝜀 < (1 + (𝑑(𝑥0,𝐾) + 3diam𝐾)2)−1

there must be a compact set 𝑇 ⊆ 𝑋 for which 𝑏|𝑋∖𝑇 ≤ 𝜀. In particular, 𝑌 ⊆ 𝑇, so 𝑌 is compact, and
the action is proper.

For the definition of a 𝐶0(𝑋)-algebra, we refer to [Kas88, Definition 1.5] and [Wil07, Appendix C].
For a 𝐶0(𝑋)-algebra 𝐴, denote by 𝐴𝑐 the compactly supported elements [Kas88, §3.2].

Definition A.2.3. [Kas88, Definition 3.2, Lemma 3.2(1)] Let 𝑋 be a locally compact Hausdorff space
with a proper action of a locally compact group 𝐺. For a 𝐺-𝐶0(𝑋)-algebra 𝐴, 𝐴𝐺 is the subalgebra of
𝐺-invariant elements 𝑎 ∈ 𝑀(𝐴) such that 𝐶0(𝑋)𝑎 ⊆ 𝐴 and 𝑥 ↦ ‖𝑎𝑥‖ gives an element of 𝐶0(𝑋/𝐺). In
the natural way, 𝐴𝐺 is a 𝐶0(𝑋/𝐺)-algebra.

For a 𝐺-equivariant right Hilbert 𝐴-module 𝐸, the Hilbert 𝐴𝐺-module 𝐸𝐺 is defined as the right
Hilbert 𝐴𝐺-module consisting of 𝐺-invariant elements 𝜉 ∈ Hom∗(𝐵,𝐸) such that 𝐶0(𝑋)𝜉 ⊆ 𝐸 ⊆
Hom∗(𝐵,𝐸) and 𝑥 ↦ ‖𝜉𝑥‖ gives an element of 𝐶0(𝑋/𝐺). If, for another group 𝐻, 𝐴 is an 𝐻-𝐶0(𝑋)-
algebra, and the actions of 𝐺 and 𝐻 commute, 𝐴𝐺 is an 𝐻-𝐶0(𝑋/𝐺)-algebra. If 𝐻 also acts on 𝐸,
commuting with 𝐺, 𝐸𝐺 is an 𝐻-equivariant Hilbert 𝐴𝐺-module.

In the special case of 𝐶0(𝑋,𝐴) for a C*-algebra 𝐴 with 𝐺 action 𝛼, 𝐶0(𝑋,𝐴)𝐺 is the induced
algebra and is the C*-subalgebra of 𝐶𝑏(𝑋,𝐴) consisting of 𝑓 ∈ 𝐶𝑏(𝑋,𝐴) such that

𝑓(𝑔𝑥) = 𝛼𝑔(𝑓(𝑥))

and 𝑥 ↦ ‖𝑓(𝑥)‖ gives an element of 𝐶0(𝑋/𝐺); see e.g. [Wil07, §3.6].

For explicit formulas involving elements of crossed product C*-algebras, we take our conventions
from [Wil07, (2.16–17), (2.25–26)]. Let 𝐺, a locally compact group, act on a C*-algebra 𝐴 by 𝛼 and
on a locally compact Hausdorff space 𝑋. For 𝑓1, 𝑓2 ∈ 𝐶𝑐(𝐺 ×𝑋,𝐴) ⊆ 𝐶0(𝑋,𝐴) ⋊ 𝐺, their convolution
product is given by

(𝑓1𝑓2)(𝑔, 𝑥) = ∫
𝐺
𝑓1(ℎ, 𝑥)𝛼ℎ(𝑓2(ℎ−1𝑔, ℎ−1 ⋅ 𝑥))𝑑𝜇(ℎ)

and, for 𝑓 ∈ 𝐶𝑐(𝐺 ×𝑋,𝐴) ⊆ 𝐶0(𝑋,𝐴) ⋊ 𝐺, the involution is given by

𝑓∗(𝑔, 𝑥) = 𝛼𝑔(𝑓(𝑔−1, 𝑔−1 ⋅ 𝑥)∗)Δ𝐺(𝑔−1).

The reader should keep in mind the special cases 𝐴 = ℂ and 𝑋 = {pt}.
For a C*-algebra 𝐴 with an action 𝛼 of a locally compact group 𝐺, we also recall the Morita

equivalence 𝐶0(𝐺,𝐴) ⋊𝑟 𝐺-𝐴-bimodule 𝐿2(𝐺,𝐴); cf. [EKQR06, Example A.10]. As a right Hilbert
𝐴-module, 𝐿2(𝐺,𝐴) is isomorphic to 𝐿2(𝐺) ⊗ℂ 𝐴𝐴. The left action of 𝐶0(𝐺,𝐴) ⋊𝑟 𝐺 on 𝐿2(𝐺,𝐴) is
given by

(𝑓𝜉)(𝑔) = ∫
𝐺
𝛼𝑔−1(𝑓(ℎ, 𝑔))𝜉(ℎ−1𝑔)𝑑𝜇(ℎ)

for 𝑓 ∈ 𝐶𝑐(𝐺 × 𝐺,𝐴) and 𝜉 ∈ 𝐶𝑐(𝐺,𝐴).
We also require the idea of a cut-off function.
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Definition A.2.4. e.g. [EE11, §3] Let 𝐺 be a locally compact group acting properly on a locally
compact Hausdorff space 𝑋. A cut-off function is a positive function 𝑐 ∈ 𝐶𝑏(𝑋), with compact support
on every cocompact subset of 𝑋, with the property that

∫
𝐺
𝑐(𝑔−1𝑥)2𝑑𝜇(𝑔) = 1

for all 𝑥 ∈ 𝑋. In particular, if 𝐺 acts cocompactly on 𝑋, 𝑐 ∈ 𝐶𝑐(𝑋). A cut-off function always exists,
provided that 𝑋/𝐺 is paracompact; for a proof see [Bou04, Proposition 7.2.8]. The cut-off function
gives rise to a projection 𝑝𝑐 ∈ 𝑀(𝐶0(𝑋) ⋊𝑟 𝐺), given by

𝑝𝑐(𝑔, 𝑥) = 𝑐(𝑥)𝑐(𝑔−1𝑥)Δ𝐺(𝑔−1)1/2 (A.2.5)

which is an element of 𝐶0(𝑋) ⋊𝑟 𝐺 if and only if 𝑋/𝐺 is compact.

Theorem A.2.6. cf. [Kas88, Theorem 3.13], [EE11, §5] Let 𝐺 act properly on a locally compact
Hausdorff space 𝑋. Let 𝐴 be a 𝐺-𝐶0(𝑋)-algebra with action 𝛼 of 𝐺. Let 𝑐 be a cut-off function for the
action of 𝐺 on 𝑋 and define the projection 𝑝𝑐 ∈ 𝑀(𝐴 ⋊𝑟 𝐺) by (A.2.5). Give 𝐴𝑐 the structure of a
right module over 𝐶𝑐(𝐺,𝐴) ⊆ 𝐴 ⋊𝑟 𝐺 by

𝜉𝑓 = ∫
𝐺
𝛼𝑔(𝜉𝑓(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔) (𝜉 ∈ 𝐴𝑐, 𝑓 ∈ 𝐶𝑐(𝐺,𝐴))

and a right 𝐶𝑐(𝐺,𝐴)-valued inner product by

⟨𝜉1 ∣ 𝜉2⟩(𝑔, 𝑥) = 𝜉∗1𝛼𝑔(𝜉2)Δ𝐺(𝑔−1)1/2 (𝜉1, 𝜉2 ∈ 𝐴).

The map 𝜙 ∶ 𝐴𝑐 → 𝐶𝑐(𝐺,𝐴) ⊆ 𝐴 ⋊𝑟 𝐺 given by

𝜙(𝜉)(𝑔) = 𝛼𝑔(𝜉)𝑐Δ𝐺(𝑔−1)1/2

is right 𝐶𝑐(𝐺,𝐴)-linear, has 𝜙(𝜉1)∗𝜙(𝜉2) = ⟨𝜉1 ∣ 𝜉2⟩, and has range dense in 𝑝𝑐(𝐴⋊𝑟𝐺). Completing 𝐴𝑐
gives a right Hilbert 𝐴 ⋊𝑟 𝐺-module, which we denote by 𝐺𝐴, isomorphic to 𝑝𝑐(𝐴 ⋊𝑟 𝐺). The inclusion
𝐴𝐺 ⊆ 𝑀(𝐴) gives 𝐴𝑐 a left 𝐴𝐺-module structure. The 𝐴𝐺-valued left inner product given by

𝐴𝐺⟨𝜉1 ∣ 𝜉2⟩ = ∫
𝐺
𝛼𝑔(𝜉1𝜉∗2)𝑑𝜇(𝑔) (𝜉1, 𝜉2 ∈ 𝐴𝑐),

makes 𝑌 ≅ 𝑝𝑐(𝐴 ⋊𝑟 𝐺) a partial imprimitivity 𝐴𝐺-𝐴 ⋊𝑟 𝐺-bimodule, full on the left.

If the action of 𝐺 on 𝑋 is free as well as proper, [Kas88, Theorem 3.13] says that 𝐺𝐴 is a Morita
equivalence 𝐴𝐺-𝐴 ⋊𝑟 𝐺-module. This is closely related to the Symmetric Imprimitivity Theorem; see
e.g. [Wil07, Chapter 4]. Otherwise, 𝐴𝐺 is Morita equivalent to the ideal span(𝐴 ⋊𝑟 𝐺)𝑝𝑐(𝐴 ⋊𝑟 𝐺) of
𝐴 ⋊𝑟 𝐺; cf. [EE11, §3, Lemma 3.9].

Proof. Checking that the right module structure on 𝐴𝑐 is well-defined and compatible with the inner
product structure is routine. For example,

(𝜉𝑓1)𝑓2 = ∫
𝐺
∫
𝐺
𝛼ℎ(𝛼𝑔(𝜉𝑓1(𝑔−1))𝑓2(ℎ−1))Δ𝐺(ℎ−1𝑔−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
𝛼𝑔(𝜉𝑓1(𝑔−1ℎ))𝛼ℎ(𝑓2(ℎ−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
∫
𝐺
𝛼𝑔(𝜉𝑓1(ℎ)𝛼ℎ(𝑓2(ℎ−1𝑔−1)))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
𝛼𝑔(𝜉(𝑓1𝑓2)(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)

= 𝜉(𝑓1𝑓2).



A.2. Proper actions, cut-off functions, and a partial imprimitivity bimodule 199

However, it is not so easy to show that the inner product is positive definite. We will do this using the
map 𝜙; it will be an immediate consequence of the identity 𝜙(𝜉1)∗𝜙(𝜉2) = ⟨𝜉1 ∣ 𝜉2⟩.

First, we check that 𝜙 is linear in the right action of 𝐶𝑐(𝐺,𝐴) ⊆ 𝐴 ⋊𝑟 𝐺:

𝜙(𝜉𝑓)(𝑔) = ∫
𝐺
𝛼𝑔ℎ(𝜉𝑓(ℎ−1))𝑐Δ𝐺(𝑔−1ℎ−1)1/2𝑑𝜇(ℎ)

= ∫
𝐺
𝛼ℎ(𝜉)𝑐Δ𝐺(ℎ−1)1/2𝛼ℎ(𝑓(ℎ−1𝑔))𝑑𝜇(ℎ)

= (𝜙(𝜉)𝑓)(𝑔).

For the inner product identity,

(𝜙(𝜉1)∗𝜙(𝜉2))(𝑔) = ∫
𝐺
𝛼ℎ(𝜙(𝜉1)(ℎ−1)∗𝜙(𝜉2)(ℎ−1𝑔))Δ𝐺(ℎ−1)𝑑𝜇(ℎ)

= ∫
𝐺
𝜉∗1𝛼ℎ(𝑐)Δ𝐺(ℎ)1/2𝛼𝑔(𝜉2)𝛼ℎ(𝑐)Δ𝐺(𝑔−1ℎ)1/2Δ𝐺(ℎ−1)𝑑𝜇(ℎ)

= 𝜉∗1𝛼𝑔(𝜉2)Δ𝐺(𝑔−1)1/2 ∫
𝐺
𝛼ℎ(𝑐)2𝑑𝜇(ℎ)

= ⟨𝜉1, 𝜉2⟩(𝑔, 𝑥).

We will now see that the range of 𝜙 includes 𝑝𝑐𝐶𝑐(𝐺,𝐴) and so is dense in 𝑝𝑐(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺). Let
𝜂 ∈ 𝐶𝑐(𝐺,𝐴) ⊆ 𝐶0(𝑋,𝐴) ⋊𝑟 𝐺. We have

(𝑝𝑐𝜂)(𝑔) = ∫
𝐺
𝑐𝛼ℎ(𝑐)Δ𝐺(ℎ−1)1/2𝛼ℎ(𝜂(ℎ−1𝑔))𝑑𝜇(ℎ)

= ∫
𝐺
𝑐𝛼𝑔ℎ(𝑐)Δ𝐺(ℎ−1𝑔−1)1/2𝛼𝑔ℎ(𝜂(ℎ−1))𝑑𝜇(ℎ)

= 𝛼𝑔(∫
𝐺
𝛼ℎ(𝜂(ℎ−1)𝑐)Δ𝐺(ℎ−1)1/2𝑑𝜇(ℎ))𝑐Δ𝐺(𝑔−1)1/2

so that 𝑝𝑐𝜂 = 𝜙(𝜉) for
𝜉 = ∫

𝐺
𝛼ℎ(𝜂(ℎ−1)𝑐)Δ𝐺(ℎ−1)1/2𝑑𝜇(ℎ).

We obtain that the completion of 𝐶𝑐(𝑋,𝐴) is a right Hilbert 𝐶0(𝑋,𝐴) ⋊𝑟 𝐺-module 𝐺𝐴 isomorphic to
𝑝𝑐(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺).

The left inner product is well-defined because of the properness of the action; cf [Bou04, Proposition
VIII.27.2]. It is routine to check the linearity of the left inner product. Checking the imprimitivity
condition,

(𝜉1⟨𝜉2 ∣ 𝜉3⟩) = ∫
𝐺
𝛼𝑔(𝜉1⟨𝜉2 ∣ 𝜉3⟩)Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)

= ∫
𝐺
𝛼𝑔(𝜉1𝜉∗2𝛼𝑔−1(𝜉3)Δ𝐺(𝑔)1/2)Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔)

= ∫
𝐺
𝛼𝑔(𝜉1𝜉∗2)𝜉3𝑑𝜇(𝑔)

= 𝐴𝐺⟨𝜉1 ∣ 𝜉2⟩𝜉3.

For any 𝑎 ∈ 𝐴𝐺, ∫
𝐺
𝛼𝑔(𝑎𝑐2)𝑑𝜇𝐺(𝑔) = ∫

𝐺
𝑎𝛼𝑔(𝑐2)𝑑𝜇𝐺(𝑔) = 𝑎. For the left inner product to be full, it

then suffices for 𝐴𝐺𝑐2 to be in the norm closure of 𝐴𝑐𝐴∗
𝑐. But since 𝐴𝐺𝐶𝑐(𝑋/𝐺) is dense in 𝐴𝐺, it

suffices for 𝐴𝐺𝐶𝑐(𝑋/𝐺)𝑐2 to be in the norm closure of 𝐴𝑐𝐴∗
𝑐. For 𝑓 ∈ 𝐶𝑐(𝑋/𝐺), we have supp 𝑓∩supp 𝑐

compact by definition of the cut-off function 𝑐. So, in fact, 𝐴𝐺𝐶𝑐(𝑋/𝐺)𝑐2 ⊆ 𝐴𝑐.
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We record two corollaries.

Corollary A.2.7. Let 𝐴 be a C*-algebra with an action 𝛼 of 𝐺 and let 𝐺 act properly on a locally
compact Hausdorff space 𝑋. Let 𝑐 be a cut-off function for the action of 𝐺 on 𝑋 and define the
projection 𝑝𝑐 ∈ 𝑀(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺) by (A.2.5). Give 𝐶𝑐(𝑋,𝐴) the structure of a right module over
𝐶𝑐(𝐺 ×𝑋,𝐴) ⊆ 𝐶0(𝑋,𝐴) ⋊𝑟 𝐺 by

(𝜉𝑓)(𝑥) = ∫
𝐺
𝛼𝑔(𝜉(𝑔−1𝑥)𝑓(𝑔−1, 𝑔−1𝑥))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔) (𝜉 ∈ 𝐶𝑐(𝑋,𝐴), 𝑓 ∈ 𝐶𝑐(𝐺 ×𝑋,𝐴))

and a right 𝐶𝑐(𝐺 ×𝑋,𝐴)-valued inner product by

⟨𝜉1 ∣ 𝜉2⟩(𝑔, 𝑥) = 𝜉1(𝑥)∗𝛼𝑔(𝜉2(𝑔−1𝑥))Δ𝐺(𝑔−1)1/2 (𝜉1, 𝜉2 ∈ 𝐶𝑐(𝑋,𝐴)).

The map 𝜙 ∶ 𝐶𝑐(𝑋,𝐴) → 𝐶𝑐(𝐺 ×𝑋,𝐴) ⊆ 𝐶0(𝑋,𝐴) ⋊𝑟 𝐺 given by

𝜙(𝜉)(𝑔, 𝑥) = 𝛼𝑔(𝜉(𝑔−1𝑥))𝑐(𝑥)Δ𝐺(𝑔−1)1/2

is right 𝐶𝑐(𝐺 × 𝑋,𝐴)-linear, has 𝜙(𝜉1)∗𝜙(𝜉2) = ⟨𝜉1 ∣ 𝜉2⟩, and has range dense in 𝑝𝑐(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺).
Completing 𝐶𝑐(𝑋,𝐴) gives a right Hilbert 𝐶0(𝑋,𝐴)⋊𝑟𝐺-module 𝐺𝐶0(𝑋,𝐴) isomorphic to 𝑝𝑐(𝐶0(𝑋,𝐴)⋊𝑟
𝐺). There is a left module structure on 𝐶𝑐(𝑋,𝐴) for the induced algebra 𝐶0(𝑋,𝐴)𝐺 given by

(𝑓𝜉)(𝑥) = 𝑓(𝑥)𝜉(𝑥) (𝑓 ∈ 𝐶0(𝑋,𝐴)𝐺, 𝜉 ∈ 𝐶𝑐(𝑋,𝐴))

and 𝐶0(𝑋,𝐴)𝐺-valued inner product given by

𝐶0(𝑋,𝐴)𝐺⟨𝜉1 ∣ 𝜉2⟩(𝑥) = ∫
𝐺
𝛼𝑔(𝜉1(𝑔−1𝑥)𝜉2(𝑔−1𝑥)∗)𝑑𝜇(𝑔) (𝜉1, 𝜉2 ∈ 𝐶𝑐(𝑋,𝐴)),

making 𝐺𝐶0(𝑋,𝐴) ≅ 𝑝𝑐(𝐶0(𝑋,𝐴) ⋊𝑟 𝐺) a partial imprimitivity 𝐶0(𝑋,𝐴)𝐺-𝐶0(𝑋,𝐴) ⋊𝑟 𝐺-bimodule,
full on the left.

A very special case of the above is 𝐴 = ℂ. We obtain a partial imprimitivity 𝐶0(𝑋/𝐺)-𝐶0(𝑋) ⋊𝑟 𝐺-
bimodule 𝐺𝐶0(𝑋). If 𝐺 acts freely on 𝑋, as well as properly, 𝐺𝐶0(𝑋) is full on the right and so a
Morita equivalence bimodule. We will frequently make tacit use of the Morita equivalence of 𝐶0(𝑋/𝐺)
and 𝐶0(𝑋) ⋊𝑟 𝐺 in this case.

Corollary A.2.8. Let 𝐺 act properly on a locally compact Hausdorff space 𝑋. Let 𝐵 be a 𝐺-𝐶0(𝑋)-
algebra with action 𝛽 of 𝐺. Let 𝐸 be a right Hilbert 𝐵-module, 𝐺-equivariant under an action 𝑈. Let 𝑐 be a
cut-off function for the action of 𝐺 on𝑋 and define the projection 𝑝𝑐 ∈ 𝑀(End0(𝐸)⋊𝑟𝐺) ≅ End∗(𝐸⋊𝑟𝐺)
by (A.2.5). Give 𝐸𝑐 the structure of a right module over 𝐶𝑐(𝐺,𝐵) ⊆ 𝐵 ⋊𝑟 𝐺 by

𝜉𝑓 = ∫
𝐺
𝑈𝑔(𝜉𝑓(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔) (𝜉 ∈ 𝐸𝑐, 𝑓 ∈ 𝐶𝑐(𝐺,𝐵))

and a right 𝐶𝑐(𝐺,𝐵)-valued inner product by

⟨𝜉1 ∣ 𝜉2⟩(𝑔, 𝑥) = ⟨𝜉1 ∣ 𝑈𝑔(𝜉2)⟩Δ𝐺(𝑔−1)1/2 (𝜉1, 𝜉2 ∈ 𝐸𝑐).

The map 𝜙 ∶ 𝐸𝑐 → 𝐶𝑐(𝐺,𝐸) ⊆ 𝐸 ⋊𝑟 𝐺 given by

𝜙(𝜉)(𝑔) = 𝑈𝑔(𝜉)𝑐Δ𝐺(𝑔−1)1/2

is right 𝐶𝑐(𝐺,𝐵)-linear, has ⟨𝜙(𝜉1) ∣ 𝜙(𝜉2)⟩ = ⟨𝜉1 ∣ 𝜉2⟩, and has range dense in 𝑝𝑐(𝐸 ⋊𝑟 𝐺). Completing
𝐸𝑐 gives a right Hilbert 𝐵 ⋊𝑟 𝐺-module 𝐺𝐸 isomorphic to 𝑝𝑐(𝐸 ⋊𝑟 𝐺). The inclusion End0(𝐸)𝐺 ⊆
End∗(𝐸) gives 𝐸𝑐 a left End0(𝐸)𝐺-module structure. The End0(𝐸)𝐺-valued inner product given by

𝐴𝐺⟨𝜉1 ∣ 𝜉2⟩ = ∫
𝐺
𝑈𝑔|𝜉1⟩⟨𝜉2|𝑈∗

𝑔 𝑑𝜇(𝑔) (𝜉1, 𝜉2 ∈ 𝐸𝑐),

makes 𝐺𝐸 ≅ 𝑝𝑐(𝐸 ⋊𝑟 𝐺) a partial imprimitivity End0(𝐸)𝐺-𝐵 ⋊𝑟 𝐺-bimodule, full on the left.
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Again, if the action of 𝐺 on 𝑋 is free as well as proper, 𝐺𝐸 is a Morita equivalence End0(𝐸)𝐺-𝐵⋊𝑟𝐺-
module.

Proof. Because 𝐵 is a 𝐺-𝐶0(𝑋)-algebra, End0(𝐸) is also a 𝐺-𝐶0(𝑋)-algebra [Kas88, §1.5]. The
structural homomorphism 𝐶0(𝑋) → 𝑀(End0(𝐸)) = End∗(𝐸) is given by

𝑓 ⋅ 𝜉 = lim
𝑛→∞

𝜉(𝑓⟨𝜉|𝜉⟩(1/𝑛 + ⟨𝜉|𝜉⟩)−1)

for 𝑓 ∈ 𝐶0(𝑋) and 𝜉 ∈ 𝐸. The linking algebra ( End0(𝐸) 𝐸
𝐸∗ 𝐵 ) of 𝐸, being the algebra of compact

endomorphisms of (𝐸 ⊕ 𝐵)𝐵, is also a 𝐺-𝐶0(𝑋)-algebra. Remark also that

(End0(𝐸) 𝐸
𝐸∗ 𝐵) ⋊𝑟 𝐺 ≅ (End0(𝐸) ⋊𝑟 𝐺 𝐸 ⋊𝑟 𝐺

𝐸∗ ⋊𝑟 𝐺 𝐵 ⋊𝑟 𝐺
)

and

(End0(𝐸) 𝐸
𝐸∗ 𝐵)

𝐺

≅ (End0(𝐸)𝐺 𝐸𝐺

𝐸∗𝐺 𝐵𝐺)

(although beware that End0(𝐸)𝐺 is not necessarily isomorphic to End0(𝐸𝐺) unless the action of 𝐺 on
𝑋 is free [Kas88, Lemma 3.2]). Putting 𝐴 equal to the linking algebra of 𝐸 in Theorem A.2.6 gives the
required result.

A.2.1 The unbounded assembly map

The following result has as a special case the Baum–Connes assembly map; see [Val02, §6.2] [Kuc03].

Proposition A.2.9. Let 𝐺 be a locally compact group with a proper action 𝜃 on a locally compact
Hausdorff space 𝑋. Let 𝐴 be a 𝐺-𝐶0(𝑋)-algebra and 𝐵 a 𝐺-C*-algebra. Let (𝐴,𝐸𝐵, 𝐷) be an
isometrically 𝐺-equivariant unbounded Kasparov module with 𝐴 represented nondegenerately on 𝐸.
Call the actions of 𝐺 on 𝐴 and 𝐸, 𝛼 and 𝑈 respectively.

Let 𝐺𝐴 be the partial imprimitivity 𝐴𝐺-𝐴 ⋊𝑟 𝐺-bimodule of Theorem A.2.6. Define a right action
of 𝐶𝑐(𝐺,𝐵) ⊆ 𝐵 ⋊𝑟 𝐺 on 𝐶𝑐(𝑋)𝐸 by

(𝜉𝑓)(𝑥) = ∫
𝐺
𝑔 ⋅ 𝑈𝑔(𝜉𝑓(𝑔−1))Δ𝐺(𝑔−1)1/2𝑑𝜇(𝑔) (𝜉 ∈ 𝐶𝑐(𝑋)𝐸, 𝑓 ∈ 𝐶𝑐(𝐺,𝐵))

and a 𝐶𝑐(𝐺,𝐵)-valued inner product by

⟨𝜉1 ∣ 𝜉2⟩(𝑔) = ⟨𝜉1 ∣ 𝑈𝑔𝜉2⟩Δ𝐺(𝑔−1)1/2 (𝜉1, 𝜉2 ∈ 𝐶𝑐(𝑋)𝐸).

The completion of 𝐶𝑐(𝑋)𝐸 is a Hilbert 𝐵 ⋊𝑟 𝐺-module 𝐶𝑐(𝑋)𝐸.
Suppose that there exists a cut-off function for the action of 𝐺 on 𝑋 such that 𝑐 dom𝐷 ⊆ dom𝐷

and [𝐷, 𝑐] extends to an adjointable operator. Define the subspace

𝒳 = {∫
𝐺
𝜃∗ℎ−1(𝑐)𝑓(ℎ−1)Δ𝐺(ℎ−1)1/2𝑑𝜇(ℎ)∣ 𝑓 ∈ 𝐶𝑐(𝐺)}

of continuous functions on 𝑋. The Kasparov product

[𝐺𝐴] ⊗𝐴⋊𝑟𝐺 𝑗𝐺𝑟 ([(𝐴,𝐸𝐵, 𝐷)]) ∈ 𝐾𝐾𝑛(𝐴𝐺, 𝐵 ⋊𝑟 𝐺)

is represented by
(𝐴𝐺, 𝐶𝑐(𝑋)𝐸𝐵⋊𝑟𝐺

, ⎴𝐷)

where we define ⎴𝐷 to be the closure of 𝐷 on 𝒳dom𝐷.
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Proof. First, the descent of (𝐴,𝐸𝐵, 𝐷) is

(𝐴 ⋊𝑟 𝐺, (𝐸 ⋊𝑟 𝐺)𝐵⋊𝑟𝐺, 𝐷̃).

Let 𝑝𝑐 ∈ 𝑀(𝐶0(𝑋) ⋊𝑟 𝐺) be the projection (A.2.5) associated with the cut-off function 𝐶. By Theorem
A.2.6, 𝐺𝐴 ≅ 𝑝(𝐴 ⋊𝑟 𝐺). Because 𝐴 is represented nondegenerately on 𝐸, and so 𝐴 ⋊𝑟 𝐺 represented
nondegenerately on 𝐸 ⋊𝑟 𝐺,

𝐺𝐴⊗𝐴⋊𝑟𝐺 (𝐸 ⋊𝑟 𝐺) ≅ 𝑝(𝐴 ⋊𝑟 𝐺) ⊗𝐴⋊𝑟𝐺 (𝐸 ⋊𝑟 𝐺) = 𝑝(𝐸 ⋊𝑟 𝐺).

For 𝜉 ∈ 𝐶𝑐(𝐺,𝐸),

(𝑝𝑐𝜉)(𝑔) = ∫
𝐺
𝑐𝛼ℎ(𝑐)Δ𝐺(ℎ−1)1/2𝑈𝑔𝜉(ℎ−1𝑔)𝑑𝜇(ℎ).

Because (𝐴,𝐸𝐵, 𝐷) is isometrically equivariant,

([𝐷̃, 𝑝𝑐]𝜉)(𝑔) = ∫
𝐺
[𝐷, 𝑐𝛼ℎ(𝑐)Δ𝐺(ℎ−1)1/2]𝑈𝑔𝜉(ℎ−1𝑔)𝑑𝜇(ℎ)

= ∫
𝐺
([𝐷, 𝑐]𝛼ℎ(𝑐) + 𝑐𝛼ℎ([𝐷, 𝑐]))Δ𝐺(ℎ−1)1/2𝑈𝑔𝜉(ℎ−1𝑔)𝑑𝜇(ℎ)

and so [𝐷̃, 𝑝𝑐] extends to an adjointable operator.
There is a map 𝜙 ∶ 𝐶𝑐(𝑋)𝐸 → 𝐶𝑐(𝐺,𝐸) ⊆ 𝐸 ⋊𝑟 𝐺 given by

𝜙(𝜉)(𝑔) = 𝑐𝑈𝑔(𝜉)Δ𝐺(𝑔−1)1/2

whose range is dense in 𝑝(𝐸 ⋊𝑟 𝐺). By similar computations to the Proof of Theorem A.2.6, one can
check that 𝜙 extends to a Hilbert 𝐵 ⋊𝑟 𝐺-module isomorphism 𝜙 ∶ 𝐶𝑐(𝑋)𝐸 → 𝑝(𝐸 ⋊𝑟 𝐺). In particular,
for 𝜂 ∈ 𝐶𝑐(𝐺,𝐸) we have

𝜙−1(𝑝𝑐𝜂) = ∫
𝐺
𝜃∗ℎ−1(𝑐)𝑈ℎ(𝜂(ℎ−1))Δ𝐺(ℎ−1)1/2𝑑𝜇(ℎ).

By [LRV12, §3.3], the Kasparov product

[𝐺𝐴] ⊗𝐴⋊𝑟𝐺 𝑗𝐺𝑟 ([(𝐴,𝐸𝐵, 𝐷)]) ∈ 𝐾𝐾𝑛(𝐴𝐺, 𝐵 ⋊𝑟 𝐺) (A.2.10)

is represented by
(𝐴𝐺, 𝑝(𝐸 ⋊𝑟 𝐺)𝐵⋊𝑟𝐺, 𝑝𝑐𝐷̃𝑝𝑐).

For 𝜂𝑓 ∈ dom(𝐷)𝐶𝑐(𝐺) ⊆ dom(𝐷̃),

𝜙−1(𝑝𝑐(𝜂𝑓)) = ∫
𝐺
𝜃∗ℎ−1(𝑐)𝑓(ℎ−1)Δ𝐺(ℎ−1)1/2𝑑𝜇(ℎ)𝜂 ∈ 𝒳dom𝐷

Passing through the module identification,

(𝐴𝐺, 𝐶𝑐(𝑋)𝐸𝐵⋊𝑟𝐺
, ⎴𝐷)

also represents the product (A.2.10).
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A.3 Fractional powers of positive operators on Hilbert C*-modules

The proof of Theorem A.3.4 below can be found for the Hilbert space case in [KZPS76, Theorem 12.5].
We include a proof in the generality of Hilbert modules, beginning with a few basic Lemmas.

Lemma A.3.1. Let 𝐴 and 𝐵 be closed densely defined operators on a Banach space 𝑋. If the product
𝐴𝐵 with domain dom(𝐴𝐵) = {𝜉 ∈ dom𝐵 ∣ 𝐵𝜉 ∈ dom𝐴} is densely defined then 𝐴𝐵 is closed if either

• 𝐴 has everywhere defined and bounded inverse, or

• 𝐵 is everywhere defined and bounded.

Proof. Take the case that 𝐴 is invertible, so that dom𝐴 = 𝐴−1𝑋. Suppose that (𝜉𝑛)𝑛∈ℕ ⊆ dom(𝐴𝐵) =
{𝑥 ∈ dom𝐵 ∣ 𝐵𝑥 ∈ 𝐴−1𝑋} such that 𝜉𝑛 → 𝜉 and 𝐴𝐵𝜉𝑛 → 𝜂 as 𝑛 → ∞. Because 𝐴−1 is bounded,
𝐵𝜉𝑛 = 𝐴−1𝐴𝐵𝜉𝑛 → 𝐴−1𝜂. As 𝐵 is closed, 𝜉 ∈ dom𝐵 and 𝐵𝜉 = 𝐴−1𝜂. So 𝜉 ∈ dom(𝐴𝐵) and
𝐴𝐵𝜉 = 𝐴𝐴−1𝜂 = 𝜂 and we conclude that 𝐴𝐵 is closed.

Take the case that 𝐵 is bounded. Suppose that (𝜉𝑛)𝑛∈ℕ ⊆ dom(𝐴𝐵) = {𝑥 ∈ 𝑋 ∣ 𝐵𝑥 ∈ dom𝐴}
such that 𝜉𝑛 → 𝜉 and 𝐴𝐵𝜉𝑛 → 𝜂 as 𝑛 → ∞. Because 𝐵 is bounded, 𝐵𝜉𝑛 → 𝐵𝜉. As 𝐴 is closed,
𝐵𝜉 ∈ dom𝐴 (meaning that 𝜉 ∈ dom(𝐴𝐵)) and 𝐴𝐵𝜉 = 𝜂. Hence, 𝐴𝐵 is closed.

Lemma A.3.2. Let 𝐴 and 𝐵 be closed densely defined operators on Banach spaces 𝑋1 and 𝑋2. Let 𝑇
be a bounded operator from 𝑋2 to 𝑋1 with 𝑇dom𝐵 ⊆ dom𝐴. Suppose that 𝐵 is invertible (so 𝐵−1 is
everywhere-defined and bounded). Then 𝐴𝑇𝐵−1 is everywhere-defined and bounded.

Proof. By construction, 𝐴𝑇𝐵−1 is defined everywhere. By the closed graph theorem, it is bounded if
and only if it is closed, which it is by Lemma A.3.1.

We also recall a basic fact about the norm on a Hilbert module.

Lemma A.3.3. Let 𝐵 be a C*-algebra and 𝐸 a Hilbert 𝐵-module. For 𝜉 ∈ 𝐸,

‖𝜉‖𝐸 = sup
[𝜋]∈𝐵̂

sup
𝜂∈𝐻𝜋

‖𝜉 ⊗ 𝜂‖𝐸⊗𝜋𝐻𝜋

‖𝜂‖𝐻𝜋

where 𝐵̂ is the set of equivalence classes of unitary representations of 𝐵. For 𝑇 ∈ End∗𝐵(𝐸),

‖𝑇 ‖End∗(𝐸) = sup
[𝜋]∈𝐵̂

‖𝑇 ⊗ 1‖𝐵(𝐸⊗𝜋𝐻𝜋).

Proof. By e.g. [RW98, Theorem A.14],

‖𝜉‖ = ∥⟨𝜉 ∣ 𝜉⟩∥
1/2

= ∥⟨𝜉 ∣ 𝜉⟩1/2∥ = sup
𝜋

‖𝜋(⟨𝜉 ∣ 𝜉⟩1/2)‖

= sup
𝜋

sup
𝜂∈𝐻𝜋

‖⟨𝜉 ∣ 𝜉⟩1/2𝜂‖
‖𝜂‖

= sup
𝜋

sup
𝜂∈𝐻𝜋

⟨𝜉 ⊗ 𝜂 ∣ 𝜉 ⊗ 𝜂⟩1/2

‖𝜂‖
= sup

𝜋
sup
𝜂∈𝐻𝜋

‖𝜉 ⊗ 𝜂‖
‖𝜂‖

.

Next, note that ‖𝑇 ⊗ 1‖𝐵(𝐸⊗𝜋𝐻𝜋) ≤ ‖𝑇 ‖End∗(𝐸). On the other hand,

‖𝑇 ‖End∗(𝐸) = sup
𝜉∈𝐸

‖𝑇 𝜉‖𝐸
‖𝜉‖𝐸

= sup
𝜉∈𝐸

sup𝜋 sup𝜂∈𝐻𝜋

‖𝑇𝜉⊗𝜂‖
‖𝜂‖

sup𝜋 sup𝜂∈𝐻𝜋

‖𝜉⊗𝜂‖
‖𝜂‖

≤ sup
𝜉∈𝐸

sup
𝜋

sup
𝜂∈𝐻𝜋

‖𝑇 𝜉 ⊗ 𝜂‖
‖𝜉 ⊗ 𝜂‖

≤ sup
𝜋

‖𝑇 ⊗ 1‖𝐵(𝐸⊗𝜋𝐻𝜋)

and we obtain the required equality.
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Theorem A.3.4. cf. [KZPS76, Theorem 12.5] Let 𝐴 and 𝐵 be positive regular operators on Hilbert 𝐵-
modules 𝐸1 and 𝐸2 respectively. Let 𝑇 be an adjointable operator from 𝐸2 to 𝐸1. If 𝑇dom(𝐵) ⊆ dom(𝐴),
then 𝑇dom(𝐵𝛼) ⊆ dom(𝐴𝛼) for any 0 < 𝛼 ≤ 1. If, in addition, there exists an 𝑀 ≥ 0 such that, for
all 𝜉 ∈ dom(𝐵),

‖𝐴𝑇𝜉‖ ≤ 𝑀‖𝐵𝜉‖, (A.3.5)

then
‖𝐴𝛼𝑇𝜉‖ ≤ 𝑀𝛼‖𝑇 ‖1−𝛼‖𝐵𝛼𝜉‖.

In particular, if 𝐵 is invertible,

‖𝐴𝛼𝑇𝐵−𝛼‖ ≤ ‖𝐴𝑇𝐵−1‖𝛼‖𝑇 ‖1−𝛼.

Proof. By considering the direct sum 𝐸1 ⊕𝐸2, if necessary, we can without loss of generality assume
that 𝐸1 = 𝐸2 =∶ 𝐸.

We will begin with the case of 𝐴 bounded and adjointable and 𝐵 invertible. In this case, a bound
of the form (A.3.5) always holds, the best available bound being given by 𝑀 = ‖𝐴𝑇𝐵−1‖. For any
0 < 𝛼 ≤ 1, 𝐴𝛼 is adjointable and 𝐵𝛼 is invertible. Let 𝜋 ∶ 𝐵 → 𝐵(𝐻𝜋) be an irreducible representation
of 𝐵 and let 𝜉 ∈ 𝐸2 ⊗𝜋 𝐻𝜋. Define the holomorphic function

𝑓 ∶ 𝑧 ↦ ⟨𝜉 ∣ (𝐵 ⊗ 1)−𝑧(𝑇 ⊗ 1)∗(𝐴 ⊗ 1)2𝑧(𝑇 ⊗ 1)(𝐵 ⊗ 1)−𝑧𝜉⟩‖𝜉‖−2

on the strip where 0 ≤ ℜ(𝑧) ≤ 1. We have

|𝑓(𝑧)| ≤ ‖(𝐴 ⊗ 1)𝑧(𝑇 ⊗ 1)(𝐵 ⊗ 1)−𝑧‖‖(𝐴 ⊗ 1)𝑧(𝑇 ⊗ 1)(𝐵 ⊗ 1)−𝑧‖.

For 𝛽 ∈ ℝ,
|𝑓(1 + 𝛽𝑖)| ≤ ‖(𝐴 ⊗ 1)(𝑇 ⊗ 1)(𝐵 ⊗ 1)‖2 ≤ ‖𝐴𝑇𝐵−1‖2

and
|𝑓(𝛽𝑖)| ≤ ‖𝑇 ⊗ 1‖2 ≤ ‖𝑇 ‖2.

By Hadamard’s three-line theorem, we obtain that

‖(𝐴 ⊗ 1)𝛼(𝑇 ⊗ 1)(𝐵 ⊗ 1)−𝛼𝜉‖2‖𝜉‖−2 = |𝑓(𝛼)| ≤ ‖𝐴𝑇𝐵−1‖2𝛼‖𝑇 ‖2−2𝛼

for 0 ≤ 𝛼 ≤ 1. Hence ‖(𝐴 ⊗ 1)𝛼(𝑇 ⊗ 1)(𝐵 ⊗ 1)−𝛼‖ ≤ ‖𝐴𝑇𝐵−1‖𝛼‖𝑇 ‖1−𝛼. Assuming further that 𝛼 ≠ 0,
so that 𝐴𝛼 and 𝐵−𝛼 are well-defined as adjointable operators on 𝐸,

‖𝐴𝛼𝑇𝐵−𝛼‖End∗(𝐸) = sup
[𝜋]∈𝐵̂

‖𝐴𝛼𝑇𝐵−𝛼 ⊗ 1‖𝐵(𝐸⊗𝜋𝐻𝜋) ≤ ‖𝐴𝑇𝐵−1‖𝛼‖𝑇 ‖1−𝛼.

For 𝜉 ∈ dom(𝐵𝛼),
‖𝐴𝛼𝑇𝜉‖ ≤ ‖𝐴𝛼𝑇𝐵−𝛼‖‖𝐵𝛼𝜉‖ ≤ ‖𝐴𝑇𝐵−1‖𝛼‖𝑇 ‖1−𝛼‖𝐵𝛼𝜉‖

as required.
Now consider the case of general 𝐴 and 𝐵 when the bound (A.3.5) applies. As in the previous

section, let (𝜑𝑛)𝑛∈ℕ ⊂ 𝐶𝑐(ℝ) be a sequence of positive functions, bounded by 1 and converging
uniformly on compact subsets to the constant function 1. Let

𝐴𝑛 = 𝐴𝜑𝑛(𝐴) 𝐵𝑛 = 𝐵 + 1
𝑛

(𝑛 > 0).

The operators 𝐴𝑛 are bounded and adjointable and 𝐵𝑛 are invertible. For 𝜂 ∈ dom𝐴 and 𝜉 ∈ dom𝐵,

‖𝐴𝑛𝜂‖ ≤ ‖𝐴𝜂‖ ‖𝐵𝜉‖ ≤ ‖𝐵𝑛𝜉‖
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and so
‖𝐴𝑛𝑇𝜉‖ ≤ 𝑀‖𝐵𝑛𝜉‖.

As we have seen, for 0 < 𝛼 ≤ 1,

‖𝐴𝛼
𝑛𝑇𝜉‖ ≤ 𝑀𝛼‖𝑇 ‖1−𝛼‖𝐵𝛼

𝑛 𝜉‖ (𝜉 ∈ dom(𝐵𝛼
𝑛 ) = dom(𝐵𝛼)).

The sequence 𝜑𝑛(𝐴)𝛼𝑇𝜉 → 𝑇𝜉 as 𝑛 → ∞ by Theorem III.1.16. The bounded functions

𝑥 ↦ (𝑥 + 1/𝑛)𝛼 − 𝑥𝛼

converge uniformly to zero as 𝑛 → ∞, hence 𝐵𝛼
𝑛 𝜉 → 𝐵𝛼𝜉, again by Theorem III.1.16. Then

sup
𝑛

‖𝐴𝛼𝜑𝑛(𝐴)𝛼𝑇𝜉‖ = sup
𝑛

‖𝐴𝛼
𝑛𝑇𝜉‖ ≤ sup

𝑛
𝑀𝛼‖𝑇 ‖1−𝛼‖𝐵𝛼

𝑛 𝜉‖ < ∞.

Because 𝐴𝛼 is a closed operator, 𝑇𝜉 ∈ dom(𝐴𝛼) and 𝐴𝛼
𝑛𝑇𝜉 = 𝐴𝛼𝜑𝑛(𝐴)𝛼𝑇𝜉 → 𝐴𝛼𝑇𝜉 as 𝑛 → ∞.

Taking the limit as 𝑛 → ∞, we find that for 𝜉 ∈ dom(𝐵𝛼)

‖𝐴𝛼𝑇𝜉‖ ≤ 𝑀𝛼‖𝑇 ‖1−𝛼‖𝐵𝛼𝜉‖.

For the case of general 𝐴 and 𝐵 with 𝑇dom(𝐵) ⊆ dom(𝐴) but without the bound (A.3.5), we let
𝐵1 = 𝐵 + 1. As 𝐵1 is invertible, for 𝜉 ∈ dom(𝐵)

‖𝐴𝑇𝜉‖ ≤ ‖𝐴𝑇𝐵−1
1 ‖‖𝐵1𝜉‖.

We have shown that 𝑇dom(𝐵𝛼
1 ) ⊆ dom(𝐴𝛼) and, as dom(𝐵1) = dom(𝐵), we are done.

A.3.1 A nearly convex set from relatively bounded commutators

A subset 𝑆 ⊆ ℝ𝑛 is nearly convex if there exists a convex subset 𝐶 ⊆ ℝ𝑛 such that 𝐶 ⊆ 𝑆 ⊆ 𝐶
[MMW16, Definition 2.1]. (Remark that 𝑆 = 𝐶 is convex.)

Theorem A.3.6. Let 𝐴 and 𝐵 be regular operators on a Hilbert 𝐵-module 𝐸, such that 𝐴 is self-adjoint,
𝐵 is positive and invertible, and 𝐴 and 𝐵 commute on a common core. Let 𝑇 ∈ End∗𝐵(𝐸) and define
the subset 𝑆 ⊂ ℝ2 as consisting of (𝛼, 𝛽) ∈ (0,∞) × [0,∞) such that 𝑇 preserves dom𝐴|𝐴|−1+𝛼 and

[𝐴|𝐴|−1+𝛼, 𝑇 ]𝐵−𝛽

extends from dom𝐴|𝐴|−1+𝛼 to an adjointable operator on 𝐸. The subset 𝑆 is nearly convex. Provided
that 𝑆 is nonempty, 𝑆 contains {0} × [0,∞).

For the proof, we compile a couple of Lemmas.

Lemma A.3.7. cf. [GBVF01, Lemma 10.17] Let 𝐴 be a self-adjoint regular operator on a Hilbert
𝐵-module 𝐸. Let 𝑇 ∈ End∗𝐵(𝐸) preserve dom𝐴 and have [𝐴, 𝑇 ] extend to an adjointable operator.
Then, for any 𝛼 ∈ (0, 1) and 𝑦 ∈ ℝ, 𝑇 preserves dom𝐴|𝐴|−1+𝛼 = dom𝐴|𝐴|−1+𝛼+𝑦𝑖 = dom |𝐴|𝛼 and

[𝐴|𝐴|−1+𝛼+𝑦𝑖, 𝑇 ]

extends to an adjointable operator and

sup
𝑦∈ℝ

| csc (𝛼+𝑦𝑖)𝜋
2 |‖[𝐴|𝐴|−1+𝛼+𝑦𝑖, 𝑇 ]‖ < ∞.
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Proof. Let ⟨𝐴⟩ = (1 + 𝐴∗𝐴)1/2 = (1 + |𝐴|2)1/2 . First, note that

[⟨𝐴⟩𝛼+𝑦𝑖, 𝑇 ] = −⟨𝐴⟩𝛼+𝑦𝑖[⟨𝐴⟩−𝛼−𝑦𝑖, 𝑇 ]⟨𝐴⟩𝛼+𝑦𝑖.

By the integral formula (I.0.5) and using [CP98, Lemma 2.3], on dom𝐴,

−⟨𝐴⟩𝛼[⟨𝐴⟩−𝛼−𝑦𝑖, 𝑇 ]⟨𝐴⟩𝛼 =
sin (𝛼+𝑦𝑖)𝜋

2
𝜋

∫
∞

0
𝜆−𝛼+𝑦𝑖

2 ⟨𝐴⟩𝛼[𝑇 , (𝜆 + 1 + 𝐴2)−1]⟨𝐴⟩𝛼𝑑𝜆

=
sin (𝛼+𝑦𝑖)𝜋

2
𝜋

∫
∞

0
𝜆−𝛼+𝑦𝑖

2 ⟨𝐴⟩𝛼 (𝐴(𝜆 + 1 + 𝐴2)−1[𝐴, 𝑇 ](𝜆 + 1 + 𝐴2)−1

+(𝜆 + 1 + 𝐴2)−1[𝐴, 𝑇 ]𝐴(𝜆 + 1 + 𝐴2)−1) ⟨𝐴⟩𝛼𝑑𝜆.

The integral is norm-convergent and we obtain a bound

∥⟨𝐴⟩𝛼[⟨𝐴⟩−𝛼−𝑦𝑖, 𝑎]⟨𝐴⟩𝛼∥

≤
| sin (𝛼+𝑦𝑖)𝜋

2 |
𝜋

∫
∞

0
𝜆−𝛼

2 (∥𝐴⟨𝐴⟩𝛼(𝜆 + 1 + 𝐴2)−1∥‖[𝐴, 𝑇 ]‖∥⟨𝐴⟩𝛼(𝜆 + 1 + 𝐴2)−1∥

+∥⟨𝐴⟩𝛼(𝜆 + 1 + 𝐴2)−1∥‖[𝐴, 𝑇 ]‖∥𝐴⟨𝐴⟩𝛼(𝜆 + 1 + 𝐴2)−1∥) 𝑑𝜆

≤
| sin (𝛼+𝑦𝑖)𝜋

2 |
𝜋

2‖[𝐴, 𝑇 ]‖∫
∞

0
𝜆−𝛼

2 (𝜆 + 1)− 3
2+𝛼𝑑𝜆

= √cosh(𝑦𝜋) − cos(𝛼𝜋) 2𝛼√
2𝜋

Γ(1 − 𝛼)
Γ(32 − 𝛼)

‖[𝐴, 𝑇 ]‖.

Next, with 𝐹𝐴 = 𝐴⟨𝐴⟩−1,

[𝐹𝐴⟨𝐴⟩𝛼+𝑦𝑖, 𝑇 ] = [𝐹𝐴, 𝑇 ]⟨𝐴⟩𝛼+𝑦𝑖 + 𝐹𝐴⟨𝐴⟩𝛼+𝑦𝑖[⟨𝐴⟩−𝛼−𝑦𝑖, 𝑇 ]⟨𝐴⟩𝛼+𝑦𝑖

so that
∥[𝐹𝐴⟨𝐴⟩𝛼+𝑦𝑖, 𝑇 ]∥ ≤ ∥[𝐹𝐴, 𝑇 ]⟨𝐴⟩𝛼∥ + ∥⟨𝐴⟩𝛼[⟨𝐴⟩−𝛼−𝑦𝑖, 𝑎]⟨𝐴⟩𝛼∥

≤ 𝐶′
𝛼(1 + ∣ sin (𝛼+𝑦𝑖)𝜋

2 ∣)∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥

for some constant 𝐶′
𝛼, using also Theorem I.0.6. Hence [⟨𝐴⟩𝛼+𝑦𝑖, 𝑇 ] extends to an adjointable operator.

Next,

∣𝑥|𝑥|−1+𝛼+𝑦𝑖 − 𝑥⟨𝑥⟩−1+𝛼+𝑦𝑖∣ = |𝑥|∣|𝑥|−1+𝛼+𝑦𝑖 − ⟨𝑥⟩−1+𝛼+𝑦𝑖∣

≤ (|𝑥|𝛼∣(|𝑥|⟨𝑥⟩−1)𝑦𝑖 − 1∣ + |𝑥|∣|𝑥|−1+𝛼 − ⟨𝑥⟩−1+𝛼∣) |⟨𝑥⟩𝑦𝑖|

≤ |𝑥|𝛼∣1 − (|𝑥|⟨𝑥⟩−1)𝑦𝑖∣ + |𝑥|∣|𝑥|−1+𝛼 − ⟨𝑥⟩−1+𝛼∣.

Now

∣1 − (|𝑥|⟨𝑥⟩−1)𝑦𝑖∣ = √(1 − cos(𝑦 log(|𝑥|⟨𝑥⟩−1)))2 + sin(𝑦 log(|𝑥|⟨𝑥⟩−1))2

= √2 − 2 cos(𝑦 log(|𝑥|⟨𝑥⟩−1))2

≤ |𝑦|(log⟨𝑥⟩ − log |𝑥|)

since |1 − cos 𝜃| ≤ 1
2𝜃

2. One can check that there exist 𝑐1, 𝑐2 > 0 such that |𝑥|𝛼(log⟨𝑥⟩ − log |𝑥|) ≤ 𝑐1𝛼
and |𝑥|∣|𝑥|−1+𝛼 − ⟨𝑥⟩−1+𝛼∣ ≤ 𝑐2𝛼. Hence

∣𝑥|𝑥|−1+𝛼+𝑦𝑖 − 𝑥⟨𝑥⟩−1+𝛼+𝑦𝑖∣ ≤ 𝐶″𝛼(1 + |𝑦|)
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for some 𝐶″ > 0 and therefore

∣𝐴|𝐴|−1+𝛼+𝑦𝑖 − 𝐹𝐴⟨𝐴⟩𝛼+𝑦𝑖∣ ≤ 𝐶″𝛼(1 + |𝑦|).

Hence

‖[𝐴|𝐴|−1+𝛼+𝑦𝑖, 𝑇 ]‖ ≤ ∥[𝐹𝐴⟨𝐴⟩𝛼+𝑦𝑖, 𝑇 ]∥ + ∥[𝐴|𝐴|−1+𝛼+𝑦𝑖 − 𝐹𝐴⟨𝐴⟩𝛼+𝑦𝑖, 𝑇 ]∥

≤ 𝐶′
𝛼(1 + ∣ sin (𝛼+𝑦𝑖)𝜋

2 ∣)∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥ + 2𝐶″𝛼(1 + |𝑦|)‖𝑇 ‖

and [𝐴|𝐴|−1+𝛼+𝑦𝑖, 𝑇 ] extends to an adjointable operator. We finally obtain that

sup
𝑦∈ℝ

| csc (𝛼+𝑦𝑖)𝜋
2 |‖[𝐴|𝐴|−1+𝛼+𝑦𝑖, 𝑇 ]‖ < ∞

as required.

Proposition A.3.8. Let 𝐴 and 𝐵 be regular operators on a Hilbert 𝐵-module 𝐸, such that 𝐴 is
self-adjoint, 𝐵 is positive and invertible, and 𝐴 and 𝐵 commute on a common core. Suppose that, for
some 𝛼1 > 0, an element 𝑇 ∈ End∗𝐵(𝐸) preserves dom𝐴|𝐴|−1+𝛼1 and that, for some 𝛽1 ≥ 0,

[𝐴|𝐴|−1+𝛼1 , 𝑇 ]𝐵−𝛽1

extends from dom𝐴|𝐴|−1+𝛼1 to an adjointable operator on 𝐸. Then, for any 0 < 𝛼2 ≤ 𝛼1 and
𝛽2 > 𝛼2𝛽1

𝛼1
, 𝑇 preserves dom𝐴|𝐴|−1+𝛼2 and

[𝐴|𝐴|−1+𝛼2 , 𝑇 ]𝐵−𝛽2

extends to an adjointable operator.
Suppose, further, that, for some 𝛼3 > 𝛼1, 𝑇 preserves dom𝐴|𝐴|−1+𝛼3 and that, for some 𝛽3 ≥ 0,

[𝐴|𝐴|−1+𝛼3 , 𝑇 ]𝐵−𝛽3

extends to an adjointable operator on 𝐸. Then, for any 𝛼1 ≤ 𝛼2 ≤ 𝛼3 and

𝛽2 > (𝛼3 − 𝛼2)𝛽1 + (𝛼2 − 𝛼1)𝛽3
𝛼3 − 𝛼1

,

𝑇 preserves dom𝐴|𝐴|−1+𝛼2 and
[𝐴|𝐴|−1+𝛼2 , 𝑇 ]𝐵−𝛽2

extends to an adjointable operator.

Proof. First, noting that dom𝐴|𝐴|−1+𝛼 = dom |𝐴|𝛼 for all 𝛼 > 0, by Theorem A.3.4, 𝑇 preserves
dom𝐴|𝐴|−1+𝛼 for all 𝛼 ≤ 𝛼1. Second,

[𝐴|𝐴|−1+𝛼1 , 𝑇 ]𝐵−𝛽

is bounded for all 𝛽 ≥ 𝛽1. Third, since 𝐴 and 𝐵 commute on a common core,

[𝐴|𝐴|−1+𝛼1 , 𝑇 ]𝐵−𝛽1 = [𝐴|𝐴|−1+𝛼1 , 𝑇𝐵−𝛽1 ]

extends to an adjointable operator. By Lemma A.3.7, the operator

[𝐴|𝐴|−1+𝛼′
1+𝑦𝑖, 𝑇𝐵−𝛽1 ] = [𝐴|𝐴|−1+𝛼′

1+𝑦𝑖, 𝑇 ]𝐵−𝛽1

is bounded for any 𝛼′
1 ∈ (0, 1) and 𝑦 ∈ ℝ, with

𝑀𝛼′
1
∶= sup

𝑦∈ℝ
| csc (𝛼+𝑦𝑖)𝜋

2 |‖[𝐴|𝐴|−1+𝛼+𝑦𝑖, 𝑇 ]‖ < ∞.
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Fix 𝛼′
1 ∈ (0, 𝛼1). Let 𝜋 ∶ 𝐵 → 𝐵(𝐻𝜋) be an irreducible representation of 𝐵 and let 𝜂, 𝜉 ∈ 𝐸 ⊗𝜋 𝐻𝜋

with 𝜉 ∈ dom(𝐴) ⊙ 𝐻𝜋. Define the holomorphic function

𝑓 ∶ 𝑧 ↦ csc 𝛼′
1𝑧𝜋
2 ⟨𝜂 ∣ [(𝐴 ⊗ 1)|𝐴 ⊗ 1|−1+𝛼′

1𝑧(𝑇 ⊗ 1)](𝐵 ⊗ 1)−𝛽1𝑧𝜉⟩

on the strip where 0 ≤ ℜ(𝑧) ≤ 1. We have

|𝑓(𝑧)| ≤ | csc 𝛼′
1𝑧𝜋
2 |‖𝜂‖‖[(𝐴 ⊗ 1)|𝐴 ⊗ 1|−1+𝛼′

1𝑧(𝑇 ⊗ 1)](𝐵 ⊗ 1)−𝛽1𝑧𝜉‖.

For 𝑦 ∈ ℝ,

|𝑓(1 + 𝑦𝑖)| ≤ | csc 𝛼′
1(1+𝑦𝑖)𝜋

2 |‖𝜂‖‖([𝐴|𝐴|−1+𝛼′
1+𝛼′

1𝑦𝑖𝑇 ]𝐵−𝛽1 ⊗ 1)(𝐵 ⊗ 1)−𝛽1𝑦𝑖𝜉‖ ≤ 𝑀𝛼′
1
‖𝜂‖‖𝜉‖

and
|𝑓(𝑦𝑖)| ≤ 2‖𝑇 ‖‖𝜂‖‖𝜉‖.

By Hadamard’s three-line theorem, we obtain, for 𝛼2 ≤ 𝛼′
1 that

| csc 𝛼2𝜋
2 ⟨𝜂 ∣ [(𝐴 ⊗ 1)|𝐴 ⊗ 1|−1+𝛼2(𝑇 ⊗ 1)](𝐵 ⊗ 1)−𝛽1𝛼2/𝛼′

1𝜉⟩| = |𝑓(𝛼2
𝛼′

1
)| ≤ 𝑀𝛼2/𝛼′

1
𝛼′

1
(2‖𝑇 ‖)1−𝛼2/𝛼′

1‖𝜂‖‖𝜉‖

for 0 ≤ 𝛼 ≤ 1. Hence, putting 𝜂 = [(𝐴 ⊗ 1)|𝐴 ⊗ 1|−1+𝛼2(𝑇 ⊗ 1)](𝐵 ⊗ 1)−𝛽1𝛼2/𝛼′
1𝜉,

‖𝜂‖2 ≤ sin 𝛼2𝜋
2 𝑀𝛼2/𝛼′

1
𝛼′

1
‖𝑇 ‖1−𝛼2/𝛼′

1‖𝜂‖‖𝜉‖

and so
‖𝜂‖ ≤ sin 𝛼2𝜋

2 𝑀𝛼2/𝛼′
1

𝛼′
1

‖𝑇 ‖1−𝛼2/𝛼′
1‖𝜉‖.

By the density of dom(𝐴) ⊙ 𝐻𝜋 in 𝐸 ⊗𝜋 𝐻𝜋,

‖[(𝐴 ⊗ 1)|𝐴 ⊗ 1|−1+𝛼2(𝑇 ⊗ 1)](𝐵 ⊗ 1)−𝛽1𝛼2/𝛼′
1‖ ≤ sin 𝛼2𝜋

2 𝑀𝛼2/𝛼′
1

𝛼′
1

‖𝑇 ‖1−𝛼2/𝛼′
1 .

Restricting to 0 < 𝛼2 ≤ 𝛼′
1 so that |𝐴|−1+𝛼2 is a well-defined as adjointable operator on 𝐸,

‖[𝐴|𝐴|−1+𝛼2𝑇 ]𝐵−𝛽1𝛼2/𝛼′
1‖End∗

𝐵(𝐸) = sup
[𝜋]∈𝐵̂

‖𝐴|𝐴|−1+𝛼2𝑇 ]𝐵−𝛽1𝛼2/𝛼′
1 ⊗ 1‖𝐵(𝐸⊗𝜋𝐻𝜋)

≤ sin 𝛼2𝜋
2 𝑀𝛼2/𝛼′

1
𝛼′

1
‖𝑇 ‖1−𝛼2/𝛼′

1 .

By making a suitable choice of 𝛼′
1, we obtain that

[𝐴|𝐴|−1+𝛼2 , 𝑇 ]𝐵−𝛽2

is bounded for any 𝛼2 < 𝛼1 and 𝛽2 > 𝛽1𝛼2/𝛼1.
For the second part, fix 𝛼′

1 ∈ (0, 𝛼1) and 𝛼′
3 ∈ (0, 𝛼3). Let 𝜋 ∶ 𝐵 → 𝐵(𝐻𝜋) be an irreducible

representation of 𝐵 and let 𝜂, 𝜉 ∈ 𝐸 ⊗𝜋 𝐻𝜋 with 𝜉 ∈ dom(𝐴) ⊙ 𝐻𝜋. Define the holomorphic function

𝑓 ∶ 𝑧 ↦ csc (𝛼′
1(1−𝑧)+𝛼′

3𝑧)𝜋
2 ⟨𝜂 ∣ [(𝐴 ⊗ 1)|𝐴 ⊗ 1|−1+𝛼′

1(1−𝑧)+𝛼′
3𝑧(𝑇 ⊗ 1)](𝐵 ⊗ 1)−𝛽1(1−𝑧)−𝛽3𝑧𝜉⟩

on the strip where 0 ≤ ℜ(𝑧) ≤ 1. By similar machinations to the ones above, we obtain that

[𝐴|𝐴|−1+𝛼3𝑇 ]𝐵
− (𝛼′

3−𝛼2)𝛽1+(𝛼2−𝛼′
1)𝛽3

𝛼′
3−𝛼′

1

is bounded for 𝛼′
1 ≤ 𝛼2 ≤ 𝛼′

3. By making suitable choices of 𝛼′
1 and 𝛼′

3, we obtain that

[𝐴|𝐴|−1+𝛼2 , 𝑇 ]𝐵−𝛽2

is bounded for any 𝛼1 < 𝛼2 < 𝛼3 and 𝛽2 > (𝛼3−𝛼2)𝛽1+(𝛼2−𝛼1)𝛽3
𝛼3−𝛼1

.
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Proof of Theorem A.3.6. Define the subset 𝐶 of (𝛼, 𝛽) ∈ 𝑆 such that, for all 𝑦 ∈ ℝ,

[𝐴|𝐴|−1+𝛼+𝑖𝑦, 𝑇 ]𝐵−𝛽

extends from dom |𝐴|𝛼 to an adjointable operator on 𝐸 and

sup
𝑦∈ℝ

| csc (𝛼+𝑦𝑖)𝜋
2 |‖[𝐴|𝐴|−1+𝛼+𝑦𝑖, 𝑇 ]‖ < ∞.

Then Lemma A.3.7 says that 𝑆 ⊆ 𝐶. That 𝐶 is convex follows from the Proof of Proposition A.3.8.

A.3.2 A form condition for relatively bounded commutators on Hilbert C*-modules

Lemma A.3.9. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸 and 𝑎 ∈ End∗𝐵(𝐸).
Then 𝑎 dom𝐷 ⊆ dom𝐷 if and only if

𝑋 = {𝜉 ∈ dom𝐷 ∣ 𝑎𝜉 ∈ dom𝐷}

is a core for 𝐷 and, for some constant 𝑀 > 0,

‖𝐷𝑎𝜉‖ ≤ 𝑀‖⟨𝐷⟩𝜉‖

for all 𝜉 ∈ 𝑋.

Proof. Suppose that 𝑎 dom𝐷 ⊆ dom𝐷. Then 𝑋 = dom𝐷 is a core for 𝐷. For 𝜉 ∈ 𝑋 = dom𝐷,

‖𝐷𝑎𝜉‖ = ‖𝐹𝐷⟨𝐷⟩𝑎⟨𝐷⟩−1⟨𝐷⟩𝜉‖ ≤ ‖⟨𝐷⟩𝑎⟨𝐷⟩−1‖‖⟨𝐷⟩𝜉‖.

Suppose, on the other hand, that 𝑋 is a core for 𝐷, and the bound applies. Let 𝜉 ∈ dom𝐷 and
choose (𝜉𝑛)∞𝑛=1 ⊂ 𝑋 converging to 𝜉 in the graph norm. This means that (𝜉𝑛)∞𝑛=1 converges to 𝜉 and
(𝐷𝜉𝑛)∞𝑛=1 converges to 𝐷𝜉 in the norm on 𝐸. Because

∥𝐷𝑎𝜉𝑚 −𝐷𝑎𝜉𝑛∥ ≤ 𝑀∥⟨𝐷⟩(𝜉𝑚 − 𝜉𝑛)∥

and (𝑎𝜉𝑛)∞𝑛=1 converges to 𝑎𝜉 in the norm on 𝐸, (𝑎𝜉𝑛)∞𝑛=1 is Cauchy in the graph norm, converging to
𝑎𝜉 ∈ dom𝐷. Hence, 𝑎 dom𝐷 ⊆ dom𝐷 as required.

Proposition A.3.10. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸 and 𝑎 ∈
End∗𝐵(𝐸). Then 𝑎 dom𝐷 ⊆ dom𝐷 if and only if, for every irreducible representation 𝜋 ∶ 𝐵 → 𝐵(𝐻𝜋),

𝑎𝜋 dom𝐷𝜋 ⊆ dom𝐷𝜋

and sup[𝜋]∈𝐵̂ ‖𝐷𝜋𝑎𝜋⟨𝐷𝜋⟩−1‖ < ∞.

Proof. By Lemma A.3.9, the subspace

𝑋 = {𝜉 ∈ dom𝐷 ∣ 𝑎𝜉 ∈ dom𝐷}

is a core for 𝐷 if and only if 𝑎 dom𝐷 ⊆ dom𝐷 and for some constant 𝑀 > 0,

‖𝐷𝑎𝜉‖ ≤ 𝑀‖⟨𝐷⟩𝜉‖

for all 𝜉 ∈ 𝑋. By [KL12, Theorem 3.3] and [KL17, Theorem 2.1], 𝑋 is a core for 𝐷 if and only if, for
every irreducible representation 𝜋 ∶ 𝐵 → 𝐵(𝐻𝜋), the algebraic tensor product 𝑋 ⊙𝐵 𝐻𝜋 is a core for
𝐷𝜋. The subspace 𝑋 ⊙𝐵 𝐻𝜋 is equal to

𝑋 ⊙𝐵 𝐻𝜋 = {𝜉 ⊗ 𝜂 ∈ dom𝐷⊙𝐻𝜋 ∣ (𝑎 ⊗ 1)𝜉 ⊗ 𝜂 ∈ dom𝐷⊙𝐻𝜋}
= {𝜉 ∈ dom𝐷⊙𝐻𝜋 ∣ 𝑎𝜋𝜉 ∈ dom𝐷⊙𝐻𝜋}.
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Suppose that 𝑎 dom𝐷 ⊆ dom𝐷. Then 𝑋⊙𝐵𝐻𝜋 is a core for 𝐷𝜋, for all irreducible representations 𝜋 of
𝐵, and ‖𝐷𝑎𝜉‖ ≤ 𝑀‖⟨𝐷⟩𝜉‖. By Lemma A.3.9, 𝑎𝜋 dom𝐷𝜋 ⊆ dom𝐷𝜋 and so (𝐷𝑎⟨𝐷⟩−1)𝜋 = 𝐷𝜋𝑎𝜋⟨𝐷𝜋⟩−1.
Furthermore, by Lemma A.3.3,

sup
[𝜋]∈𝐵̂

‖𝐷𝜋𝑎𝜋⟨𝐷𝜋⟩−1‖ = ‖𝐷𝑎⟨𝐷⟩−1‖ < ∞

as required.
On the other hand, suppose that 𝑎𝜋 dom𝐷𝜋 ⊆ dom𝐷𝜋 and sup𝜋 ‖⟨𝐷

𝜋⟩𝑎𝜋⟨𝐷𝜋⟩−1‖ = 𝑀 < ∞. By
[Pie06, Lemme 1.15(1)], the graph 𝒢(𝐷𝜋) of 𝐷𝜋 is equal to 𝒢(𝐷) ⊗𝐵 𝐻𝜋, where 𝒢(𝐷) is the graph of
𝐷. Hence, using also the regularity of 𝐷,

𝒢(𝐷𝜋) ∩ ((𝐸 ⊙𝐵 𝐻𝜋) ⊕ (𝐸 ⊙𝐵 𝐻𝜋)) = 𝒢(𝐷) ⊗𝐵 𝐻𝜋 ∩ ((𝐸 ⊕ 𝐸) ⊙𝐵 𝐻𝜋)
= 𝒢(𝐷) ⊗𝐵 𝐻𝜋 ∩ ((𝒢(𝐷) ⊙𝐵 𝐻𝜋) ⊕ (𝒢(𝐷)⟂ ⊙𝐵 𝐻𝜋))
= 𝒢(𝐷) ⊙𝐵 𝐻𝜋.

Projecting onto the first terms of 𝒢(𝐷𝜋) and 𝒢(𝐷) in the direct sums 𝐸 ⊕𝐸 and (𝐸 ⊕ 𝐸) ⊗𝐵 𝐻𝜋, we
find that

dom𝐷𝜋 ∩ (𝐸 ⊙𝐵 𝐻𝜋) = dom𝐷⊙𝐵 𝐻𝜋.

Noting that 𝑎𝜋(𝐸 ⊙𝐵 𝐻𝜋) = (𝑎 ⊗ 1)(𝐸 ⊙𝐵 𝐻𝜋) ⊆ 𝐸 ⊙𝐵 𝐻𝜋, we find that

𝑎𝜋(dom𝐷⊙𝐵 𝐻𝜋) = 𝑎(dom𝐷𝜋 ∩ (𝐸 ⊙𝐵 𝐻𝜋)) ⊆ dom𝐷⊙𝐵 𝐻𝜋

and
𝑋 ⊙𝐵 𝐻𝜋 = dom𝐷⊙𝐵 𝐻𝜋,

which is a core for 𝐷𝜋. Hence, 𝑋 is a core for 𝐷 and so 𝑎 dom𝐷 ⊆ dom𝐷. Furthermore,

‖𝐷𝑎𝜉‖ = sup
𝜋

sup
𝜂∈𝐻𝜋

‖𝐷𝜋𝑎𝜋(𝜉 ⊗ 𝜂)‖
‖𝜂‖

= sup
𝜋

sup
𝜂∈𝐻𝜋

‖𝐷𝜋𝑎𝜋⟨𝐷𝜋⟩−1⟨𝐷𝜋⟩(𝜉 ⊗ 𝜂)‖
‖𝜂‖

≤ sup
𝜋

‖𝐷𝜋𝑎𝜋⟨𝐷𝜋⟩−1‖ sup
𝜂∈𝐻𝜋

‖⟨𝐷𝜋⟩(𝜉 ⊗ 𝜂)‖
‖𝜂‖

≤ 𝑀sup
𝜋

sup
𝜂∈𝐻𝜋

‖⟨𝐷𝜋⟩(𝜉 ⊗ 𝜂)‖
‖𝜂‖

= 𝑀‖⟨𝐷⟩𝜉‖,

by Lemma A.3.3.

Proposition A.3.11. cf. [BR87, Proposition 3.2.55] Let 𝐷 be a self-adjoint, regular operator on a
right Hilbert 𝐵-module 𝐸. Let 0 ≤ 𝛼 ≤ 1. For 𝑎 ∈ End∗𝐵(𝐸), the following conditions are equivalent:

1. 𝑎 dom𝐷 ⊆ dom𝐷 and [𝐷, 𝑎]⟨𝐷⟩−𝛼 is bounded on dom𝐷⟨𝐷⟩−𝛼 = ⟨𝐷⟩−1+𝛼𝐸; and

2. the 𝐵-sesquilinear map 𝜑 ∶ dom𝐷× dom𝐷⟨𝐷⟩−𝛼 → 𝐵 given by

𝜑 ∶ (𝜉, 𝜂) ↦ ⟨𝐷𝜉 ∣ 𝑎⟨𝐷⟩−𝛼𝜂⟩𝐵 − ⟨𝜉 ∣ 𝑎𝐷⟨𝐷⟩−𝛼𝜂⟩𝐵

is bounded, meaning that sup𝜉,𝜂
‖𝜑(𝜉,𝜂)‖
‖𝜉‖‖𝜂‖ < ∞.

When these conditions are satisfied, 𝜑(𝜉, 𝜂) = ⟨𝜉 ∣ [𝐷, 𝑎]⟨𝐷⟩−𝛼𝜂⟩ and sup𝜉,𝜂
‖𝜑(𝜉,𝜂)‖
‖𝜉‖‖𝜂‖ = ‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖.



A.3. Fractional powers of positive operators on Hilbert C*-modules 211

Proof. That condition 1. ⇒ 2. is a consequence of the identity

⟨𝐷𝜉 ∣ 𝑎⟨𝐷⟩−𝛼𝜂⟩
𝐵
− ⟨𝜉 ∣ 𝑎𝐷⟨𝐷⟩−𝛼𝜂⟩

𝐵
= ⟨𝜉 ∣ [𝐷, 𝑎]⟨𝐷⟩−𝛼𝜂⟩

𝐵

when 𝑎 dom𝐷 ⊆ dom𝐷. We have

sup
𝜉,𝜂

‖𝜑(𝜉, 𝜂)‖
‖𝜉‖‖𝜂‖

= sup
𝜉,𝜂

‖⟨𝜉 ∣ [𝐷, 𝑎]⟨𝐷⟩−𝛼𝜂⟩‖
‖𝜉‖‖𝜂‖

≤ ‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖

by the Cauchy–Schwarz inequality.
For the other direction, 2. ⇒ 1., let 𝜋 ∶ 𝐵 → 𝐵(𝐻𝜋) be an irreducible representation and consider

the Hilbert space 𝐸𝜋 = 𝐸⊗̂𝐵𝐻𝜋 and the operators 𝐷𝜋 = 𝐷⊗1 and 𝑎𝜋 = 𝑎⊗1. There is a sesquilinear
map 𝜑𝜋 ∶ dom𝐷𝜋 × dom𝐷𝜋⟨𝐷𝜋⟩−𝛼 → ℂ given by

𝜑𝜋 ∶ (𝜉, 𝜂) ↦ ⟨𝐷𝜋𝜉 ∣ 𝑎⟨𝐷𝜋⟩−𝛼𝜂⟩ − ⟨𝜉 ∣ 𝑎𝜋𝐷𝜋⟨𝐷𝜋⟩−𝛼𝜂⟩ .

The sesquilinear map 𝜑𝜋 is bounded because of the density of dom𝐷 ⊙𝐵 𝐻𝜋 in dom𝐷𝜋 and of
dom𝐷⟨𝐷⟩−𝛼 ⊙𝐵 𝐻𝜋 in dom𝐷𝜋⟨𝐷𝜋⟩−𝛼. There must, therefore, be an operator 𝑏𝜋 ∈ 𝐵(𝐸𝜋) for which
𝜑𝜋(𝜉, 𝜂) = ⟨𝜉 ∣ 𝑏𝜋𝜂⟩ for all 𝜉 ∈ dom𝐷𝜋 and 𝜂 ∈ dom𝐷𝜋⟨𝐷𝜋⟩−𝛼. Then

⟨𝐷𝜋𝜉 ∣ 𝑎𝜋⟨𝐷𝜋⟩−𝛼𝜂⟩ = ⟨𝜉 ∣ 𝑎𝜋𝐷𝜋⟨𝐷𝜋⟩−𝛼𝜂⟩ + ⟨𝜉 ∣ 𝑏𝜋𝜂⟩

which demonstrates that
𝜉 ↦ ⟨𝐷𝜋𝜉 ∣ 𝑎𝜋⟨𝐷𝜋⟩−𝛼𝜂⟩

is continuous for fixed 𝜂 ∈ dom𝐷𝜋⟨𝐷𝜋⟩−𝛼. We find that 𝑎𝜋⟨𝐷𝜋⟩−𝛼𝜂 ∈ dom(𝐷𝜋)∗ = dom𝐷𝜋. Hence,

𝑎𝜋 dom𝐷𝜋 = 𝑎𝜋⟨𝐷𝜋⟩−𝛼 dom𝐷⟨𝐷𝜋⟩−𝛼 ⊆ dom𝐷𝜋

and [𝐷𝜋, 𝑎𝜋]⟨𝐷𝜋⟩−𝛼 = 𝑏𝜋 is bounded by

sup{‖𝜑𝜋(𝜉, 𝜂)‖
‖𝜉‖‖𝜂‖

∣ 𝜉 ∈ dom𝐷𝜋, 𝜂 ∈ dom𝐷𝜋⟨𝐷𝜋⟩−𝛼}

= sup{‖𝜑𝜋(𝜉, 𝜂)‖
‖𝜉‖‖𝜂‖

∣ 𝜉 ∈ dom𝐷⊙𝐵 𝐻𝜋, 𝜂 ∈ dom𝐷⟨𝐷⟩−𝛼 ⊗⊙𝐵𝐻𝜋}

≤ sup{‖𝜑(𝜉, 𝜂)‖
‖𝜉‖‖𝜂‖

∣ 𝜉 ∈ dom𝐷, 𝜂 ∈ dom𝐷⟨𝐷⟩−𝛼}.

Now, taking the supremum over all irreducible representations 𝜋 ∈ 𝐵̂,

sup
[𝜋]∈𝐵̂

‖⟨𝐷𝜋⟩𝑎𝜋⟨𝐷𝜋⟩−1‖ = sup
[𝜋]∈𝐵̂

‖[⟨𝐷𝜋⟩, 𝑎𝜋]⟨𝐷𝜋⟩−1 + 𝑎𝜋‖

≤ sup
[𝜋]∈𝐵̂

(‖[⟨𝐷𝜋⟩, 𝑎𝜋]⟨𝐷𝜋⟩−1‖ + ‖𝑎𝜋‖)

≤ ‖𝑎‖ + sup
[𝜋]∈𝐵̂

(‖[⟨𝐷𝜋⟩, 𝑎𝜋]⟨𝐷𝜋⟩−𝛼‖ + ‖𝑎𝜋‖)

≤ ‖𝑎‖ + sup{‖𝜑(𝜉, 𝜂)‖
‖𝜉‖‖𝜂‖

∣ 𝜉 ∈ dom𝐷, 𝜂 ∈ dom𝐷⟨𝐷⟩−𝛼}

< ∞.

We may, therefore, apply Proposition A.3.10 to obtain that 𝑎 dom𝐷 ⊆ dom𝐷. Then the boundedness
of

𝜑(𝜉, 𝜂) = ⟨𝐷𝜉 ∣ 𝑎⟨𝐷⟩−𝛼𝜂⟩𝐵 − ⟨𝜉 ∣ 𝑎𝐷⟨𝐷⟩−𝛼𝜂⟩𝐵 = ⟨𝜉 ∣ [𝐷, 𝑎]⟨𝐷⟩−𝛼𝜂⟩𝐵
makes [𝐷, 𝑎]⟨𝐷⟩−𝛼 bounded. By Lemma A.3.3,

‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖ = sup
[𝜋]∈𝐵̂

‖𝑏𝜋‖ ≤ sup
𝜉,𝜂

‖𝜑(𝜉, 𝜂)‖
‖𝜉‖‖𝜂‖

,

establishing the required equality of bounds.
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A.4 Functional calculus for higher order Kasparov modules

A.4.1 Closure under the holomorphic functional calculus

We begin by recalling a few details in the abstract. For an open subset 𝑈 ⊆ ℂ, we denote by 𝒪(𝑈)
the holomorphic complex valued functions on 𝑈. For any subset 𝑆 ⊆ ℂ, we denote by 𝒪(𝑆) all those
functions holomorphic on some open set containing 𝑆.

Definition A.4.1. e.g. [LMN05, Definition 2.1] Let 𝐴 be a unital Banach algebra. A unital subalgebra
𝐵 of 𝐴 is closed under the holomorphic functional calculus of 𝐴 if, for every 𝑏 ∈ 𝐵 and 𝑓 ∈ 𝒪(𝜎𝐴(𝑏)),
𝑓(𝑏) ∈ 𝐵.

Lemma A.4.2. [LMN05, Remark 2.2(c)] Let 𝐴 be a unital Banach algebra. Let 𝐵 be a unital subalgebra
of 𝐴 which is closed under the holomorphic functional calculus of 𝐴. Then

𝐴−1 ∩ 𝐵 = 𝐵−1

i.e. the invertible elements of 𝐵 are exactly those elements of 𝐴 which are invertible and lie in 𝐵. As a
consequence, 𝜎𝐵(𝑏) = 𝜎𝐴(𝑏) for all 𝑏 ∈ 𝐵.

Proof. Let 𝑏 ∈ 𝐴−1 ∩ 𝐵. Since 0 ∉ 𝜎𝐴(𝑏) and the spectrum is closed, the function 𝑓 ∶ 𝜆 → 𝜆−1 is in
𝒪(𝜎𝐴(𝑏)). Then 𝑓(𝑏) = 𝑏−1 is in 𝐵 and so 𝐴−1 ∩ 𝐵 ⊆ 𝐵−1. The opposite inclusion, 𝐵−1 ⊆ 𝐴−1 ∩ 𝐵,
holds because the inclusion 𝐵 ⊆ 𝐴 is unital. Finally, for any 𝑏 ∈ 𝐵,

𝜎𝐵(𝑏) = {𝜆 ∈ ℂ ∣ 𝜆 − 𝑏 ∈ 𝐵−1} = {𝜆 ∈ ℂ ∣ 𝜆 − 𝑏 ∈ 𝐴−1} = 𝜎𝐴(𝑏)

as required.

Lemma A.4.3. cf. [LMN05, Proposition 2.4(d)] Let 𝐴 be a unital Banach algebra. Let 𝐵 be a unital
subalgebra of 𝐴 which is a Banach algebra, not necessarily with the inherited norm. If

𝐴−1 ∩ 𝐵 = 𝐵−1

then 𝐵 is closed under the holomorphic functional calculus of 𝐴.

Proof. Let 𝑏 ∈ 𝐵. As in the proof of the previous Lemma, 𝜎𝐴(𝑏) = 𝜎𝐵(𝑏) and so 𝒪(𝜎𝐴(𝑐)) = 𝒪(𝜎𝐵(𝑐)).
Let 𝑓 ∈ 𝒪(𝜎𝐴(𝑐)) = 𝒪(𝜎𝐵(𝑐)). Since 𝐵 is a Banach algebra, we can employ its functional calculus and
write

𝑓(𝑏) = 1
2𝜋𝑖

∮
𝛾
𝑓(𝜆)(𝜆 − 𝑏)−1𝑑𝜆 ∈ 𝐵

as required.

Next, we see that closure under the holomorphic functional calculus is a transitive property.

Lemma A.4.4. Let 𝐴 be a unital Banach algebra. Let 𝐵 be a unital subalgebra of 𝐴 which is a Banach
algebra, not necessarily with the inherited norm, which is closed under the holomorphic functional
calculus of 𝐴. Let 𝐶 be a unital subalgebra of 𝐵 which is a Banach algebra, not necessarily with the
inherited norm. Then 𝐶 is closed under the holomorphic functional calculus of 𝐵 if and only if it is
closed under the holomorphic functional calculus of 𝐴.

Proof. Let 𝑐 ∈ 𝐶. Since 𝜎𝐴(𝑏) = 𝜎𝐵(𝑏) for all 𝑏 ∈ 𝐵, 𝒪(𝜎𝐴(𝑐)) = 𝒪(𝜎𝐵(𝑐)). What it means for 𝐶
to be closed under the holomorphic functional calculus is the same for 𝐴 and 𝐵, viz. that, for all
𝑓 ∈ 𝒪(𝜎𝐴(𝑐)) = 𝒪(𝜎𝐵(𝑐)), 𝑓(𝑐) ∈ 𝐶.
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Lemma A.4.5. cf. [BC91, Proposition 3.12], [LMN05, Lemma 2.7] Let 𝐴 be a unital Banach algebra.
Let 𝐵 be a unital subalgebra of 𝐴 which is a Banach algebra, not necessarily with the inherited norm.
Suppose that 𝐵 is dense in 𝐴 and

𝑟𝐵(𝑏) ≤ ‖𝑏‖𝐴

for all 𝑏 ∈ 𝐵, where 𝑟𝐵 denotes the spectral radius in 𝐵. Then

𝐴−1 ∩ 𝐵 = 𝐵−1

and 𝐵 is closed under the holomorphic functional calculus of 𝐴.

Proof. Let 𝑎 ∈ 𝐴−1∩𝐵. By the density of 𝐵 in 𝐴, we can find an element 𝑏 ∈ 𝐵 such that ‖1−𝑎𝑏‖𝐴 < 1.
By the assumption, 𝑟𝐵(1 − 𝑎𝑏) < 1, meaning that 1 ∉ 𝜎𝐵(1 − 𝑎𝑏). Then 0 ∉ 𝜎𝐵(𝑎𝑏) so 𝑎𝑏 is invertible
in 𝐵 and

𝑎−1 = 𝑏(𝑎𝑏)−1 ∈ 𝐵

Hence, 𝐴−1 ∩ 𝐵 ⊆ 𝐵−1. Because the inclusion 𝐵 ⊆ 𝐴 is unital, the opposite inclusion is also true.

We now come to the setting of higher order Kasparov modules.

Definition A.4.6. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. For
0 ≤ 𝛼 < 1, let

Lip𝛼(𝐷) ⊆ End∗𝐵(𝐸)

be the subspace consisting of elements 𝑎 ∈ End∗𝐵(𝐸) for which 𝑎 dom𝐷 ⊆ dom𝐷 and [𝐷, 𝑎]⟨𝐷⟩−𝛼 is
bounded on dom𝐷⟨𝐷⟩−𝛼. Let Lip∗𝛼(𝐷) = Lip𝛼(𝐷) ∩ Lip𝛼(𝐷)∗ ⊆ End∗𝐵(𝐸).

Note that, because ‖⟨𝐷⟩−1‖ ≤ 1, Lip𝛼(𝐷) ⊆ Lip𝛽(𝐷) for any 𝛼 ≤ 𝛽.

Proposition A.4.7. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸 and let
𝑎 ∈ End∗𝐵(𝐸) preserve dom𝐷. Suppose that

[𝐷, 𝑎]⟨𝐷⟩−𝛼

is bounded for some 0 ≤ 𝛼 < 1. Then, for 0 ≤ 𝛾 < 1 and 0 ≤ 𝛽, such that 𝛼 − 𝛽 + 𝛾 < 1,

[⟨𝐷⟩𝛾, 𝑎]⟨𝐷⟩−𝛽

is bounded by
𝐶∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥

for some constant 𝐶 depending on 𝛼 − 𝛽 and 𝛾.

Proof. First,
[⟨𝐷⟩𝛾, 𝑎]⟨𝐷⟩−𝛽 = −⟨𝐷⟩𝛾[⟨𝐷⟩−𝛾, 𝑎]⟨𝐷⟩−𝛽+𝛾.

By the integral formula (I.0.5), on dom𝐷, using [CP98, Lemma 2.3],

⟨𝐷⟩𝛾[⟨𝐷⟩−𝛾, 𝑎]⟨𝐷⟩−𝛽+𝛾 =
sin 𝛾𝜋

2
𝜋

∫
∞

0
𝜆−𝛾/2⟨𝐷⟩𝛾[𝑎, (𝜆 + 1 +𝐷2)−1]⟨𝐷⟩−𝛽+𝛾𝑑𝜆

=
sin 𝛾𝜋

2
𝜋

∫
∞

0
𝜆−𝛾/2⟨𝐷⟩𝛾 (𝐷(𝜆 + 1 +𝐷2)−1[𝐷, 𝑎](𝜆 + 1 +𝐷2)−1

+ (𝜆 + 1 +𝐷2)−1[𝐷, 𝑎]𝐷(𝜆 + 1 +𝐷2)−1) ⟨𝐷⟩−𝛽+𝛾𝑑𝜆
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The integral is norm-convergent, with a bound

∥⟨𝐷⟩𝛾[⟨𝐷⟩−𝛾, 𝑎]⟨𝐷⟩−𝛽+𝛾∥

≤
sin 𝛾𝜋

2
𝜋

∫
∞

0
𝜆−𝛾/2

× (∥⟨𝐷⟩𝛾𝐷(𝜆 + 1 +𝐷2)−1∥∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥∥⟨𝐷⟩𝛼−𝛽+𝛾(𝜆 + 1 +𝐷2)−1∥

+∥⟨𝐷⟩𝛾(𝜆 + 1 +𝐷2)−1∥∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥∥⟨𝐷⟩𝛼−𝛽+𝛾𝐷(𝜆 + 1 +𝐷2)−1∥) 𝑑𝜆

≤
sin 𝛾𝜋

2
𝜋

2 ∥[𝐷, 𝑎]⟨𝐷⟩𝛿∥∫
∞

0
𝜆−𝛾/2(𝜆 + 1)−3/2+(𝛼−𝛽)/2+𝛾𝑑𝜆

=
sin 𝛾𝜋

2
𝜋

Γ(2−𝛾
2 )Γ(1−𝛼+𝛽−𝛾

2 )
Γ(3−𝛼+𝛽−2𝛾

2 )
2 ∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥

< ∞

so [⟨𝐷⟩𝛾, 𝑎]⟨𝐷⟩−𝛽 has the required bound.

Corollary A.4.8. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. For
0 ≤ 𝛾 < 1, 0 ≤ 𝛽 ≤ 𝛾, and 𝛼 − 𝛽 + 𝛾 < 1,

Lip𝛼(𝐷) ⊆ Lip𝛽/𝛾(⟨𝐷⟩𝛾)

Similarly, with 0 ≤ 𝛾 ≤ 1, 0 ≤ 𝛽 ≤ 𝛾, and 𝛼 − 𝛽 + 𝛾 < 1

Lip𝛼(⟨𝐷⟩𝛿) ⊆ Lip𝛽/𝛾(⟨𝐷⟩𝛾𝛿)

Proof. Let 𝑎 ∈ Lip𝛼(𝐷). Then, by Proposition A.4.7,

[⟨𝐷⟩𝛾, 𝑎]⟨𝐷⟩−𝛽

is bounded for 0 ≤ 𝛾 ≤ 1, 0 ≤ 𝛽 ≤ 𝛾, and 𝛼 − 𝛽 + 𝛾 < 1. The real function

𝑥 ↦ (1 + 𝑥2)𝛽/2

(1 + (1 + 𝑥2)𝛾)𝛽/2𝛾
= ( 1 + 𝑥2

(1 + (1 + 𝑥2)𝛾)1/𝛾
)

𝛽/2

is bounded by 1, so
‖⟨𝐷⟩𝛽⟨⟨𝐷⟩𝛾⟩−𝛽/𝛾‖ ≤ 1

and
[⟨𝐷⟩𝛾, 𝑎]⟨⟨𝐷⟩𝛾⟩−𝛽/𝛾 = [⟨𝐷⟩𝛾, 𝑎]⟨𝐷⟩−𝛽⟨𝐷⟩𝛽⟨⟨𝐷⟩𝛾⟩−𝛽/𝛾

is bounded.

Lemma A.4.9. cf. [BMR10, Lemma 1], [GM15, Proposition A.5] Let 𝐷 be a self-adjoint, regular
operator on a right Hilbert 𝐵-module 𝐸. For 0 ≤ 𝛼 < 1, Lip𝛼(𝐷) is closed under multiplication and
can be equipped with a norm

‖ ⋅ ‖𝐷,𝛼 ∶ 𝑎 → ‖𝑎‖ + 𝐾𝛼‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖

for some constant 𝐾𝛼 > 0, making it a unital Banach algebra.
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Proof. First, it is clear that Lip𝛼(𝐷) is closed under addition and multiplication by ℂ and shares a
unit with End∗𝐵(𝐸). Let 𝑎, 𝑏 ∈ Lip𝛼(𝐷); then 𝑎𝑏 dom𝐷 ⊆ 𝑎dom𝐷 ⊆ dom𝐷. By the Leibniz rule,

[𝐷, 𝑎𝑏]⟨𝐷⟩−𝛼 = [𝐷, 𝑎]𝑏⟨𝐷⟩−𝛼 + 𝑎[𝐷, 𝑏]⟨𝐷⟩−𝛼

= −[𝐷, 𝑎][⟨𝐷⟩−𝛼, 𝑏] + [𝐷, 𝑎]⟨𝐷⟩−𝛼𝑏 + 𝑎[𝐷, 𝑏]⟨𝐷⟩−𝛼

= [𝐷, 𝑎]⟨𝐷⟩−𝛼[⟨𝐷⟩𝛼, 𝑏]⟨𝐷⟩−𝛼 + [𝐷, 𝑎]⟨𝐷⟩−𝛼𝑏 + 𝑎[𝐷, 𝑏]⟨𝐷⟩−𝛼

By Proposition A.4.7,
‖[⟨𝐷⟩𝛼, 𝑏]⟨𝐷⟩−𝛼‖ ≤ 𝐶‖[𝐷, 𝑏]⟨𝐷⟩−𝛼‖

where
𝐶 = 2

𝜋
Γ(2−𝛼

2 )Γ(3−𝛼
2 )

Γ(3−2𝛼
2 )

sin 𝛼𝜋
2 .

Let 𝐾𝛼 ≥ 𝐶. (In fact, for the purposes of the Proposition A.4.12, we also insist that 𝐾𝛼 ≥ 2𝛼/2.) Then

‖[𝐷, 𝑎𝑏]⟨𝐷⟩−𝛼‖ ≤ ‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖‖𝑏‖ + ‖𝑎‖‖[𝐷, 𝑏]⟨𝐷⟩−𝛼‖ + 𝐶‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖‖[𝐷, 𝑏]⟨𝐷⟩−𝛼‖

so 𝑎𝑏 ∈ Lip𝛼(𝐷) and

‖𝑎𝑏‖𝐷,𝛼 = ‖𝑎𝑏‖ + 𝐶‖[𝐷, 𝑎𝑏]⟨𝐷⟩−𝛼‖
≤ ‖𝑎‖‖𝑏‖ + 𝐶 (‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖‖𝑏‖ + ‖𝑎‖‖[𝐷, 𝑏]⟨𝐷⟩−𝛼‖ + 𝐶‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖‖[𝐷, 𝑏]⟨𝐷⟩−𝛼) ‖
= (‖𝑎‖ + 𝐶‖[𝐷, 𝑎]‖⟨𝐷⟩−𝛼) (‖𝑏‖ + 𝐶‖[𝐷, 𝑏]⟨𝐷⟩−𝛼‖)
= ‖𝑎‖𝐷,𝛼‖𝑏‖𝐷,𝛼.

Hence, Lip𝛼(𝐷) is a normed algebra.
To check completeness, let (𝑎𝑛)∞𝑛=1 be a Cauchy sequence in Lip𝛼(𝐷) (for the norm ‖ ⋅ ‖𝐷,𝛼). Since,

‖ ⋅ ‖End∗
𝐵(𝐸) ≤ ‖𝑏‖𝐷,𝛼, (𝑎𝑛)∞𝑛=1 is Cauchy in End∗𝐵(𝐸), converging to some limit 𝑎 ∈ End∗𝐵(𝐸). For fixed

𝜉 ∈ dom𝐷 and 𝜂 ∈ dom𝐷⟨𝐷⟩−𝛼,

⟨𝐷𝜉 ∣ (𝑎 − 𝑎𝑛)⟨𝐷⟩−𝛼𝜂⟩𝐵 − ⟨𝜉 ∣ (𝑎 − 𝑎𝑛)𝐷⟨𝐷⟩−𝛼𝜂⟩𝐵

converges to zero as 𝑛 → ∞. Further,

∣⟨𝐷𝜉 ∣ (𝑎 − 𝑎𝑛)⟨𝐷⟩−𝛼𝜂⟩𝐵 − ⟨𝜉 ∣ (𝑎 − 𝑎𝑛)𝐷⟨𝐷⟩−𝛼𝜂⟩𝐵∣

= lim
𝑚→∞

∣⟨𝐷𝜉 ∣ (𝑎𝑚 − 𝑎𝑛)⟨𝐷⟩−𝛼𝜂⟩𝐵 − ⟨𝜉 ∣ (𝑎𝑚 − 𝑎𝑛)𝐷⟨𝐷⟩−𝛼𝜂⟩𝐵∣

≤ ‖𝜉‖‖𝜂‖ lim sup
𝑚→∞

∥[𝐷, 𝑎𝑚 − 𝑎𝑛]⟨𝐷⟩−𝛼∥.

Applying Proposition A.3.11, we find that 𝑎 − 𝑎𝑛 ∈ Lip𝛼(𝐷) and so that ‖𝑎 − 𝑎𝑛‖𝐷,𝛼 → 0. Hence 𝑎𝑛
converges to 𝑎 ∈ Lip𝛼(𝐷) in the norm ‖ ⋅ ‖𝐷,𝛼.

Proposition A.4.10. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. Any
element 𝑎 of the Banach algebra Lip0(𝐷) has the bound on its spectral radius

𝑟Lip0(𝐷)(𝑎) = lim
𝑛→∞

‖𝑎𝑛‖1/𝑛𝐷,0 ≤ ‖𝑎‖.

Hence, Lip0(𝐷) is closed under the holomorphic functional calculus of End∗𝐵(𝐸).

Proof. First, note the algebraic identity

[𝐷, 𝑎𝑛] =
𝑛
∑
𝑘=1

𝑎𝑘−1[𝐷, 𝑎]𝑎𝑛−𝑘. (A.4.11)
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From this, we estimate

‖[𝐷, 𝑎𝑛]‖ ≤
𝑛
∑
𝑘=1

‖𝑎‖𝑘−1‖[𝐷, 𝑎]‖‖𝑎‖𝑛−𝑘 ≤ 𝑛‖𝑎‖𝑛−1‖[𝐷, 𝑎]‖,

giving us
‖𝑎𝑛‖𝐷,0 ≤ ‖𝑎‖𝑛 + 𝑛‖𝑎‖𝑛−1‖[𝐷, 𝑎]‖ = ‖𝑎‖𝑛(1 + 𝑛‖𝑎‖−1‖[𝐷, 𝑎]‖).

Finally,
lim
𝑛→∞

‖𝑎𝑛‖1/𝑛𝐷,0 ≤ lim
𝑛→∞

‖𝑎‖(1 + 𝑛‖𝑎‖−1‖[𝐷, 𝑎]‖)1/𝑛 = ‖𝑎‖

and the conclusion follows by Lemma A.4.5.

Proposition A.4.12. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. An
element 𝑎 of the Banach algebra Lip𝛼(𝐷) has the bound on its spectral radius

𝑟Lip𝛼(𝐷)(𝑎) = lim
𝑛→∞

‖𝑎𝑛‖1/𝑛𝐷,𝛼 ≤ ‖𝑎‖⟨𝐷⟩𝛼,𝛽

for any 0 ≤ 𝛽 ≤ 1 such that 2 − 𝑎−1 < 𝛽. Hence, Lip𝛼(𝐷) is closed under the holomorphic functional
calculus of Lip𝛽(⟨𝐷⟩𝛼).

Similarly, any element 𝑎 of the Banach algebra Lip𝛼(⟨𝐷⟩𝛿) has the bound on its spectral radius

𝑟Lip𝛼(⟨𝐷⟩𝛿)(𝑎) = lim
𝑛→∞

‖𝑎𝑛‖1/𝑛⟨𝐷⟩𝛿,𝛼 ≤ ‖𝑎‖⟨𝐷⟩𝛼𝛿,𝛽

for any 0 ≤ 𝛽 ≤ 1 such that 2−𝛼−1 < 𝛽. Hence, Lip𝛼(⟨𝐷⟩𝛿) is closed under the holomorphic functional
calculus of Lip𝛽(⟨𝐷⟩𝛼𝛿).

Proof. First, using (A.4.11), we estimate

∥[𝐷, 𝑎𝑛]⟨𝐷⟩−𝛼∥ ≤
𝑛
∑
𝑘=1

‖𝑎𝑘−1‖ ∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥∥⟨𝐷⟩𝛼𝑎𝑛−𝑘⟨𝐷⟩−𝛼∥

≤ ∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥
𝑛
∑
𝑘=1

‖𝑎‖𝑘−1 ∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥𝑛−𝑘

= ∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥
∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥𝑛 − ‖𝑎‖𝑛

∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥ − ‖𝑎‖
= 𝑐1 (∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥𝑛 − ‖𝑎‖𝑛)

with 𝑐1 = ∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥ (∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥ − ‖𝑎‖)
−1

, provided that ‖⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼‖ ≠ ‖𝑎‖. If, in fact,
‖⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼‖ = ‖𝑎‖,

∥[𝐷, 𝑎𝑛]⟨𝐷⟩−𝛼∥ ≤ ∥[𝐷, 𝑎]⟨𝐷⟩−𝛼∥𝑛‖𝑎‖𝑛−1

so that
lim
𝑛→∞

‖𝑎𝑛‖1/𝑛𝐷,0 ≤ lim
𝑛→∞

‖𝑎‖(1 + 𝑛‖𝑎‖−1‖[𝐷, 𝑎]⟨𝐷⟩−𝛼‖)1/𝑛 = ‖𝑎‖.

Otherwise,

‖𝑎𝑛‖𝐷,𝛼 ≤ ‖𝑎‖𝑛 +𝐾𝛼𝑐1 (∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥𝑛 − ‖𝑎‖𝑛) = 𝐾𝛼𝑐1 ∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥𝑛 + (1 −𝐾𝛼𝑐1)‖𝑎‖𝑛.

If ‖⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼‖ > ‖𝑎‖, 𝑐1 > 0 and

lim
𝑛→∞

‖𝑎𝑛‖1/𝑛𝐷,𝛼 ≤ lim
𝑛→∞

(𝐾𝛼𝑐1 ∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥𝑛 + (1 −𝐾𝛼𝑐1)‖𝑎‖𝑛) = ‖⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼‖.
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If ‖⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼‖ < ‖𝑎‖, 𝑐1 < 0 and

lim
𝑛→∞

‖𝑎𝑛‖1/𝑛𝐷,𝛼 ≤ lim
𝑛→∞

(𝐾𝛼𝑐1 ∥⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼∥𝑛 + (1 −𝐾𝛼𝑐1)‖𝑎‖𝑛) = ‖𝑎‖.

By definition,
‖𝑎‖ ≤ ‖𝑎‖⟨𝐷⟩𝛼,𝛽

for any 𝛼, 𝛽. For 0 ≤ 𝛽 ≤ 1, the real function

𝑥 ↦ (1 + (1 + 𝑥2)𝛼)𝛽/2

(1 + 𝑥2)𝛼/2

is bounded by 2𝛽/2, so that
∥⟨⟨𝐷⟩𝛼⟩𝛽⟨𝐷⟩−𝛼∥ ≤ 2𝛽/2

Then

‖⟨𝐷⟩𝛼𝑎⟨𝐷⟩−𝛼‖ ≤ ‖𝑎‖ + ‖[⟨𝐷⟩𝛼, 𝑎]⟨𝐷⟩−𝛼‖
= ‖𝑎‖ + ‖[⟨𝐷⟩𝛼, 𝑎]⟨⟨𝐷⟩𝛼⟩−𝛽⟨⟨𝐷⟩𝛼⟩𝛽⟨𝐷⟩−𝛼‖
≤ ‖𝑎‖ + 2𝛽/2‖[⟨𝐷⟩𝛼, 𝑎]⟨⟨𝐷⟩𝛼⟩−𝛽‖
≤ ‖𝑎‖ + 𝐾𝛽‖[⟨𝐷⟩𝛼, 𝑎]⟨⟨𝐷⟩𝛼⟩−𝛽‖
= ‖𝑎‖⟨𝐷⟩𝛼,𝛽

which is finite, by Corollary A.4.8, for 𝛼 − 𝛼𝛽 + 𝛼 < 1 and 𝛼 < 1. The conclusion follows by Lemma
A.4.5.

For the second part, one can proceed in the same way, the only difference that being that one
should begin by estimating ‖[⟨𝐷⟩𝛿, 𝑎𝑛]⟨𝐷⟩−𝛼𝛿‖.

Theorem A.4.13. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. For any
0 ≤ 𝛼 < 1, Lip𝛼(𝐷) is closed under the holomorphic functional calculus of End∗𝐵(𝐸).

Proof. First, we shall construct a sequence (𝛽𝑛)𝑁𝑛=1 ⊂ [0, 1) such that 𝛽1 = 𝛼, 𝛽𝑁 = 0, and

2 − 𝛽−1
𝑛−1 < 𝛽𝑛

Pick 𝑁 > (1 − 𝛼)−1 and, with

𝑐 = (1 − 𝛼)−1 − 1
𝑁 − 1

let
𝛽𝑛 = 1 − 1

(1 − 𝛼)−1 − (𝑛 − 1)𝑐
= (1 − 𝛼)−1 − (𝑛 − 1)𝑐 − 1

(1 − 𝛼)−1 − (𝑛 − 1)𝑐
Because 0 < 𝑐 < 1,

2 − 𝛽𝑛−1 = 2 − (1 − 𝛼)−1 − (𝑛 − 2)𝑐
(1 − 𝛼)−1 − (𝑛 − 2)𝑐 − 1

= 1 − 1
(1 − 𝛼)−1 − (𝑛 − 1)𝑐 + (𝑐 − 1)

< 1 − 1
(1 − 𝛼)−1 − (𝑛 − 1)𝑐

= 𝛽𝑛

Furthermore,

𝛽𝑁 = 1 − 1
(1 − 𝛼)−1 − (𝑁 − 1)𝑐

= 1 − 1
(1 − 𝛼)−1 − ((1 − 𝛼)−1 − 1)

= 0
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as required. Now we have a chain of inclusions

Lip𝛽1=𝛼(𝐷) ⊆ Lip𝛽2
(⟨𝐷⟩𝛽1) ⊆ Lip𝛽3

(⟨𝐷⟩𝛽1𝛽2) ⊆ ⋯ ⊆ Lip𝛽𝑁=0(⟨𝐷⟩∏
𝑁−1
𝑘=1 𝛽𝑘) ⊆ End∗𝐵(𝐸)

where each is closed under the holomorphic functional calculus of the next, by Propositions A.4.10 and
A.4.12. By Lemma A.4.4, we are done.

A.4.2 Closure under the smooth functional calculus

The approach is originally due to [Pow75, Theorem 3], corrected by [BR76, §2], reproduced as [BR87,
Theorem 3.2.32]. An approach for dealing with higher derivatives is [BEJ84, Lemma 3.2].

Lemma A.4.14. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. Let 𝑆 be a
bounded operator such that 𝑆dom𝐷 ⊆ dom𝐷. Then 𝑒𝑆 dom𝐷 = dom𝐷.

Proof. For a bounded operator 𝑇, the condition that 𝑇dom𝐷 ⊆ dom𝐷 is equivalent to ⟨𝐷⟩𝑇 ⟨𝐷⟩−1

being everywhere-defined and bounded. Since 𝑒𝑥 = ∑∞
𝑘=0 𝑥

𝑘/𝑘! converges everywhere,

𝑒⟨𝐷⟩𝑆⟨𝐷⟩−1 =
∞
∑
𝑘=0

(⟨𝐷⟩𝑆⟨𝐷⟩−1)
𝑘
/𝑘! = ⟨𝐷⟩

∞
∑
𝑘=0

𝑆𝑘/𝑘!⟨𝐷⟩−1 = ⟨𝐷⟩𝑒𝑆⟨𝐷⟩−1

is everywhere-defined and bounded, and 𝑒𝑆 dom𝐷 ⊆ dom𝐷. Similarly,

𝑒⟨𝐷⟩(−𝑆)⟨𝐷⟩−1 = ⟨𝐷⟩𝑒−𝑆⟨𝐷⟩−1

and 𝑒−𝑆 dom𝐷 ⊆ dom𝐷. Because 𝑒𝑆𝑒−𝑆 = 1,

dom𝐷 = 𝑒𝑆𝑒−𝑆 dom𝐷 ⊆ 𝑒𝑆 dom𝐷

and we obtain the required equality, 𝑒𝑆 dom𝐷 = dom𝐷.

Lemma A.4.15. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. Let 𝑆 = −𝑆∗

be a bounded operator such that 𝑆dom𝐷 ⊆ dom𝐷 and [𝐷, 𝑆] extends to a bounded operator. Then
[𝐷, 𝑒𝑆] has a norm bound ∥[𝐷, 𝑒𝑆]∥ ≤ ∥[𝐷, 𝑆]∥, so that ‖𝑒𝑆‖𝐷,0 ≤ 1 + ‖𝑆‖𝐷,0.

Proof. We have

[𝐷, 𝑒𝑆] = ∫
1

0

𝑑
𝑑𝑥

𝑒(1−𝑥)𝑆𝐷𝑒𝑥𝑆𝑑𝑥 = ∫
1

0
𝑒(1−𝑥)𝑆[𝐷, 𝑆]𝑒𝑥𝑆𝑑𝑥,

which has norm bound

∥[𝐷, 𝑒𝑆]∥ ≤ ∫
1

0
∥𝑒(1−𝑥)𝑆∥∥[𝐷, 𝑆]∥ ∥𝑒𝑥𝑆∥ 𝑑𝑥 ≤ ∫

1

0
∥[𝐷, 𝑆]∥ 𝑑𝑥 = ∥[𝐷, 𝑆]∥

as required.

Lemma A.4.16. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. Let 𝑆 = −𝑆∗

be a bounded operator such that 𝑆dom𝐷 ⊆ dom𝐷 and [𝐷, 𝑆]⟨𝐷⟩−𝛼 extends to a bounded operator for
some 0 ≤ 𝛼 < 1. For 0 ≤ 𝛽 < 1,

‖[𝐷, 𝑒𝑆]⟨𝐷⟩−𝛼‖ ≤ ‖𝑆‖𝐷,𝛼 sup
𝑥∈[0,1]

∥𝑒𝑥𝑆∥
⟨𝐷⟩𝛼,𝛽

and so ‖𝑒𝑆‖𝐷,𝛼 ≤ (1 + ‖𝑆‖𝐷,𝛼) sup𝑥∈[0,1] ∥𝑒
𝑥𝑆∥

⟨𝐷⟩𝛼,𝛽
. Furthermore,

∥[⟨𝐷⟩𝛾, 𝑒𝑆]⟨⟨𝐷⟩𝛾⟩−𝛼∥ ≤ ‖𝑆‖⟨𝐷⟩𝛾,𝛼 sup
𝑥∈[0,1]

∥𝑒𝑥𝑆∥
⟨𝐷⟩𝛼𝛾,𝛽

and so ‖𝑒𝑆‖⟨𝐷⟩𝛾,𝛼 ≤ (1 + ‖𝑆‖⟨𝐷⟩𝛾,𝛼) sup𝑥∈[0,1] ∥𝑒
𝑥𝑆∥

⟨𝐷⟩𝛼𝛾,𝛽
.
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Proof. We have

[𝐷, 𝑒𝑆]⟨𝐷⟩−𝛼 = ∫
1

0

𝑑
𝑑𝑥

𝑒(1−𝑥)𝑆𝐷𝑒𝑥𝑆⟨𝐷⟩−𝛼𝑑𝑥

= ∫
1

0
𝑒(1−𝑥)𝑆[𝐷, 𝑆]𝑒𝑥𝑆⟨𝐷⟩−𝛼𝑑𝑥

= ∫
1

0
𝑒(1−𝑥)𝑆[𝐷, 𝑆]⟨𝐷⟩−𝛼⟨𝐷⟩𝛼𝑒𝑥𝑆⟨𝐷⟩−𝛼𝑑𝑥

= ∫
1

0
𝑒(1−𝑥)𝑆[𝐷, 𝑆]⟨𝐷⟩−𝛼 ([⟨𝐷⟩𝛼, 𝑒𝑥𝑆]⟨𝐷⟩−𝛼 + 𝑒𝑥𝑆) 𝑑𝑥

This has norm bound

∥[𝐷, 𝑒𝑆]⟨𝐷⟩−𝛼∥ ≤ ∫
1

0
∥𝑒(1−𝑥)𝑆∥∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥(∥[⟨𝐷⟩𝛼, 𝑒𝑥𝑆]⟨𝐷⟩−𝛼∥ + ∥𝑒𝑥𝑆∥) 𝑑𝑥

≤ ∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥(1 +∫
1

0
∥[⟨𝐷⟩𝛼, 𝑒𝑥𝑆]⟨𝐷⟩−𝛼∥ 𝑑𝑥)

≤ ∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥(1 + sup
𝑥∈[0,1]

∥[⟨𝐷⟩𝛼, 𝑒𝑥𝑆]⟨𝐷⟩−𝛼∥)

≤ ∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥(1 + 2𝛽/2 sup
𝑥∈[0,1]

∥[⟨𝐷⟩𝛼, 𝑒𝑥𝑆]⟨⟨𝐷⟩𝛼⟩−𝛽∥) .

So, because of the choice 𝐾𝛽 ≥ 2𝛽/2,

‖𝑒𝑆‖𝐷,𝛼 = ‖𝑒𝑆‖ + 𝐾𝛼 ∥[𝐷, 𝑒𝑆]⟨𝐷⟩−𝛼∥

≤ 1 +𝐾𝛼 ∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥(1 +𝐾𝛽 sup
𝑥∈[0,1]

∥[⟨𝐷⟩𝛼, 𝑒𝑥𝑆]⟨⟨𝐷⟩𝛼⟩−𝛽∥)

= 1 +𝐾𝛼 ∥[𝐷, 𝑆]⟨𝐷⟩−𝛼∥ sup
𝑥∈[0,1]

∥𝑒𝑥𝑆∥
⟨𝐷⟩𝛼,𝛽

≤ 1 + ‖𝑆‖𝐷,𝛼 sup
𝑥∈[0,1]

∥𝑒𝑥𝑆∥
⟨𝐷⟩𝛼,𝛽

≤ (1 + ‖𝑆‖𝐷,𝛼) sup
𝑥∈[0,1]

∥𝑒𝑥𝑆∥
⟨𝐷⟩𝛼,𝛽

as required. Similarly,

∥[⟨𝐷⟩𝛾, 𝑒𝑆]⟨⟨𝐷⟩𝛾⟩−𝛼∥ ≤ ∥[⟨𝐷⟩𝛾, 𝑒𝑆]⟨𝐷⟩−𝛼𝛾∥

≤ ∥[⟨𝐷⟩𝛾, 𝑆]⟨𝐷⟩−𝛼𝛾∥(1 + sup
𝑥∈[0,1]

∥[⟨𝐷⟩𝛼𝛾, 𝑒𝑥𝑆]⟨𝐷⟩−𝛼𝛾∥)

≤ ∥[⟨𝐷⟩𝛾, 𝑆]⟨𝐷⟩−𝛼𝛾∥(1 + 2𝛽/2 sup
𝑥∈[0,1]

∥[⟨𝐷⟩𝛼𝛾, 𝑒𝑥𝑆]⟨⟨𝐷⟩𝛼𝛾⟩−𝛽∥)

and

‖𝑒𝑆‖⟨𝐷⟩𝛾,𝛼 = ‖𝑒𝑆‖ + 𝐾𝛼 ∥[⟨𝐷⟩𝛾, 𝑒𝑆]⟨⟨𝐷⟩𝛾⟩−𝛼∥

≤ 1 +𝐾𝛼 ∥[⟨𝐷⟩𝛾, 𝑆]⟨𝐷⟩−𝛼𝛾∥(1 +𝐾𝛽 sup
𝑥∈[0,1]

∥[⟨𝐷⟩𝛼𝛾, 𝑒𝑥𝑆]⟨⟨𝐷⟩𝛼𝛾⟩−𝛽∥)

≤ (1 + ‖𝑆‖⟨𝐷⟩𝛾,𝛼) sup
𝑥∈[0,1]

∥𝑒𝑥𝑆∥
⟨𝐷⟩𝛼𝛾,𝛽
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as required.

Lemma A.4.17. Let 𝐷 be a self-adjoint, regular operator on a right Hilbert 𝐵-module 𝐸. Let 𝑆 = −𝑆∗

be a bounded operator such that 𝑆dom𝐷 ⊆ dom𝐷 and [𝐷, 𝑆]⟨𝐷⟩−𝛼 extends to a bounded operator for
some 0 ≤ 𝛼 < 1. Then [𝐷, 𝑒𝑆]⟨𝐷⟩−𝛼 extends to a bounded operator.

Proof. Let 𝑁 = ⌊(1 − 𝛼)−1⌋ + 1 and let (𝛽𝑛)𝑁𝑛=1 ⊂ [0, 1) be the sequence constructed in the Proof of
Theorem A.4.13, with 𝛽1 = 𝛼, 𝛽𝑁 = 0, and 2 − 𝛽−1

𝑛−1 < 𝛽𝑛. As in the Proof of Theorem A.4.13, we
have a chain of inclusions

Lip𝛽1=𝛼(𝐷) ⊆ Lip𝛽2
(⟨𝐷⟩𝛽1) ⊆ Lip𝛽3

(⟨𝐷⟩𝛽1𝛽2) ⊆ ⋯ ⊆ Lip𝛽𝑁=0(⟨𝐷⟩∏
𝑁−1
𝑘=1 𝛽𝑘) ⊆ End∗𝐵(𝐸).

We now compute that

‖𝑒𝑆‖𝐷,𝛼=𝛽1

≤ (1 + ‖𝑆‖𝐷,𝛽1
) sup
𝑥1∈[0,1]

∥𝑒𝑥1𝑆∥
⟨𝐷⟩𝛽1,𝛽2

≤ (1 + ‖𝑆‖𝐷,𝛽1
) sup
𝑥1,𝑥2∈[0,1]

(1 + 𝑥1‖𝑆‖⟨𝐷⟩𝛽1,𝛽2
) ∥𝑒𝑥1𝑥2𝑆∥

⟨𝐷⟩𝛽1𝛽2,𝛽3

≤ (1 + ‖𝑆‖𝐷,𝛽1
) sup
𝑥1,𝑥2,𝑥3∈[0,1]

(1 + 𝑥1‖𝑆‖⟨𝐷⟩𝛽1,𝛽2
)(1 + 𝑥1𝑥2‖𝑆‖⟨𝐷⟩𝛽1𝛽2,𝛽3

) ∥𝑒𝑥1𝑥2𝑥3𝑆∥
⟨𝐷⟩𝛽1𝛽2𝛽3,𝛽4

≤ (1 + ‖𝑆‖𝐷,𝛽1
) sup
𝑥1,𝑥2,…𝑥𝑁−1∈[0,1]

(1 + 𝑥1‖𝑆‖⟨𝐷⟩𝛽1,𝛽2
)(1 + 𝑥1𝑥2‖𝑆‖⟨𝐷⟩𝛽1𝛽2,𝛽3

) × ⋯

× (1 + 𝑥1𝑥2 ⋯𝑥𝑁−2‖𝑆‖⟨𝐷⟩𝛽1𝛽2⋯𝛽𝑁−2,𝛽𝑁−1
) ∥𝑒𝑥1𝑥2⋯𝑥𝑁−1𝑆∥

⟨𝐷⟩𝛽1𝛽2⋯𝛽𝑁−1,𝛽𝑁=0

≤ (1 + ‖𝑆‖𝐷,𝛽1
) sup
𝑥1,𝑥2,…𝑥𝑁−1∈[0,1]

(1 + 𝑥1‖𝑆‖⟨𝐷⟩𝛽1,𝛽2
)(1 + 𝑥1𝑥2‖𝑆‖⟨𝐷⟩𝛽1𝛽2,𝛽3

) × ⋯

× (1 + 𝑥1𝑥2 ⋯𝑥𝑁−2‖𝑆‖⟨𝐷⟩𝛽1𝛽2⋯𝛽𝑁−2,𝛽𝑁−1
)(1 + 𝑥1𝑥2 ⋯𝑥𝑁−1‖𝑆‖⟨𝐷⟩𝛽1𝛽2⋯𝛽𝑁−1,𝛽𝑁=0)

= (1 + ‖𝑆‖𝐷,𝛽1
)(1 + ‖𝑆‖⟨𝐷⟩𝛽1,𝛽2

)(1 + ‖𝑆‖⟨𝐷⟩𝛽1𝛽2,𝛽3
) × ⋯

× (1 + ‖𝑆‖⟨𝐷⟩𝛽1𝛽2⋯𝛽𝑁−2,𝛽𝑁−1
)(1 + ‖𝑆‖⟨𝐷⟩𝛽1𝛽2⋯𝛽𝑁−1,𝛽𝑁=0)

= (1 + ‖𝑆‖𝐷,𝛽1
)

𝑁
∏
𝑛=2

(1 + ‖𝑆‖⟨𝐷⟩𝛽1⋯𝛽𝑛−1,𝛽𝑛
)

< ∞

as required.

Theorem A.4.18. cf. [BEJ84, Lemma 3.2] [BC91, Proposition 6.4] Let 𝐷 be a self-adjoint, regular
operator on a right Hilbert 𝐵-module 𝐸. Fix 0 ≤ 𝛼 < 1 and let 𝑓 be a ⌊(1−𝛼)−1⌋+2-times differentiable
function on ℝ𝑑 for some 𝑑 ≥ 1. (For 𝛼 = 0, we may take 𝑓 to be only twice differentiable.) For any
pairwise commuting self-adjoint 𝑎1,… , 𝑎𝑑 ∈ Lip𝛼(𝐷), we have 𝑓(𝑎1,… , 𝑎𝑑) ∈ Lip𝛼(𝐷).

Proof. Modifying 𝑓 away from the joint spectrum of 𝑎1,… , 𝑎𝑑, without loss of generality, we assume
that 𝑓 is compactly supported. With 𝑓 the Fourier transform of 𝑓, we may write

𝑓(𝑎1,… , 𝑎𝑑) =
1

(2𝜋)𝑑
∫
ℝ𝑑

𝑒𝑖𝑡1𝑎1+⋯+𝑖𝑡𝑑𝑎𝑑𝑓(𝑡1,… , 𝑡𝑑)𝑑𝑡𝑛

and
[𝐷, 𝑓(𝑎1,… , 𝑎𝑑)]⟨𝐷⟩−𝛼 = 1

(2𝜋)𝑑
∫
ℝ𝑑

[𝐷, 𝑒𝑖𝑡1𝑎1+⋯+𝑖𝑡𝑑𝑎𝑑 ]⟨𝐷⟩−𝛼𝑓(𝑡1,… , 𝑡𝑑)𝑑𝑡𝑛

Let 𝑁 = ⌊(1−𝛼)−1⌋ + 1 and let (𝛽𝑛)𝑁𝑛=1 ⊂ [0, 1) be the sequence constructed in the Proof of Theorem
A.4.13. Because 𝑓 is ⌊(1 − 𝛼)−1⌋ + 2-times differentiable, |𝑡1|𝑘1 ⋯ |𝑡𝑑|𝑘𝑑 |𝑓(𝑡1,… , 𝑡𝑑)| is integrable for
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𝑘1 +⋯+ 𝑘𝑑 < ⌊(1 − 𝛼)−1⌋ + 2 and so

‖𝑓(𝑎1,… , 𝑎𝑑)‖𝐷,𝛼 = ‖𝑓(𝑎1,… , 𝑎𝑑)‖ + 𝐾𝛼‖[𝐷, 𝑓(𝑎1,… , 𝑎𝑑)]⟨𝐷⟩−𝛼‖

≤ 1
2𝜋

∫
∞

−∞
‖𝑒𝑖𝑡1𝑎1+⋯+𝑖𝑡𝑑𝑎𝑑‖|𝑓(𝑡1,… , 𝑡𝑑)|𝑑𝑡

+ 𝐾𝛼
1
2𝜋

∫
∞

−∞
‖[𝐷, 𝑒𝑖𝑡1𝑎1+⋯+𝑖𝑡𝑑𝑎𝑑 ]⟨𝐷⟩−𝛼‖|𝑓(𝑡1,… , 𝑡𝑑)|𝑑𝑡

= 1
2𝜋

∫
∞

−∞
‖𝑒𝑖𝑡1𝑎1+⋯+𝑖𝑡𝑑𝑎𝑑‖𝐷,𝛼|𝑓(𝑡1,… , 𝑡𝑑)|𝑑𝑡

≤ 1
2𝜋

∫
∞

−∞
(1 +

𝑑
∑
𝑗=1

|𝑡𝑗|‖𝑎𝑗‖𝐷,𝛽1
)

𝑁
∏
𝑛=2

(1 +
𝑑

∑
𝑗=1

|𝑡𝑗|‖𝑎𝑗‖⟨𝐷⟩𝛽1⋯𝛽𝑛−1,𝛽𝑛
)|𝑓(𝑡1,… , 𝑡𝑑)|𝑑𝑡

< ∞,

as required.
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